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Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic 
disorders of pregnancy and can cause short- and long-term adverse effects in both 
pregnant women and their offspring. However, the etiology and pathogenesis of 
GDM are still unclear. As a metabolic disease, GDM is well suited to meta-
bolomics study, which can monitor the changes in small molecular metabolites 
induced by maternal stimuli or perturbations in real time. The application of 
metabolomics in GDM can be used to discover diagnostic biomarkers, evaluate 
the prognosis of the disease, guide the application of diet or drugs, evaluate the 
curative effect, and explore the mechanism. This review provides comprehensive 
documentation of metabolomics research methods and techniques as well as the 
current progress in GDM research. We anticipate that the review will contribute 
to identifying gaps in the current knowledge or metabolomics technology, 
provide evidence-based information, and inform future research directions in 
GDM.
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disorders of pregnancy. As a metabolic disease, GDM is well suited to metabolomics 
study, which can monitor the changes in small molecular metabolites induced by 
maternal stimuli or perturbation in real time. This review provides comprehensive 
documentation of metabolomics research methods and techniques as well as the current 
progress in GDM research. We anticipate that the review will contribute to identifying 
gaps in the current knowledge or metabolomics technology, provide evidence-based 
information, and inform future research directions in GDM.
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INTRODUCTION
Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders of 
pregnancy and is defined as any degree of carbohydrate intolerance that occurs or is 
first recognized during pregnancy[1]. The prevalence of GDM has been rising 
worldwide, including in China, in the past few decades[2] and its prevalence ranges 
from 9.3% to 25.5% worldwide[3]. GDM can cause short-term and long-term adverse 
effects in pregnant women, including an increased risk of macrosomia, preterm 
delivery, preeclampsia, cesarean section, neonatal hypoglycemia, hyperbilirubinemia, 
respiratory distress syndrome, type 2 diabetes (T2D), hypertension, metabolic di-
sorders, and even cardiovascular disease[4-8]. In addition, GDM also has a far-
reaching impact on the health of offspring. Increasing data have shown that maternal 
hyperglycemia is positively correlated with health problems in offspring, including an 
elevated incidence of obesity[9], T2D, metabolic syndrome, hypertension[10], dyslip-
idemia, insulin resistance (IR), cardiovascular disease[11], autism, etc[12]. Therefore, 
given the unique treatment time window provided by pregnancy, early identification 
of high-risk individuals and good glycemic control in patients with GDM not only 
provide benefits in the short term but also reduce the occurrence of complications, in 
the long run, thus benefiting the next generation.

Systems biology inaugurated a new era of biological and biomedical research, 
which is different from the traditional one-gene-at-a-time approach, which discovers 
detailed molecular functions of individual genes or proteins[13]. Systems biology 
includes genomics, transcriptomics, proteomics, and metabolomics to compre-
hensively research the changes in biological systems under physiological and 
pathological conditions[14]. Among them, the concept of metabolomics was first put 
forward by Nicholson et al[15] in 1999. Metabolomics is the qualitative or quantitative 
analysis of a large number of small molecular metabolites (MW < 1000 Da) that are 
intermediate or final products of all the metabolic pathways in a living organism[16]. 
Therefore, the biggest difference between metabolomics and other ‘omics’ disciplines 
is that it directly reflects the activities that are occurring or have already taken place in 
the body, while genomics, transcriptomics, and proteomics explain the possible 
activities and processes in the body.

Metabolomics has the following characteristics: (1) Small changes in gene and 
protein expression will be magnified in metabolites, which makes the detection much 
easier; (2) Nonfunctional changes in genes and proteins will not be reflected in 
metabolites, so they play a “noise filtering” role in the process of transmitting 
information from upstream to downstream; (3) The number of metabolite varieties is 
far less than that of genes and proteins, and the molecular structure is much simpler; 
and (4) The structure of metabolites is similar in various organisms, so the study 
technology used in metabolomics is in common[17]. In the past decade, metabolomics 
research has resulted in rapid progress in various fields of life science, such as 
detecting biomarkers, diagnosing and treating diseases, interpreting life phenomena, 
exploring disease mechanisms, developing drugs, and promoting human cognition of 
life phenomena[18].

In previous studies, many risk factors for GDM have been identified, including 
advanced maternal age, family history of diabetes, prepregnancy overweight and 
obesity, and genetic components[14]. However, the etiology and pathogenesis of GDM 
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are still unclear. As a metabolic disease, GDM is very suitable to be studied by 
metabolomics, which can monitor the changes in small molecular metabolites induced 
by maternal stimuli or perturbation. The application of metabolomics in GDM can 
discover diagnostic biomarkers, evaluate the prognosis of the disease, guide the 
application of diet or drugs, evaluate the curative effect, and explore the mechanism. 
This article reviews the metabolomics research methods and techniques as well as the 
current progress in metabolomics in GDM research. We anticipate that the review will 
contribute to identifying gaps in current knowledge or in metabolomics technology, 
provide evidence-based information, and inform future research directions in GDM.

METABOLOMICS RESEARCH METHODS AND TECHNIQUES
Metabolomics research methods
Metabolomics detects a complete set of small molecular metabolites in cells, body 
fluids, or tissues based on modern analytic techniques with high throughput, high 
sensitivity, and high accuracy and analyzes the association of metabolites with 
pathophysiological changes under the influence of internal or external factors, which 
reflect the “end result” of environmental exposures, disease invasion, drug treatment, 
and genetic variation at a certain time in the organism[19,20].

At present, the two most commonly used strategies for metabolomics analysis are 
untargeted metabolomics and targeted metabolomics[21]. Untargeted metabolomics, 
also known as global metabolomics profiling, means that all or most possible 
metabolites are unbiasedly qualitatively or quantitatively analyzed in given biological 
samples[22,23]. This approach will be applied when it is not known which metabolites 
are of importance in the research question or when the aim is to discover unknown 
physiological patterns since it can produce a large number of complex molecules, 
provide directions for identifying biological markers and metabolic pathways, and 
offer a better understanding of internal metabolic physiology by high-throughput 
methods[24,25]. In contrast, targeted metabolomics refers to dozens to hundreds of 
metabolites, usually a specific class of metabolites with similar physicochemical 
properties (such as carbohydrates, lipids, and  amino acids) or a class of metabolites 
involved in the same biochemical pathways (such as gluconeogenesis, beta-oxidation, 
or the citric acid cycle), being analyzed[26,27]. It is usually used to identify new 
biomarkers or deeply investigate metabolite functions and pathways as well as the 
relationship between metabolites and diseases[28]. However, though widely applied, 
this approach is often biased, artificially amplifying the effects of selected metabolites 
on the performance of the biological system and neglecting the metabolites not in the 
selection[24,28,29].

Due to the comprehensive nature of metabolomics, careful consideration of the 
following aspects is required: Selection and storage of the sample specimens, 
technology for the extraction of the metabolites, quality control of the analyses, and 
statistical methods to determine the metabolites undergoing significant change[30]. 
The basic procedures of metabolomics research consist of the experimental design, 
sample collection and pretreatment, metabolite extraction and detection, original data 
acquisition and processing, bioinformatics and statistical analysis, and annotation or 
identification of metabolites[31]. The main analysis workflow of the metabolomics 
analysis is shown in Figure 1.

Metabolomics research techniques
Human metabolites include thousands of known and unknown small molecular 
metabolites whose properties of polarity, size, and concentration vary enormously, 
ranging from low-molecular-weight, hydrophilic, polar metabolites (e.g. amino acids) 
to higher-molecular-weight, hydrophobic, nonpolar metabolites (e.g. lipids)[32]. This 
diversity brings great technical challenges to the detection, identification, and quanti-
fication of metabolites[33]. At present, there is no analytical method that can simultan-
eously detect or quantify all metabolites in human biological samples. Scientists try to 
use a variety of analytical techniques to analyze various complicated metabolites, 
among which nuclear magnetic resonance (NMR) spectroscopy and mass spectro-
metry (MS) are the two most widely used techniques in the field of metabolomics[24,
34].

NMR technology is a spectral technique that converts resonant frequencies into 
molecular chemistry and structure information by making use of the different 
resonance frequencies produced by different nuclear absorption radiation[35]. It does 
not need chromatographic processing, and the sample preparation is simple. It can 
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Figure 1 Main workflow of metabolomics analysis. PCA: Principal component analysis; NLM: Nonlinear mapping; HCA: Hierarchical cluster analysis; PLS-
DA: Partial least squares discriminant analysis; OPLS-DA: Orthogonal partial least squares discriminant analysis; ANN: Artificial neural network; SVM: Support vector 
machine; NMR: Nuclear magnetic resonance spectroscopy; MS: Mass spectrometry; LC: Liquid chromatography; GC: Gas chromatography; CE: Capillary 
electrophoresis.

detect tissue samples in situ, providing accurate structural information on metabolites
[36], so it is suitable for the qualitative and quantitative study of metabolites[24,30]. 
However, its deficiency lies in its low sensitivity and incomplete metabolite coverage 
in biomedical research. However, in recent years, with the progress of high magnetic 
field magnets, pulse sequences, and freezing probe technology[37], the sensitivity and 
resolution of NMR approaches have been significantly improved.

MS analysis is a method to separate and detect moving ions according to the ratio of 
mass to charge (m/z) by electric and magnetic fields[29]. Metabolomics based on MS 
analysis usually involves separation by chromatography combined with chromato-
graphy to reduce the matrix effect and ion inhibition effect. At present, MS 
hyphenated chromatography can be divided into three categories: Liquid chromato-
graphy-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-
MS), and capillary electrophoresis-mass spectrometry (CE-MS). The choice of different 
chromatographic separation methods depends on the properties of the analyte (such 
as molecular weight and hydrophilicity/hydrophobicity): LC-MS is mainly used to 
identify nonpolar, nonvolatile, semipolar, and thermally unstable compounds[38]. LC-
MS technology separates compounds in LC through the interaction between the 
mobile phase (solvent) and stationary phase and identifies the separated compounds 
in the mass spectrometer. LC-MS can cover a wider range of metabolites and is the 
mainstream method for metabolomic analysis at present. GC-MS is mainly used for 
volatile and low boiling point compounds. The derivation method can increase the 
volatility and thermal stability of nonvolatile compounds for GC-MS analysis. The 
separated analyte must be ionized before entering the MS instrument, and the 
ionization method is related to the type of MS detector[29,39].

Compared with NMR technology, the high sensitivity and high resolution of the MS 
method make it possible to detect thousands of metabolites in a wide dynamic range
[40], which makes MS the first choice for researchers who need low abundance 
metabolite data or to separate large amounts of metabolites at the same time[41,42]. 
Both NMR and MS have obvious advantages and disadvantages (shown in Table 1), 
and they are highly complementary. The combination of these two technologies can 
improve the overall quality of the research. In recent years, researchers have begun to 
use NMR and MS to analyze the metabolic spectrum of samples, drug efficacy and 
toxicology, disease pathophysiology, and other aspects[30,43], and to explore the 
compatibility of NMR and MS analysis platforms[30].
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Table 1 Comparison of characteristics of nuclear magnetic resonance spectroscopy technology and mass spectrometry technology

Comparison item NMR MS

Sensitivity Low, less than 100 metabolites at a time High, more than 1000 metabolites at a time

Selectivity Poor Good

Targeting analysis ability Usually used for nontargeted analysis Targeted and non-targeted analysis

Sample preparation Simple Complex

Sample measurement Completed in a single measurement Require different chromatographic techniques

Sample recovery Nondestructive, recyclable, and long-term preservation Unrecyclable, less sample consuming

Repeatability High Low

Tissue sample Directly without pretreatment. Need pretreatment such as tissue extraction

NMR: Nuclear magnetic resonance spectroscopy; MS: Mass spectrometry.

Metabolomics research in GDM
In recent years, metabolomics studies in GDM have shown the characteristics of 
universality and diversity. For example, there are a variety of biological samples, 
including blood plasma or serum from the maternal or fetal umbilical cord, 
erythrocyte membrane, urine, amniotic fluid, breast milk, placenta, and hair, but most 
samples used are plasma or serum. The time periods of study also have different 
variations from the first trimester, second trimester, third trimester, at delivery, to 
postpartum periods following delivery. At present, GDM metabolomics research is 
mainly focused on carbohydrates, amino acids, lipid metabolites [including fatty acids 
(FAs), phospholipids, sphingomyelin, etc.], purines, uric acid, bile acid, and other 
small molecular metabolites, as well as related metabolic pathways. The results of the 
papers published in recent years are shown in Table 2[44-58].

CARBOHYDRATE METABOLITES
It is well known that the characteristic clinical biochemical index of GDM is an 
increase in blood glucose content, which continues to be high with the development of 
pregnancy. A recent study tracked the metabolic changes in individuals from baseline 
(6-9 wk postpartum) to a 2-year follow-up (2 years postpartum) in 1035 women 
diagnosed with GDM and studied the trajectory of T2D progression with a longit-
udinal analysis[55]. The researchers found that hexose, which represents the sum of all 
6-carbon monosaccharides including glucose and fructose, was the only significantly 
increased metabolite in all three analyses (at baseline, at follow-up, and longitudinal 
analysis)[55]. Shokry’s study has also found that the sum of hexose (approximately 
90%-95% glucose, 5% other hexoses) was significantly increased in GDM in both 
maternal plasma and, especially, umbilical cord plasma[56]. The association between 
hexose and future T2D risk was highly significant at baseline[55,59] and within 2 years 
of follow-up[60,61]. However, the increase in hexose (likely glucose) is not surprising, 
since diabetes and its severity are defined by the circulating blood glucose level. 
Although there is a continuous interaction between various nutrient metabolism 
pathways, in most cases, carbohydrate metabolism takes precedence over protein and 
fat in energy production. Hexose metabolism is the most regulated, which is also most 
closely related to the occurrence of T2D. Disorders in circulating hexoses may indicate 
problems with carbohydrate metabolism but may also be potential problems with 
amino acid or lipid metabolism.

In addition to perturbations in hexose metabolism, some disorders of glucose 
metabolism pathway molecules have also been detected in women with GDM. 
Mokkala et al[50] found that the level of citrate, which is an intermediate in the 
tricarboxylic acid cycle synthesized from acetyl-CoA and oxaloacetate, increased in 
women with GDM. Citric acid inhibits glycolysis and conversely stimulates gluconeo-
genesis and lipid synthesis, i.e., energy storage. Thus citric acid is an important 
regulator of energy metabolism[62]. Therefore, in addition to its relationship with 
GDM, citric acid may be a determinant of adiposity in overweight and obese women, 
as observed in a study of nonpregnant participants with obesity[63]. Early studies, 
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Table 2 Selected gestational diabetes mellitus metabolomic studies in recent years

Study design Study methods
GDM 
diagnostic 
guidelines

Sample 
collection 
time

Biological 
samples

Analytical 
platform 
(s)

Changes 
in 
direction 
(vs 
control)

Main differential 
metabolites Ref.

Biological samples collected before GDM diagnosis

Up All-sized VLDL particles; 
medium-sized HDL 
particles; small-sized 
HDL particles; glucose; 
lactate; pyruvate; 
isoleucine; leucine; 
alanine; phenylalanine; 
GlycA

Prospective study 
(overweight and 
obese), n = 82 
GDM, n = 275 
controls

Targeted NMR-based 
metabolomics approach

IADPSG 12.8–15.6 
wk

Maternal serum 
(fasting)

NMR

Down Very large HDL particles

Mokkala et 
al[44], 
Finland, 
2020

Up LPC egg; LPC 15:0; LPC 
17:0; LPC 18:0; LPC 18:1

Nested case-
control study, n = 
243 GDM, n = 243 
controls

Targeted 
Lysophosphatidylcholines 
and bile acids

IADPSG 9-11 wk Maternal plasma 
(fasting)

LC-MS/MS

Down Deoxycholic acid; 
glycoursodeoxycholic 
acid

Liu et al[45], 
China, 2020

Up Alanine; glutamate; 
isoleucine; phenylalanine; 
tyrosine

Case-control 
study, n = 65 
GDM, n = 366 
controls

Targeted amino acids IADPSG 12-16 wk Maternal serum UHPLC-
MS/MS

Down None

Jiang et al
[46], China, 
2020

Up NoneCase-control 
study, n = 121 p-
GDM, n = 121 
control

Maternal 
serum(randomly)

HILIC-
MS/MS

Down Glutamine; 
pyrophosphate; octulose-
1,8-bisphosphate

Up Shikimate-3-phosphate; 
1,3-diphosphoglycerate; 
N-acetyl-L-alanine

Case-controls 
study, n = 36 p-
GDM, n = 31 
controls

Targeted metabolomics multi-step 
screening

16-19 wk

Maternal urine 
(randomly)

HILIC-
MS/MS

Down Ethanolamine; 
methionine

Sakurai et al
[47], Japan, 
2019

Up C14:1(trans-9); C16:1 (cis-
7); C17:1 (cis-10); C18:1 
(cis-9); C19:1 (cis-10); 
C20:1 (cis-11); C12:0; 
C16:0; C17:0; C20:0; C16:2 
(cis-9_12); C18:2 
(9_11&10_12-cis&trans-
conjugated-99%); C18:3 
(cis-9_12_15); C22:3 (cis-
13_16_19); C18:3 (cis-
6_9_12); C18:2 (cis-9_12); 
C20:4 (cis-5_8_11_14); 
C20:3 (cis-8_11_14); C20:2 
(cis-11_14); C22:5 (cis-
7_10_13_16_19); THDCA; 
LCA; HDCA; isoDCA; 
6_7_diketoLCA; leucine; 
isoleucine; valine; 
acetylaspartic acid; 
alanine; glutamic acid; 2-
aminobutanoic acid; 2-
oxo-4-methylvaleric acid; 
gamma-aminobutanoic 
acid; Aminomalonic acid; 
pyruvic acid; 1-
monooleoylglycerol; 2-
ethylhexanoic acid; 
mannose; threitol

Nested case-
control study, n = 
131 GDM, n = 138 
controls

Nontargeted 
metabolomics

IADPSG 12 wk Maternal serum 
(fasting)

UPLC-
QTOFMS, 
UPLC-
TQMS, GC-
TOFMS

Down CA; dehydro_LCA; 
cysteine; 2,3,4-
trihydroxybutyric acid; 
maltose; threonic acid

Hou et al
[48], China, 
2018
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Biological samples collected after or simultaneously with GDM diagnosis

Up Adenosine; 
taurolithocholic acid; 
glycoli thocholic acid; 
glycochenodeoxycholic 
acid

Nested case-
control study, n = 
23 GDM, n = 77 
controls

Targeted polar 
metabolites and lipids

IADPSG 24-28 wk Maternal serum 
(2 h OGTT)

LC-MS

Down Methionine sulfoxide; 
C58:10 triacylglycerol; 
C58:9 triacylglycerol; C8 
carnitine; C14:2 carnitine; 
C14:1 carnitine; C12 
carnitine; C4-OH 
carnitine

Geiaye et al
[49], Peru, 
2019

Up VLDL particles; glucose; 
citrate; isoleucine; leucine; 
phenylalanine; 
acetoacetate; GlycA

Case-control study 
(overweight), n = 
100 GDM, n = 252 
controls

Down Small HDL particles

Up VLDL particles; lactate; 
isoleucine; leucine; GlycA

Case-control study 
(overweight), n = 
19 GDM with 
medication, n = 76 
GDM with diet

Targeted NMR-based 
metabolomics approach

IADPSG 34.6-35.9 wk Maternal serum 
(fasting)

NMR

Down Small HDL particles

Mokkala et 
al[50], 
Finland, 
2020

Up PE(P-20:0_18:1); PE(P-
18:0_22:6); PE(P-
20:0_22:6); PE(P-
18:1_22:6); PC(P-
18:0_22:6); PC(17:0_22:6)

Case-control 
study, n = 45 
GDM, n = 98 
controls

Targeted lipids 
metabolomics approach

IADPSG At 
admission, 
after 
admission, 
and up to 
24 h after 
delivery

Maternal plasma 
(fasting)

LC-IMS-MS

Down PEBP1; 
TG(12:0_16:0_18:1); 
TG(14:0_16:0_18:1); 
TG(14:0_16:0_18:2); 
PDIA6; PDIA5;LYAG; 
EXT1; B4GA1

Odenkerk et 
al[51], 
United 
States, 2020

Up 3-Dehydrocarnitine; 6-
hexanoyl-D-erythro-
sphingosine; arachidoyl 
ethanolamide; CER; Che; 
DG; dMePE; 
eicosanoicacid; FA; 
hexadecanamide; 
LdMePE; LPA; LPC; 
LPEt; LPG; LPI; MG; N-
hexadecyl-ethanolamine; 
OAHFA; 
octadecanoicacid; PAF; 
PC; PE; Pet; PG; phSM; 
PI; PIP,SM; So; TG

Case-control 
study, n = 11 
GDM only, n = 11 
hyperlipidemia 
only, n = 12 GDM 
plus 
hyperlipidemia, n 
= 11 controls

Targeted lipids 
metabolomics approach

IADPSG 27–33 wk Maternal serum 
(fasting)

GC-MS/MS

Down None

Liu et al[52], 
China, 2019

Case-control 
study, n = 30 
GDM, n = 30 
controls

Up TXB2; traumatic acid; 
PGC2; PGJ2; PGB2; 
PGA2; pravastatin; 
PGD2-d4; PGE2-d4; 
crotonoyl-CoA; 
methacrylyl-CoA; 2S-
hydroxybutanoic acid; 
D(-)-beta-hydroxy butyric 
acid; 4-hydroxy-butyric 
acid; DPA; oleic acid; 
rumenic acid; linoleic 
acid; urocortisone; 
corticosterone; 11-
deoxycortisol; 
tetrahydrocortisol; 2-
hydroxyestrone; 
dehydroepiandrosterone 
sulfate; 
tetrahydrocorticosterone; 
LPA (0:0/16:0); LysoPC 
(20:4); psychosine

Li et al[53], 
China, 2019

PGG2; 6-keto PGE1; 11-
dehydro-TXB2; 

Nontargeted 
metabolomics

IADPSG 24-28 wk Maternal serum LC-MS

Down
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cholesterol; lathosterol; 
coenzyme Q10; lutein; 
zeaxanthin

Up Oleic acid; vaccenic acid; 
sapienic acid

Case-control 
study, n = 32 
GDM, n = 11 
controls

Targeted lipidomic profile WHO—2013 
criteria

24-28 wk Maternal 
erythrocyte 
membrane 
(fasting)

GC-MS

Down Myristic, palmitic, and 
stearic acids

Bukowiecka-
Matusiak et 
al[54], 
Poland, 2018

Biological samples collected in longitudinal cohort study

Up 
(baseline)

Hexose; histidine; 
isoleucine; serine; 
tyrosine; leucine; 
methionine; glutamate; 
lysine; tryptophan; 
threonine; proline; 
acylcarnitines AC3; 
acylcarnitines AC10; 
acylcarnitines AC16; 
spermidine; diacyl-
glycerophospholipids

Nested 
case–control 
studyBaseline (6–9 
wk postpartum), n 
= 173 future T2D, 
n = 485 non-T2D

6–9 wk 
postpartum 
(baseline);

Down 
(baseline)

Glutamine; kynurenine; 
sphingomyelins; 
lysophosphatidylcholines; 
acyl-alkyl-
glycerophospholipids

Up 
(follow-
up)

Hexose; glutamate; 
isoleucine; tyrosine; 
leucine; valine; alanine; 
PC; aa C32:1; 
acylcarnitines AC5

Follow-up (2~8 yr 
postbaseline), n = 
98 future T2D, n = 
239 non-T2D

Targeted metabolomics Carpenter 
and 
Coustan 
criteria

Up to 2 yr 
postbaseline 
(follow-up).

Maternal plasma 
(fasting)

FIA-
MS/MSLC-
MS/MS

Down 
(follow-
up)

Glycine; PC aa C38:1; PC 
aa C38:6; PC ae C36:2; PC 
ae C40:6; PC ae C34:3; PC 
ae C34:2; PC ae C36:3; PC 
ae C38:4; lysoPC a C17:0; 
lysoPC a C18:1; lysoPC a 
C20:4; lysoPC a C18:2; 
lysoPC a C16:0; lysoPC a 
C18:0; SM(OH)C22:2; 
SM(OH)C14:1; creatinine

Lai et al[55], 
United 
States, 2020

Up None1–3 d 
postpartum

Colostrum GC-MS

Down Heneicosane; G\glycine, 
N-(methoxyoxoacetyl)-
methyl ester; 3-
aminoisobutyric acid; 
glutamine; oxaloacetic 
acid; 4-aminobutyric acid

Up Asparagine; malic acid7-10 d 
postpartum

Transition milk GC-MS

Down D-Proline; glycine, N-
(methoxyoxoacetyl)-, 
methyl ester; 
hydroxybenzoic acid; 
malonic acid; 9-
heptadecenoic acid

Up Heneicosane; cysteine; 
lignoceric; malic acid

Case-control 
study, n = 90 
GDM, n = 94 
controls

Nontargeted 
metabolomics

IADPSG

4 wk 
postpartum

Mature milk GC-MS

Down Nonacosane; glycine; N-
ethyl-N-(2-
ethoxyethoxycarbonyl)-; 
2-methoxyethyl ester; 
pyroglutamic acid; beta-
alanine; 2-oxoadipic acid; 
3-methyl- 2-oxovaleric 
acid; 4-aminobutyric acid; 
glutamine; oxalic acid; 
oxaloacetic acid; pimelic 
acid; 9-heptadecenoic 
acid; 10-pentadece- noic 
acid; 2-
hydroxyglutaramic acid; 
nervonic acid

Wen et al[3], 
China, 2019
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Up Hexoses; Asn/AspCase-control 
study, n = 50 
Healthy, 
overweight/obese, 
n = 45 GDM, n = 
67 Healthy, 
normal weight

Maternal plasma

Down Phospholipids (PL); 
LPC16:0; PCaa38:3; PCaa 
38:5; SM32.2

Up Hexoses; Asn/Asp; 3-
methyl-2-oxobutanoic 
acid

Case-control 
study, n = 40 
Healthy, 
overweight/obese, 
n = 27 GDM, n = 
49 Healthy, 
normal weight

Targeted metabolomics National 
Diabetes 
Data Group 
criteria

At delivery

Cord plasma of 
offspring

LC–MS/MS

Down PCae38:0; Carn; short-
chain AC; acetyl 
carnitine; NEFA26:1, 
malic; succinic acids

Shokry et al
[56], Spain, 
2019

Up Proline; ornithine; 
glycerophosphocholine; 
glutamic acid; taurine; 
acetylcarnitine; uracil; 
hypoxanthine; aspartyl-
isoleucine; pantothenic 
acid; lysoPC (14:0); 
LysoPC [16:1(9Z)]; 
linoleoyl carnitine; 
palmitoylcarnitine; 
LysoPC (16:0); histidine; 
succinic acid 
semialdehyde; malic acid; 
xanthosine

First 
trimester 
(12.8 wk 
median)

Down Threoninyl-
phenylalanine; 
asparaginyl-tryptophan; 
phenylalanyl-gamma-glut 
amate; valyl-isoleucine; 
aspartyl –phenylalanine; 
phenylalanyl-valine; DL-
2-aminooctanoic acid; 
phenylalanyl-isoleucine; 
acetylglycine

Up Guanidoacetic acid; 
acetylcarnitine; 
propionylcarnitine; 2-
octenoylcarnitine; LysoPC 
(14:0); LysoPC [16:1(9Z)]; 
palmitoylcarnitine; 
vaccenyl carnitine; 
LysoPC (16:0); LysoPE 
[0:0/18:1(11Z)]; LysoPC 
(17:0)

Case-control 
study, n = 107 
GDM, n = 107 
controls

Nontargeted 
metabolomics

Criteria of 
the 
American 
Diabetes 
Association

Second 
trimester 
(26.1 wk 
median)

Maternal serum UHPLC-MS

Down Threoninyl-
phenylalanine; 
phenylalanyl-gamma-
glut-amate; phenylalanyl-
isoleucine

Zhao et al
[57], China, 
2019

Up Levoglucosan; 
polyethylene glycol; 6-
hydroxy-5-methoxyindole 
glucuronide

Case-control 
study, n = 15 
GDM, n = 50 
controls

Nontargeted 
metabolomics

IADPSG 6-8 wk Maternal urine UPLC-
MS/MS

Down 1'-acetoxyeugenol acetate; 
3,4-dimethyl-5-pentyl-2-
furanundecanoic acid; 2-
hydroxylauroylcarnitine; 
L-phenylalanyl-L-proline

Liu et al[58], 
China, 2019

GDM: Gestational diabetes mellitus; p-GDM: Prior to diagnosis of gestational diabetes mellitus;  T2D: Type 2 diabetes; IADPSG: International Association of Diabetes 
and Pregnancy Study Group; WHO: World Health Organization; OGTT: Oral glucose tolerance test; NMR: Nuclear magnetic resonance spectroscopy; LC-MS/MS: 
Liquid chromatography-tandem mass spectrometry; UHPLC-MS/MS: Ultra-high-performance liquid chromatography-tandem mass spectrometry; HILIC-MS/MS: 
Hydrophilic interaction chromatography-tandem mass spectrometry; UPLC-QTOFMS: Ultra performance liquid chromatography-quadrupole-time-of-flight mass 
spectrometry; UPLC-TQMS: Ultraperformance liquid chromatography-triple triple-quadrupole mass spectrometry; GC-TOFMS: Gas chromatography-time-of-flight 
mass spectrometry; LC-MS: Liquid chromatography-mass spectrometry; LC-IMS-MS: Liquid chromatography-ion mobility spectrometry and mass spectrometry; GC-
MS/MS: Gas chromatography-tandem mass spectrometry; GC-MS:  Gas chromatography-mass spectrometry; FIA-MS/MS: Flow injection analysis-tandem mass 
spectrometry; UPLC-MS/MS: Ultra performance liquid chromatography-tandem mass spectrometry; VLDL: Very low density lipoprotein; HDL: High density 
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lipoproteins; GlycA: Glycoprotein acetylation; LPC: Lysophosphatidylcholine; CA: Cholic acid; LCA: Lithocholic acid; PE: Phosphatidylethanolamine; PC: 
Phosphatidylcholine; PEBP1: Phosphatidylethanolamine-binding protein 1; TG: Triacylglycerols; PDIA: Protein disulfide-isomerase A; LYAG: Lysosomal alpha-
glucosidase; EXT: Exostoses; B4GA1: Beta-1,4-galactosyltransferase 1; CER: Ceramides; Che: Choleterylesters; DG : Diacylglycerols; dMePE: Dimethyl-
phosphatidylethanolamine; FA: Fatty acids; LdMePE: Lysodimethylphosphatidylethanolamine; LPA: Lysophosphatidic acid; LPEt: Lysophosphatidylethanol; LPG: 
Lysophosphatidylglycerol; LPI: Lysophosphatidylinositol; MG: Monoglyceride; OAHFA: Octadecanoicacid; PAF: Platelet-activating factor; Pet: Phosphatidylethanol; 
PG: Phosphatidylglycerols; PI: Phosphatidylinositol; PIP: Phosphatidylinositol; SM: Sphingomyelins; So: Sphingoshine; TXB2: Thromboxane B2; PG: Prostaglandins; 
LysoPC: Lysophosphatidlycholine; AC: Acylcarnitine; PCaa: Diacyl-phosphatidylcholines; Asn: Asparagine; Asp: Aspartic acid; PCae: Acyl-alkyl-
phosphatidylcholines; Carn: Carnitine; NEFA: Nonestesterified fatty acid; LysoPE: Lysophosphatidylethanolamine.

designed as case-control studies, showed that the circulating concentration of β-
hydroxybutyric acid in GDM patients was higher than that in controls[64,65]. β-
hydroxybutyric acid is a classic ketone body found alongside acetone and acetoacetate. 
Mokkala et al[50] also found elevated levels of the ketone body acetoacetate in patients 
with gestational diabetes. Previous studies have also detected increased concentrations 
of ketone bodies in pregnant women with high fasting blood glucose levels[66] and 
found that they are associated with GDM[67-69].

Similar to T2D, a failure of glucose utilization will lead to the formation of these 
ketone bodies. It is well known that in the latter half of normal pregnancy, maternal 
metabolism is transformed into catabolism, during which increased lipolysis provides 
FAs that can be utilized in ketogenesis[70]. The produced ketone bodies are used as 
maternal energy to replace glucose, which is mainly utilized by the fetus[71]. Elevated 
pyruvate and glucose anaerobic decomposition products (3.27 times higher than that 
in the normal group) were observed in the urine of GDM patients at 17 wk of 
pregnancy, in the research from Michelle A. Willims’ group[72]. Such results on 
pyruvate are consistent with other reports[73,74]. These results indicate that 
abnormalities in glycolysis and tricarboxylic acid cycle metabolic pathways result in 
disturbed energy metabolism and dysregulation of glucose metabolism associated 
with GDM.

Amino acid metabolites
The association of increased serum amino acid levels with obesity and IR was 
observed more than 40 years ago[75]. Advances in metabolomic analysis have 
renewed interest in this field. By using metabolomic techniques, a large number of 
amino acid metabolites related to GDM have been detected, including amino acids 
(alanine, glutamine, and glycine), branched-chain amino acids (isoleucine, leucine, and 
valine), and aromatic amino acids (phenylalanine, tyrosine, and histidine). Among all 
these amino acids, the relationship between branched-chain amino acids (BCAAs) and 
IR has been deeply studied.

Abnormal amino acid metabolism can occur in the early stage of pregnancy. 
Mokkala et al[44] analyzed fasting serum samples via a targeted NMR approach in 
early pregnancy (median: 14.3 wk of gestation), and found that the concentrations of 
two branched-chain amino acids, namely, isoleucine and leucine, as well as 
phenylalanine and alanine, were already increased in women who developed GDM. 
Similar findings have been reported previously in which elevated BCAA levels 
including valine and phenylalanine, but not alanine, were detected in obese women 
with GDM[67]. In contrast, surveys of women with heterogeneous body mass indexes 
(BMIs) have reported that increased concentrations of valine[76] and alanine[76,77] in 
early pregnancy or no changes in BCAAs[77,78] were associated with the onset of 
GDM. Other studies have reported that glutamine[47], glutamic acid, and serine[79] in 
serum significantly differed between the prior to diagnosis of GDM (p-GDM) and 
control groups in the first trimester. Glutamine in serum showed an area under the 
receiver operating characteristic curve of 0.81 and may be a predictive metabolite for 
GDM[47]. Combined metabolomic analysis of plasma and urine revealed that 
serotonin, 5-HIAA, L-tryptophan, melatonin, and 6-hydroxymelatonin may be 
effective predictors of GDM[80]. However, the results of studies on the relationship 
between the concentrations of amino acids in early pregnancy (prior to diagnosis of 
GDM) and the risk of GDM are not consistent[67,77,81]. Based on findings from 
previous studies and considering that amino acids can induce IR[82], it can be 
proposed that amino acids may become effective indexes for the prediction and early 
diagnosis of GDM[76-78]. There is no consensus on amino acids for early screening of 
GDM[83]; however, many scholars still suggest that the measurement of amino acid 
concentrations in early pregnancy should be taken as part of routine testing in the 
future, so that clinicians can identify high-risk pregnant women with GDM as early as 
possible, to take effective intervention measures to prevent GDM[46,60,84,85].
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Perturbed amino acid metabolism can not only predict the risk of GDM, but it also 
can predict the transition from GDM to T2D[86]. Allalou et al[59] enrolled 1010 GDM 
women without T2D at 6-9 wk postpartum (baseline) who were screened for T2D 
annually for 2 years. They found that 113 women progressed to T2D within 2 years 
and another 17 women developed T2D between 2 and 4 years. By a metabolomics 
study with baseline fasting plasma, it was found that 21 metabolites such as free FAs 
and amino acids (including isoleucine, leucine, tryptophan, tyrosine, alanine, and 
amino phenylalanine) were identified and could effectively predict the transition from 
GDM to T2D 2-4 years after delivery. Clinical trials have also demonstrated that the 
concentrations of BCAAs, such as leucine, isoleucine, and valine, are increased up to 7 
years before the onset of T2D[84]. The latest study found that higher levels of BCAAs 
and 3-hydroxyisobutyric acid in plasma were associated with IR in the transition from 
GDM to T2D[86].

Disturbance of BCAAs and their metabolites is closely related to IR and decreased 
islet β-cell function in women with GDM[60,73,84,87-93]. It is the most common and 
most important abnormality of amino acid metabolism in GDM. The levels of leucine 
and isoleucine were associated with IR and decreased insulin sensitivity[82], while the 
tyrosine concentration was positively correlated with IR and insulin secretion[94]. The 
elevated levels of BCAAs in plasma increased the transport of FAs through endothelial 
cells to skeletal muscle, increased intracellular lipid accumulation, and weakened the 
insulin signaling pathway mediated by 3-hydroxyisobutyric acid[95]. BCAAs are 
involved in IR through several pathways, including fatty acid oxidation and the 
mTOR, JNK, and IRS1 pathways[96,97]. In addition, the increased BCAA concen-
trations may imply an increase in the absorption or production of intestinal microflora 
or a decrease in utilization/decomposition/degradation. In Mokkala et al’s study, 
higher concentrations of BCAAs (isoleucine and leucine) and phenylalanine were 
detected in women with GDM even after adjusting for pregestational BMI[44]. Other 
studies have reported an increase in leucine[98], isoleucine[46], and other amino acids 
such as alanine[99] and a decrease in L-valine[100] in patients with GDM compared 
with control patients. However, several studies have failed to detect differences in 
BCAA concentrations between patients with GDM and non-GDM in the first, second, 
or third trimester of pregnancy[77,101]. In addition, animal and human studies supple-
menting or restricting BCAA levels have reported conflicting effects[90,102-107]. 
Therefore, we still need to further explore and study amino acids, especially BCAAs, 
to track the individual changes in metabolism during disease progression, and explore 
the underlying molecular mechanisms.

Lipid metabolites
Lipids are involved in regulating a variety of life processes, including energy 
conversion, material transport, information recognition and transmission, cell 
development and differentiation, and apoptosis. However, abnormal lipid metabolism 
is closely related to some diseases, such as diabetes, arteriosclerosis, obesity, 
Alzheimer’s disease, and tumorigenesis. In women with GDM, the physiological 
changes in lipids are magnified, which may indicate potential metabolic disorders 
during pregnancy[108]. At present, the understanding of the structures and functions 
of lipids still lags far behind that of genes and proteins, mainly due to the diversity 
and complexity of lipid molecular structures. In addition, the lag of analytical 
technology has hindered the systematic research on whole lipids and their complex 
metabolic network and functional regulation. The common lipids are fat, 
phospholipid, and sterol. The lipid differences closely related to GDM are mainly 
found in FAs, phospholipids, glycerolipids, glycerophospholipids, and sphingolipids.

FAs are the simplest lipid molecules and the main components of many complex 
lipids such as phospholipids, triacylglycerols, and sphingolipids. According to the 
saturation degree of the hydrocarbon chain, FAs can be divided into three categories: 
Saturated FAs (SFAs), monounsaturated FAs (MUFAs), and polyunsaturated FAs 
(PUFAs).

The SFA and MUFA families are the most abundant fatty acid species involved in 
metabolic disorders and are related to IR and related diseases[109,110] as well as 
diabetes-related pathways[111]. They are molecules of important biological and 
pathophysiological significance that are responsible for cell membrane fluidity, cell 
proliferation, lipid-mediated cytotoxicity, programmed cell death, unfolded protein 
response, the pathogenesis of obesity and cancer, and especially for metabolic diseases
[112-114]. In the early studies of women with overweight and GDM, the free MUFAs 
in blood were greatly influenced by diet[115] and obesity[116]. Chen et al[117] studied 
circulating (serum) FAs and detected impaired fatty acid composition, not only in 
women with GDM but also in women with impaired glucose tolerance. There is a 
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strong correlation between the severity of maternal hyperglycemia and the concen-
tration of serum FAs in the third trimester; however, plasma lipids are more 
dependent on dietary intake than tissues or cell membranes[117]. Bukowiecka-
Matusiak et al[54] investigated the erythrocyte membrane fatty acid profiles of 32 
pregnant women with GDM and 11 pregnant women with normal glucose tolerance 
by GC-MS and found that of the 14 measured FAs representing the characteristics of 
membrane lipids, three kinds of SFAs (myristic acid, palmitic acid, and stearic acid) of 
erythrocyte membranes in patients with GDM showed a downward trend. The relative 
content of MUFAs in the erythrocyte membrane of the GDM group was higher than 
that of the NGT group, especially the oleic acid and vaccenic acid contents, which were 
significantly increased[54]. There was no significant change in PUFAs in erythrocytes 
between the GDM and NGT groups. Based on the differences between the GDM and 
NGT lipidomic profiles, the authors postulated that stearic acid and cis-acetic acid can 
be regarded as dual biomarkers of specific SFA-MUFA transformation pathways. 
Stearic acid and cis-acetic acid are involved in erythrocyte membrane remodeling in 
women with GDM by the coupling of δ-9 desaturase and elongase enzymes[54]. In 
addition, the higher concentration of vaccenic acids in red blood cells was related to 
lower fasting glucose, better insulin sensitivity, and a reduced risk of T2D[118]. 
Because erythrocyte membrane composition reflects the dietary intake for the past 2-3 
mo, the erythrocyte membrane fatty acid state can be more reflective. The results from 
a study on breast milk found increased levels of FAs in mature milk compared to those 
in colostrum and transition milk, while there was a considerable amount of decreased 
FAs (9-heptadecenoic acid, pimelic acid, 10-pentadecenoic acid, 2-hydroxyglutaramic 
acid, and nervonic acid) in breast milk from GDM women. This may be due to the fact 
that free FAs are the cornerstone of adipogenesis and neurons. Differences in free FA 
profiles may play a more profound role in breastfeeding-related developmental 
disorders or future health risks in offspring. Therefore, functional lipidomics based on 
membrane FAs and other tissues has become a convenient and relevant molecular tool 
to examine the nutritional and metabolic status of patients.

FAs can be categorized according to the length of the carbon chain into short-chain 
FAs (less than 6 carbon atoms), medium-chain FAs (6-12 carbon atoms), and long-
chain FAs (more than 12 carbon atoms). It has been reported that long-chain acylcar-
nitines[119,120] and their precursors long-chain acyl-CoAs are related to IR. In the 
Zhao et al’s [57] study, long-chain acylcarnitines (such as palmitoyl carnitine and 
vaccenyl carnitine) increased in women with GDM both in the first and second 
trimesters. Another study observed 201 metabolites in maternal plasma at delivery 
and cord plasma obtained from 325 participants by LC-MS/MS[56]. The long-chain 
NEFAs and Krebs metabolites in cord blood from GDM offspring showed an overall 
decrease, and the most significant metabolites were NEFA26:1, malic acid, succinic 
acid, and 3-methyl-2-oxybutyric acid. In an analysis of fatty acyl groups in GDM[51], 
lipids containing 12:0, 14:0, 15:0, 18:3, 22:4, or 24:1 fatty acyls were downregulated, 
while 20:0 and 22:6 fatty acyls were upregulated, such as 22:6 for PE P- and PC and PE 
O- species. Furthermore, myristic acid or 14:0, which has previously been thought to 
be negatively associated with 22:6[121], was also downregulated in GDM but not in 
the same lipid species[51]. As previously reported, a higher level of palmitoleic acid is 
beneficial to insulin sensitivity in the case of metabolic diseases, and its administration 
in animal models can effectively reduce IR and hepatic lipid accumulation[122]. 
Therefore, different FAs may play different roles in maternal and infant health, and 
even the same FAs may have different effects due to different doses and exposure 
times.

The complex relationships among phospholipids and sphingomyelin metabolites 
and the risk of diabetes have not been widely studied and some studies have 
conflicting results. A longitudinal analysis revealed that six diacyl-glycerolphos-
pholipids (the PC aa C group) were positively correlated with T2D at baseline (6–9 wk 
postpartum) and follow-up (from baseline to 2 years), while 11 acyl-alkyl-glycer-
olphospholipids (the PC ae C group) were negatively correlated with T2D risk[55]. In a 
case-cohort study, some diacyl-phosphatidylcholines were associated with a higher 
risk of T2D, while sphingomyelin and 1-acyl-alkyl-phosphatidylcholine (C18:2) were 
associated with a lower risk[89]. Moreover, in a subset of the hyperglycemia and 
adverse pregnancy outcome study, disturbed lipid metabolism of certain classes of 
phospholipids and lysophospholipids was detected in the diabetes risk group prior to 
hyperglycemia at 2 years of postpartum[89]. Wheeler’s group found that several 
sphingomyelins decreased at baseline (6–9 wk postpartum) and follow-up (from 
baseline to 2 years)[55]. Interestingly, in contrast to the finding of a negative 
relationship between sphingomyelin metabolism and T2D risk by Wheeler’s group[55,
123], another study[89] showed that sphingomyelins were increased in T2D patients 
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and positively associated with future T2D[124,125]. Thus, further research is needed to 
investigate the role of phospholipids and sphingomyelins in T2D risk among different 
populations.

In short, the chain length and the degree of desaturation of FA moieties in lipid 
molecules increase the complexity of assigning biological roles to various lipid classes. 
Moreover, lipids that are synthesized endogenously or obtained through the diet 
influence their accumulation and/or metabolism and subsequent biological roles. 
Therefore, it is not surprising that opposing views exist on the pathogenicity and 
mechanisms of specific lipids during the development of IR. However, new high-
resolution metabolomic technology provides bright prospects to identify lipid 
subclasses and novel families of lipids.

Other metabolites
Purine is a key component of the cellular energy system. Hypoxanthine is a 
degradation product of adenosine triphosphate, which is a major bioenergy source, 
and is further converted to xanthine by xanthine oxidase (XO) and then converted to 
uric acid, the final oxide of purine metabolism[126]. The study found that 
hypoxanthine and xanthine in the GDM group were significantly higher than those in 
the control group during early pregnancy[57], which may be due to higher energy 
intake in women with GDM in early pregnancy. However, in the second trimester, the 
levels of hypoxanthine and xanthine in women with GDM were significantly lower 
than those in the first trimester, while the concentration of uric acid was significantly 
increased. This is because the activity of XO in the peripheral blood of pregnant 
women with GDM is higher than that of healthy women, resulting in excessive uric 
acid accumulation[127,128]. A high uric acid level is associated with IR[129] and is 
considered to be a risk factor for GDM[130] and T2D[131]. In addition, the levels of 
inflammatory markers such as glycoprotein acetylation (GlycA, a marker of low-grade 
inflammation)[44,67,68,132-134] and some sterol hormones such as 11-deoxycortisol, 
17α-hydroxyprogesterone, progesterone[76], cortisol, androstenedione, dehydroepi-
androsterone sulfate, and 11 deoxy-cortisol steroids[53]in pregnant women with GDM 
are different from those in normal pregnant women[135]. Disorders of these processes 
lead to metabolic and immune dysfunction and the development of pregnancy 
complications.

Li et al[136] previously reported that decreased concentrations of two secondary bile 
acids, deoxycholic acid (DCA) and glycoursodeoxycholic acid (GUDCA), in early 
pregnancy were associated with a significantly elevated risk of GDM. Recently, they 
investigated the associations between trimethylamine (TMA), trimethylamine nitrogen 
oxide (TMAO), and related metabolites (choline, betaine, L-carnitine) and the risk of 
GDM during early pregnancy[137]. The levels of TMAO and related metabolites 
decreased significantly in women with GDM, while the concentration of TMA was 
increased. The change in TMAO had a clear threshold effect, independent of DCA and 
GUDCA, to a great extent. It is commonly known that the conversion from betaine, 
choline, and L-carnitine to TMA depends on gut microflora, and the conversion of 
TMA to TMAO depends on the activity of flavin monooxygenase 3 (FMO3), especially 
FMO3 in the liver[138,139]. According to Rothman’s multicausality theory[140], the 
significant additive interaction between abnormal gut microflora and decreased FMO 
activity in the liver may be one of the causes of GDM. In addition, Liu et al[52] also 
conducted microbiomics coupled with lipidomics analyses to characterize gut 
microbiota and lipometabolism in pregnant women with GDM, hyperlipidemia, or 
GDM plus hyperlipidemia. This study and other studies[48,141,142] further indicate 
that changes in the fecal microbiota and plasma lipidome can predict and characterize 
the development of GDM with lipid metabolic abnormalities.

Effects of diet or medicine on metabolomics of GDM
Huhtala et al[143] enrolled 217 GDM pregnant women treated randomly with 
metformin or insulin, and 126 GDM pregnant women who achieved sufficient 
glycemic control by diet and lifestyle modifications alone as a control. The levels of 
serum amino acids and lactic acid at diagnosis and 36 wk of gestation were measured 
by 1H NMR. It was found that the majority of the amino acid concentrations increased 
with gestational age. Compared with the insulin-treated group, the metformin-treated 
group had a greater increase in alanine (16% vs 8%), isoleucine (11% vs 5%), and lactic 
acid (29% vs 14%). Another study[144] explored 71 pregnant women with GDM 
(including 28 patients who received dietary treatment only, 20 patients who received 
metformin, and 23 patients who received insulin) at three different gestational time 
points: 15-18+6 and 27-28+6 wk (before treatment) and 34-36+0 wk (after treatment). The 
results showed that prior to the initiation of treatment, metabolic differences were the 
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most obvious between the diet and insulin-treated groups, especially very-large-
density lipoprotein (VLDL) and high-density lipoprotein (HDL) subclasses and 
components. Even after drug treatment, there were still differences in lipid 
composition and particle size among the three groups at 34-36 wk of gestation. In 
recent years, Mokkala et al[50] found no differences in lipids in VLDL, and very large 
and large HDL particles were detected in overweight or obese women who had been 
treated for GDM for approximately 10 wk. Variations among these results may be due 
to the inconsistency in population selection, sampling times, and the improvement in 
metabolic variables to a certain extent by treatment[67,145]. These results indicate that 
diet, metformin, or insulin therapy in pregnant women with GDM can affect amino 
acid or lipid metabolism-related IR. Thus, the pathophysiological process of blood 
glucose control can be revealed by metabolic profiles.

CLINICAL UTILITY OF METABOLOMICS IN GDM
Metabolomics research in GDM focuses on the abnormalities of small molecule 
metabolites such as carbohydrate, amino acids, lipid, sterol hormones, as well as bile 
acids and disordered metabolic pathways. In addition, signaling pathways and 
metabolic pathways analysis on results obtained from detected substances is an 
important part of metabolomics research, which helps to further explore the related 
metabolites, enzymes, and genes, so as to deeply understand their underlying 
biological phenomena.

The clinical utilities of metabolomics in GDM depend on the different time periods 
of the subjects. The main clinical utilities of research focused on the first trimester 
period are to identify early diagnostic or predictive molecules related to GDM disease
[44-48]. The main clinical utilities of the studies concentrated on the second and third 
trimesters of pregnancy are to accurately evaluate the condition of GDM, identify 
differential metabolic markers and metabolic pathways, predict pregnancy outcomes 
and maternal and fetal prognoses, or evaluate the efficacy of drug/diet therapy[49-54,
144,145]. A postpartum follow-up study mainly predicts the long-term occurrences of 
T2D or other metabolic diseases in GDM pregnant women and their offspring as well 
as the metabolic impact of GDM on their offspring[3,55,146].

BOTTLENECKS OR LIMITATIONS OF CURRENT STUDIES
Although metabolomics is developing rapidly as a new discipline, it still has some 
limitations and faces some technical challenges.

First, as a new research method, metabolomics needs to be further improved with 
respect to analytical technology, data acquisition, and analysis. GC-MS and LC-MS are 
affected by the matrix effect and ion suppression/enhancement[147], which are 
potential threats to the accuracy of metabolomics experiments. In addition, the process 
of screening specific biomarkers by metabolomics technology is tedious and 
complicated, especially for metabolic pathway analysis. Thus, the coverage of 
metabolomics is still insufficient for global metabolomics experiments despite the 
expansion of the metabolomics database[148].

Second, in recent years, although large amounts of data have been obtained from 
metabolomics in GDM research, many data are contradictory. Dissimilarities among 
these findings may be due to differences in the GDM diagnostic criteria, ethnic origin, 
size of the study populations, specimens prepared for testing, and metabolite profiling 
platforms. It is important to highlight that future research needs to follow a strict 
experimental design to improve the repeatability and reliability of research results.

Finally, metabolomics research has strict requirements for sample quantity, quality, 
and sample processing technology. Metabolites are more affected by the environment 
and individual differences and are also very sensitive to the storage mode and time of 
biological sample collections[149,150], which greatly increases the difficulty in 
obtaining reliable samples. Thus, future studies, especially large-scale, multicenter, 
dynamic monitoring, and prospective cohort studies are required before metabolomics 
can be routinely applied in clinical practice.
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CONSIDERATIONS FOR FUTURE STUDIES
Although the research task of metabolomics is arduous, the popularization of mass 
spectrometry has laid the foundation for clinical application. Future metabolomics 
research still has broad prospects, which are embodied in the following:

First, considering the complexity and individual differences in biological samples, 
as well as other relevant lifestyle factors, standardized sample collection and 
operational procedures should be developed to ensure the accuracy and repeatability 
of the experiment.

Second, cross-sectional designs limit the analysis of the relationship between 
metabolite disturbance and the risk of GDM, so it is necessary to increase the sample 
size, conduct longitudinal analysis, and establish reliable clinical cohort samples. 
Tracking the metabolic changes in the individual and describing the disease 
progression of each case can also provide a theoretical basis for early stratification and 
appropriate treatment.

Third, many studies have identified specific metabolites and their relative changes 
in the relative concentration without providing the absolute concentration of 
metabolites, as a result, metabolomics data from different laboratories could not be 
compared with each other. The absolute quantification of metabolites and the 
establishment of a general standard database closely related to GDM are important 
research directions in the future.

Finally, in the postgenomic era of modern high-throughput computational techno-
logies, it is essential to integrate the increasing amount of data generated from 
metabolomics and its upstream genomics, including genomics, transcriptomics, and 
proteomics, by sophisticated computational biology tools. Thus, this valuable compre-
hensive analysis can provide further insight into the etiology and pathophysiology of 
GDM, which might help to clarify the mechanisms of the occurrence and development 
of GDM and provide precise medical treatments for GDM.

CONCLUSION
In brief, metabolomics related to GDM research is in a period of vigorous 
development. Given the rapid improvement in omics technologies such as 
metabolomics, together with updating metabolic databases, bioinformatics, and 
artificial intelligence, our understanding of metabolic regulation in GDM will rapidly 
advance and thus significantly benefit the prevention and treatment of GDM.
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