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Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that currently affects 
more than 400 million worldwide and is projected to cause 552 million cases by 
the year 2030. Long-term vascular complications, such as coronary artery disease, 
myocardial infarction, stroke, are the leading causes of morbidity and mortality 
among diabetic patients. The recent advances in genome-wide technologies have 
given a powerful impetus to the study of risk markers for multifactorial diseases. 
To date, the role of genetic and epigenetic factors in modulating susceptibility to 
T2DM and its vascular complications is being successfully studied that provides 
the accumulation of genomic knowledge. In the future, this will provide an 
opportunity to reveal the pathogenetic pathways in the development of the 
disease and allow to predict the macrovascular complications in T2DM patients. 
This review is focused on the evidence of the role of genetic variants and 
epigenetic changes in the development of macrovascular pathology in diabetic 
patients.
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Core Tip: Type 2 diabetes mellitus (T2DM) is often associated with life-threatening 
macrovascular complications which may lead to an eye injury, kidney failure, and 
reduction in life expectancy in patients with diabetes. This review is focused on genetic 
and epigenetic risk factors for macrovascular complications development in patients 
with T2DM.
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that currently affects more 
than 400 million worldwide and is projected to cause 552 million cases by the year 
2030[1]. Long-term vascular complications, such as coronary artery disease (CAD), 
myocardial infarction (MI), stroke, are the leading causes of morbidity and mortality 
among diabetic patients[2]. T2DM is strongly associated with both microvascular and 
macrovascular complications which may lead to an eye injury, kidney failure, and 
reduction in life expectancy in patients with diabetes. Diabetic microvascular 
(involving small vessels such as capillaries) and macrovascular (involving large 
vessels such as arteries and veins) complications have similar etiologic characteristics
[3]. Chronic hyperglycemia plays a major role in the development of microvascular 
and macrovascular pathology in diabetic patients through several molecular 
mechanisms, including overproduction of reactive oxygen species (ROS), advanced 
glycation end-products formation (AGE), activation of protein kinase C as well as 
polyol and hexosamine pathways[2] (Figure 1). The key pathological mechanism of 
macrovascular complications is assumed to be an injury to the vascular endothelium. 
The altered glucose metabolism inhibits the enzyme responsible for NO production 
and increases production of ROS[3]. In combination with endothelial cell insulin 
resistance, it causes endothelial dysfunction manifesting itself in increased expression 
of adhesion molecules and further changes[4]. Another factor involved in the 
development and progression of diabetic macrovascular complications is impaired 
platelet function which may lead to increased risks for thrombus formation and 
atherosclerosis progression[5]. A number of studies, including family- and twin-based 
studies, demonstrated the role of a genetic component in both T2DM and 
macrovascular pathology[6]. The development of high-throughput and affordable 
genotyping technologies, statistical tools, and computational software allowed 
remarkable progress over the past decade in the search for genetic associations of 
complex disorders such as T2DM, CAD, MI, stroke[7,8]. However, the pathogenetic 
mechanisms leading to macrovascular complications in individuals with diabetes are 
not yet fully understood. Moreover, the question of how genetic susceptibility 
interacts with environmental factors and epigenetic factors remains unsolved. In this 
review, we summarize the evidence for genetic variants and epigenetic factors 
involved in the development of macrovascular pathology in T2DM and discuss the 
pathogenetic mechanisms underlying their development in T2DM.

GENETIC VARIANTS ASSOCIATED WITH DEVELOPMENT OF MACRO-
VASCULAR COMPLICATIONS IN T2DM PATIENTS
Cardiovascular diseases
CAD represents the manifestation of atherosclerosis in the coronary arteries which 
supply the myocardium with oxygen and other nutrients and is the leading cause of 
morbidity and mortality worldwide due to serious complications like MI[9]. Diabetes 
mellitus is associated with increased risk factor of CAD, independent of other risk 
factors such as hypertension, hyperlipidemia, and tobacco smoking. Patients with 
T2DM have a 2-3 times higher rate of cardiovascular disease as compared to people 
without T2DM[10]. To date, genomic research led to the identification of more than 
150 common genetic risk loci of CAD and MI[8]. And some of these variants were 
demonstrated to be significantly associated with cardiovascular diseases (CVD) in 
individuals with diabetes[11,12]. Several studies that analyzed T2DM or CAD using 
the mendelian randomization (MR) approach, commonly used for testing causal 
associations between a risk factor and outcome of interest, were published. The results 
of these studies provided genetic evidence that higher BMI and hyperglycemia had a 
positive causal association with CAD[13]. Early studies in the genetics of T2DM and 
CAD identified several shared loci associated with both diseases[14]. Some studies 
were performed to evaluate whether CAD-susceptibility loci identified by genome-
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Figure 1 Genetic and epigenetic factors involved in development of diabetic complications. AGE: Advanced glycation end-products formation; 
ROS: Reactive oxygen species.

wide association (GWA) studies of the general population also contributed to CAD in 
type 2 diabetes. The association between 9p21 Locus (the variants rs2383206 and 
rs10757278) and CAD in individuals with type 2 diabetes was shown in a case-control 
study performed by Doria et al[11] in 2008. Previous GWA studies reported the 
independent association of this locus with CAD[15,16]. The association of rs10757274 
with MI risk was later replicated in a Chinese study[17]. In 2011, Qi et al[12] genotyped 
15 genetic markers in three cohorts of diabetic patients: the prospective Nurses’ Health 
Study (309 CAD cases and 544 controls) and Health Professional Follow-up Study (345 
CAD cases and 451 controls), and the cross-sectional Joslin Heart Study (422 CAD 
cases and 435 controls). Five single-nucleotide polymorphisms, rs4977574 (
CDKN2A/2B), rs12526453 (PHACTR1), rs646776 (CELSR2-PSRC1-SORT1), rs2259816 (
HNF1A), and rs11206510 (PCSK9) showed directionally consistent association with 
CAD in the 3 studies[12].

A total of 1517 CAD cases and 2671 CAD-negative controls, all with type 2 diabetes, 
were included in the 3-stage genome-wide analysis performed by Qi et al[12]. A 
previously unknown genetic variant rs10911021 in the region of the GLUL gene on 
chromosome 1q25 was found to be associated with CAD. The GLUL encodes 
glutamate-ammonia ligase (also known as glutamine synthase) which catalyzes the 
conversion of glutamic acid and ammonia into glutamine. Evidence from experimental 
and human studies points to glutamine/glutamic acid metabolism contribute to the 
regulation of insulin secretion and glucose metabolism. According to the results of this 
GWAS, the minor allele had a protective effect. The authors also observed that the risk 
homozygous genotype of rs10911021 was associated with a 32% lower expression level 
of the nearest downstream gene GLUL compared to the protective allele homozygous 
genotype in endothelial cells. The identified variant was not associated with the risk of 
type 2 diabetes in the DIAGRAM database. No association between the risk variant 
and serum fasting insulin, HOMA-IR, or 2 h-glucose was found in the MAGIC 
database. This suggests that the pathways underlying the association of the variant 
with CAD are distinct from those involved in the etiology of type 2 diabetes and 
insulin-resistance mechanisms[18]. The association of the variant rs10911021 with CVD 
in T2DM was confirmed in several follow-up studies[19,20]. In 2016 Shah et al 
conducted a GWA study of cardiovascular mortality in the ACCORD intensive arm 
and found two loci at 10q26 and 5q13 specifically associated with cardiovascular 
mortality. The lead variant (rs9299870) was shown to be associated with a 3.6-fold 
increased risk of cardiovascular death. The variant rs9299870 is located in intron 1 of 
the MGMT gene. The MGMT encodes for O-6-methylguanine-DNA methyltransferase 
that is involved in cellular defense against mutagenesis and toxicity from alkylating 
agents, and in gene methylation[21,22]. The other locus is located on chromosome 5, 
upstream and proximal to three long intergenic noncoding (LINC) RNAs (LINC1335, 
LINC1333, and LINC1331) and associated with NSA2 expression. The lead variant 
(rs57922) was associated with a 2.7-fold increased risk of cardiovascular death[23]. A 
GWAS of CAD was conducted in the UK Biobank in the cohort that included 15666 
unrelated individuals (3968 CAD cases and 11698 controls) of white British ancestry 
with diabetes. Significant evidence for association of the previously well-established 
LPA locus (rs74617384) and locus at 9p21 (rs10811652) with CAD was reported. 
Moreover, some other variants previously associated with CAD showed similar effects 
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in patients with and without diabetes[24]. In a recent GWAS, a systematic assessment 
of genetic overlap between CAD and T2DM was performed on a large cohort (66643 
subjects). The results of the study demonstrated that none of the previously charac-
terized CAD loci had a specific effect on CAD in T2DM individuals[25]. The results of 
this study, indicated that the increased risk of CAD in diabetic patients could be 
explained not only by known genetic variants with a large effect but by the other risk 
factors, including epigenetic changes, that may contribute to the pathogenesis of 
T2DM, should be considered. Genes associated with macrovascular complications of 
T2DM are summarized in Table 1.

Cerebrovascular diseases
Cerebrovascular diseases (CeVD) include a variety of medical conditions that affect 
the blood vessels of the brain and cerebral circulation. About 20%-40% of patients with 
type 2 diabetes suffer from cerebral blood vessel diseases. The mechanisms of the 
CeVD development in type 2 diabetes are complex and not fully understood, but the 
underlying process is associated with atherosclerotic changes in the cerebral arteries
[26,27]. Individuals with diabetes develop dyslipidemia characterized by small dense 
low-density lipoproteins (LDLs), reduced high-density lipoproteins, and increased 
triacylglycerol levels[28]. Epidemiologic studies showed that type 2 diabetes was 
associated with a 2- to 5-fold increased risk of ischemic CeVD[29,30]. To date, 
information on the role of genetic variants associated with CeVD in individuals with 
T2DM is extremely limited. To explore the effects of genetic predisposition to T2DM, 
hyperglycemia, insulin resistance, and β-cell dysfunction on the risk of stroke subtypes 
and related cerebrovascular phenotypes, the MR analysis was recently performed by 
Georgakis et al[31]. Results of the study provided genetic evidence for a causal effect of 
T2DM and elevated HbA1c levels in the pre-diabetic range on the risk of an ischemic 
stroke, large artery stroke, carotid plaque, and small vessel stroke. Genetic predis-
position to insulin resistance was found to be associated with large artery and small 
vessel stroke, whereas predisposition to β-cell dysfunction was associated with small 
vessel stroke[31]. Further studies are needed to clarify etiological mechanisms of the 
CeVD-T2DM association and genetic variants involved in it.

EPIGENETIC MECHANISMS INVOLVED IN MACROVASCULAR DISEASE 
IN DIABETIC PATIENTS
Investigation of the epigenetic pathways will allow us to get closer to a complete 
understanding of the causes and mechanisms of T2DM complications development. 
Based on the results of previous studies, the main epigenetic changes, contributing to 
the occurrence and progress of T2DM and its complications, include alteration of 
microRNA (miRNA) expression, DNA methylation, and histone acetylation.

MiRNA
Increasing evidence demonstrated an impact of epigenetics on the development of 
T2DM macrovascular complications. Several theories were proposed, focusing on 
miRNAs, histone modifications, and DNA methylation.miRNAs are small noncoding 
RNAs involved in the post-transcriptional regulation of gene expression. Previous 
researches showed changes in the miRNA expression profile in T2DM patients[32]. A 
series of recent studies indicated that miRNA expression profiling might contribute to 
the identification of miRNAs with prognostic value for the early detection of 
macrovascular complications of diabetes (Table 2).

For example, based on the results of the recent research by Al-Kafaji et al[33], miR-
126 was differentially expressed in T2DM patients with CAD, T2DM patients without 
macrovascular complications, and healthy control subjects. An inverse correlation with 
LDL was also demonstrated in the first group of patients[33]. These findings were 
successfully replicated in more recent work[34]. MiR-126 also was found to have lower 
expression levels in diabetic patients with CAD compared to T2DM patients without 
MVC in this study. The authors additionally showed that a significantly higher 
expression level of miR-210 was a risk factor for developing MVC and might 
potentially serve as a biomarker for CAD. MiR-126 is endothelial cell-specific and is 
known to directly inhibit negative regulators of the VEGF (vascular endothelial 
growth factor) and to affect vascular integrity and angiogenesis[35,36], which indicates 
the possible involvement of miR-126 in the pathogenesis of CAD. As was previously 
reported in the literature, the decreased expression level of miR-126 is significantly 
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Table 1 Genetic variants associated with macrovascular complications of type 2 diabetes mellitus

Gene symbol Region dbSNP ID Risk allele Condition Ref.

1 GLUL 1q25 rs10911021 C CAD Qi et al[18], Beaney et al[19], and Look AHEAD Research Group[20]

2 MGMT 10q26.3 rs9299870 A Cardiovascular mortality Shah et al[23]

3 Intergenic 5q13 rs57922 T Cardiovascular mortality Shah et al[23]

4 CDKN2B-AS1 9p21 rs10757274 G MI Doria et al[11], and Zhang et al[17]

5 CDKN2B-AS1 9p21 rs2383206 G MI Doria et al[11], and Zhang et al[17]

6 CDKN2B-AS1 9p21 rs4977574 G CAD Qi et al[12]

7 PHACTR1 6p24 rs12526453 C CAD Qi et al[12]

8 CELSR2 1p21 rs646776 T CAD Qi et al[12]

9 HNF1A 12q24 rs2259816 T CAD Qi et al[12]

10 PCSK9 1p32 rs11206510 T CAD Qi et al[12]

11 LPA 6q25 rs74617384 T CAD Fall et al[24]

12 CDKN2B-AS1 9p21 rs10811652 C CAD Fall et al[24]

CAD: Coronary artery disease; MI: Myocardial infarction.

Table 2 MicroRNAs associated with macrovascular complications of type 2 diabetes mellitus

miRNA miRNA detection method Condition Source Country Ref.

miR-92a qRT-PCR Acute coronary syndrome Serum China Wang et al[69]

miR-30c qRT-PCR CAD Plasma China Luo et al[70]

miR-126 qRT-PCR CAD Whole blood Bahrain Al-Kafaji et al[33]

miR-126, miR-210 qRT-PCR CAD Plasma Egypt Amr et al[34]

miR-370 qRT-PCR CAD Serum Egypt Motawae et al[80]

miR-21 qRT-PCR In-stent restenosis CAD Plasma China Guan et al[59]

miR-342, miR-450 qRT-PCR CAD Serum Egypt Seleem et al[81]

miR-1, miR-133 qRT-PCR CAD Whole blood Bahrain Al-Muhtaresh et al[87]

miR-204 qRT-PCR Coronary artery calcification Plasma China Ding et al[94]

miR-21 qRT-PCR Acute heart failure Serum Turkey Al-Hayali et al[54]

miR-144, miR-223 qRT-PCR Ischemic stroke Platelet, plasma China Yang et al[88]

miR-223, miR-146a qRT-PCR Ischemic stroke Platelet China Duan et al[97]

miR-195-5p, miR-451a qRT-PCR Transient ischemic attack Serum Italy Giordano et al[106]

miR-503 qRT-PCR Ischemic stroke Plasma Iran Sheikhbahaei et al[118]

miR-223 qRT-PCR Ischemic stroke PBMC China Long et al[99]

miRNA: MicroRNA; qRT-PCR: Quantitative reverse transcriptase polymerase chain reaction; CAD: Coronary artery disease; PBMC: Peripheral blood 
mononuclear cells.

associated with CAD risk[37] and elevated levels of LDL cholesterol in CAD patients
[38]. Furthermore, many studies provided evidence for the implication of miR-126 in 
T2DM pathogenesis. A number of authors identified low circulating miR-126 in T2DM 
individuals with CAD[33,34,39] and without MVC[40].

MiR-210 expression is induced during hypoxia in normal and transformed cells. 
Aberrant expression of miR-210 was detected in many pathological conditions such as 
tumor progression, MI, cutaneous ischemic wounds[41]. This can be explained by a 
wide range of miR-210 targets involved in the processes of angiogenesis, DNA repair, 
mitochondrial metabolism, and cell survival[42]. There is some evidence that the 
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expression of miR-210 is significantly elevated in stable atherosclerotic plaques[43]. 
This can be explained by the protective effect of miR-210 that provides fibrous cap 
stability and prevents plaque rupture[44]. MiR-210 may also play a role in athero-
sclerosis progression through inhibiting endothelial apoptosis and regulating cell 
proliferation and differentiation during hypoxia, thus protecting a heart from damage
[45,46]. Increased miR-210 expression is required for endothelial cell survival and 
migration during oxygen deficiency[47]. According to Hu et al[48], angiogenesis 
stimulation and apoptosis inhibition by miR-210 allowed to improve cardiac function 
and to reduce negative consequences of MI in mice. Another study demonstrated that 
miR-210 overexpression protected limbs from muscular and vascular ischemic damage 
in transgenic mouse strain[49,50]. Several studies suggest that miR-210 may be 
considered as a potential therapeutic target for ischemic conditions, in particular for 
ischemic heart disease[44,48], and also serve as biomarkers for peripheral artery 
disease[51]. Results concerning aberrant miR-210 expression in T2DM patients also 
showed tissue-dependent expression changes. The miR-210 level was reduced in 
adipose tissue of diabetic individuals according to Pek et al[52]. However, its 
circulating level was higher compared to normal control in peripheral blood of newly 
diagnosed T2DM patients based on the results of another research[53]. Since miR-210 
is involved in multiple hypoxia-regulated metabolic pathways, its differential 
expression was detected in many diseases. This leaves us with an open question of the 
potential use of miR-210 as a single biomarker. A possible way out is to determine co-
expressed miRNAs for a more accurate prediction of a particular disease or comp-
lication.

An association between miR-21 expression profile and T2DM MVC was confirmed 
in 2 independent studies. It was found out that miR-21 was overexpressed in diabetic 
patients with CAD or with heart failure or without any MVC compared to the control 
group[54]. However, a still unsolved question is whether miR-21 may be used as a 
potential biomarker for MVC. Numerous studies were conducted to investigate miR-
21 expression levels in T2DM patients. Most of them demonstrated significantly 
elevated amounts of circulating miR-21 in plasma and serum in subjects with T2DM
[55-58]. At this stage, authors suggest that combined analysis of miR-21 expression, 
galectin-3, and N-terminal pro-brain natriuretic peptide can help to overcome the 
limitations and to improve the predictive value of miR-21[54]. Nevertheless, despite 
the low specificity of miR-21 as an independent prognostic marker of MVC, there is 
some evidence to suggest miR-21 expression profiling may be used for predicting the 
occurrence of in-stent restenosis for CAD patients after percutaneous coronary 
intervention[59]. MiR-21 also was found to be upregulated in patients with acute 
coronary syndrome and could be a possible candidate of a biomarker for CAD 
prediction[60].

Previous studies in mice showed that downregulation of miR-92a expression had a 
positive effect on the state of the vascular wall, attenuated inflammation of endo-
thelium, prevented the development of atherosclerosis, promoted the stability of 
atherosclerotic plaques and the re-endothelization process[61,62]. These findings were 
confirmed by subsequent studies in CAD and pre-atherosclerotic patients in which 
miR-92a expression was increased in comparison to healthy controls[63-65]. Also, an 
increased level of miR-92a expression was found in coronary atherosclerotic plaques 
while comparing expression profiles with intact internal mammary arteries[66]. 
Interestingly, patients with acute MI were shown to have upregulated expression level 
of miR-92a compared to patients with a stable form of CAD[67]. The still open 
question is whether miR-92a can be used as a biomarker for T2DM MVC. In the study 
of Karolina et al[68], miR-92a expression was downregulated in T2DM patients. 
According to recent reports, an elevated circulating miR-92a level was associated with 
acute coronary syndrome in diabetic subjects[69].

The association of circulating miR-30c with the risk of MVC of T2DM was 
demonstrated in the study performed by Luo et al[70]. The expression levels of 
circulating miR-30c were significantly downregulated in patients with T2DM 
complicated by CAD. Authors also found out that decreased circulating miR-30c was 
associated with severe coronary artery lesions[70]. These data confirmed the previous 
findings, according to which downregulation of miR-30c-5p in macrophage-derived 
microparticles might result in the development of early atherosclerosis[71]. A decrease 
in expression of miR-30c also contributes to the pathogenesis of diabetic cardiomy-
opathy[72]. Moreover, miR-30c was shown to be associated with an increased risk of 
recurrent ischemic events in intracranial atherosclerotic disease[73]. Stimulation of 
miR-30c expression was proposed as a therapy for the prevention of atherosclerosis
[71] and diabetic cardiomyopathy[72].
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One of the first reports demonstrating the participation of miR-370 in the 
pathogenesis of atherosclerosis showed that patients suffering from a stable form of 
CAD had a high miR-370 level in peripheral blood mononuclear cells (PBMC). Based 
on the results, the authors suggested miR-370 could be used to determine individuals 
at risk for acute coronary syndromes[74]. The results were replicated in another study, 
according to which the expression levels of miR-370 in PBMC were upregulated 
compared to controls. This study also revealed that miR-370 was involved in athero-
sclerosis development through targeting FOXO1 gene[75]. Genetic variations and 
epigenetic modifications of FOXO1 are known to be associated with atherosclerotic 
plaque formation[76,77]. Upregulation of circulating miR-370 expression in plasma of 
CAD patients was found by several authors[78,79]. At the same time, decreased 
expression was shown in the peripheral blood in pre-atherosclerotic subjects[63]. 
Concerning diabetic patients, expression of miRNA 370 was higher in the T2DM+CAD 
group while compared to T2DM patients without MVC[80].

The recent research performed by Seleem et al[81] confirmed the importance of miR-
450 and miR-342 in developing T2DM MVC by demonstrating an aberrant expression 
in patients suffering from T2DM complicated by CAD with clots. Downregulation of 
miR-450 in a mouse model with diabetic cardiomyopathy was previously reported in 
the literature[82]. The stimulating effect of miR-342-3p on the fibroblast growth factor 
11 gene (FGF11) is known to promote the proliferation and migration of endothelial 
cells. Hyperinsulinemia results in the instability of interaction of miR-342 and FGF11, 
leading to vascular dysfunction in diabetic subjects[83]. Moreover, the upregulation of 
miR-342-5p in early atherosclerotic lesions in mice was discovered by Wei et al[84]. The 
authors proposed a possible use of miR-342-5p as a target for the therapy of athero-
sclerotic lesions.

MiR-1 and miR-133 also deserve attention as possible biomarkers for MVC 
development in T2DM patients. MiR-1 is known to be selectively expressed in heart 
muscle and to regulate cardiomyocyte growth responses[85]. MiR-133 also was shown 
to be expressed in cardiac muscle and to regulate cardiomyocyte proliferation through 
targeting CCND2 gene[86]. MiR-1 and miR-133 both were significantly associated with 
CAD risk in T2DM patients according to Al-Muhtaresh et al[87]. Although the 
association was stronger for miR-1 after adjustment for some anthropometric and 
clinical characteristics, authors proposed the use of a combined assessment of the 
expression levels of miR-1 and miR-133 to improve the diagnostic power for MVC 
prediction[87]. An elevated miR-1 expression level in individuals with CAD compared 
to healthy subjects was also shown in the previous research[88]. At the same time, the 
results were not replicated in another study, where miR-1 expression level did not 
show a significant difference between CAD patients and controls[89]. MiR-133b, in 
turn, was downregulated in CAD individuals according to Kumar et al[60].

MiR-204 is known to regulate cardiomyocyte proliferation through targeting the 
Jarid2 pathway[90,91]. Recently, there were several studies of miR-204 association 
with CAD that demonstrated significant downregulation of miR-204 expression in 
atherosclerotic plaques[92,93]. Interestingly, the decreased level of miR-204 expression 
in T2DM patients was associated with coronary artery calcification[94]. The contri-
bution of miR-204 downregulation to vascular smooth muscle cell calcification also 
was previously shown by another group of authors in mice[95].

MiR-223 as well may be a substantial factor in the development of T2DM. As 
known, it is important for the regulation of GLUT4 expression and glucose uptake in 
the heart[96]. The correlation between miR-223 expression level and susceptibility to 
MVC of T2DM was described several times by now but remains controversial. For 
instance, in the study performed by Duan et al[97], platelet and plasma expression of 
miR-223 was significantly altered in diabetic patients with and without ischemic stroke 
compared to healthy controls, but there was no difference between T2DM and T2DM + 
ischemic stroke groups. Also, no differences were found between patients with 
ischemic stroke and controls[97]. According to another study, expression of miR-223 
was decreased in diabetic subjects, but these changes were more noticeable in T2DM 
patients with ischemic stroke[98]. The lack of association between expression of miR-
223-3p in PBMC and risk of ischemic stroke was confirmed afterward by Long et al
[99], although expression level in PBMC of T2DM patients was also significantly 
decreased. An interesting finding regarding miR-223-3p was described recently. MiR-
223-3p was found to be upregulated in atherosclerotic plaques in individuals with 
unstable CAD[100]. This fact allows suggesting the potential use of miR-223-3p as a 
biomarker for acute coronary events in diabetic subjects.

MiR-144 plays an important role in the T2DM pathogenesis, since one of its target 
genes, IRS1, encodes insulin receptor substrate 1[101]. IRS1/PI3K/AKT signaling 
pathway is involved in the translocation of glucose transporter type 4 into the plasma 
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membrane[102]. MiR-144 may thus regulate glucose uptake by skeletal muscle, cardiac 
muscle, and adipose tissue. At the same time, there is a proven association between 
miR-144 and predisposition to CAD. A study by Chen et al[103] concluded that 
increased plasma level of miR-144 might serve as a promising biomarker for CAD and 
its severity. This association can be partially explained by the recent research that 
demonstrated the involvement of miR-144 in cholesterol and oxysterol metabolism in 
male CAD mice[104]. Moreover, altered expression of miR-144 was shown to be a risk 
factor for ischemic stroke in T2DM patients[98]. Upregulated miR-144 expression was 
detected in samples from individuals with large-vessel stroke in the study by Tan et al
[105].

According to the results of recent research, miR-451a and miR-195-5p were found to 
be upregulated in diabetic patients after a transient ischemic attack in comparison to 
control patients and non-diabetic patients after a transient ischemic attack[106]. The 
earlier study also demonstrated an increased expression level of miR-451a in the 
serum of subjects with ischemic stroke[107]. It is worth noting that aberrant expression 
of miR-451a was also found in T2DM[108] and CAD patients[109]. MiR-195, in turn, 
was downregulated in diabetic subjects[110].

One of the most promising miRNAs for consideration as a biomarker for stroke in 
diabetic patients is miR-146a. Previous research showed a significant reduction in miR-
146a expression level in whole blood and serum of patients with acute ischemic stroke
[111,112]. The data contradict the results of the previous study that showed no 
difference in the expression of miR-146a when comparing stroke patients with 
controls, although expression in plasma and platelet was downregulated in diabetic 
individuals with stroke[97]. This inconsistency can be explained by the different 
material in which expression was analyzed. There are several theories about the 
mechanism of miR-146a involvement in stroke pathogenesis. Li et al[111] suggest 
upregulation of the miR-146a target, Fbxl10, protects neurons from ischemic damage. 
Also, researchers demonstrated a different mechanism for miR-146a involvement in 
stroke recovery. MiR-146a was shown to repress its other targets TRAF6 and IRAK1 
which are components of TRAF6/NF-κB signaling pathway responsible for cellular 
responses to stress. This makes the expression of miR-146a important for the prolif-
eration, migration, and angiogenesis ability of endothelial progenitor cells[113]. 
Upregulation of miR-146a also had an anti-inflammatory effect and prevented 
oxidative stress in mice after hemorrhagic stroke[114]. At the same time, alongside the 
protective potential in stroke, miR-146a was shown to participate in the process of 
atherogenesis[115]. For instance, miR-146a was upregulated in human atherosclerotic 
plaques in the Tampere Vascular Study[43]. Cheng et al[116] demonstrated knockout 
of miR-146a in the vasculature might contribute to atherogenesis by endothelial 
activation. Nguyen and co-authors described atherosclerosis progression resulting 
from a miR-146a-mediated decrease in cell migration and macrophage entrapment in 
vascular intima[117].

The data obtained by Sheikhbahaei et al[118] allows raising the question of the 
potential use of miR-503 as a biomarker for ischemic stroke in T2DM patients. The 
study also provides evidence that miR-503 may serve as an indicator of short-term 
outcomes of ischemic stroke in diabetic individuals. Another group of authors earlier 
demonstrated upregulated miR-503 in ischemic limbs of diabetic mice. Circulating 
miR-503 was also elevated in T2DM patients[119]. The mechanism of influence on the 
vascular wall was explained by the inhibiting of vascular smooth muscle cells 
migration and proliferation through targeting the INSR gene[120]. The same effect was 
demonstrated afterward in HUVECs in high glucose conditions[121].

DNA methylation and histone acetylation
With the expansion of knowledge of epigenetic mechanisms, the question of the 
importance of DNA methylation and histone acetylation in the pathogenesis of MVC 
of T2DM arises. The main mechanism in the development of MVC of T2DM is athero-
sclerotic lesions of major arteries. There is wide evidence of a key role of epigenetics in 
atherosclerotic plaque formation. The association of DNA methylation and histone 
acetylation with atherosclerosis was discussed in detail in a recent review by Lee. In 
particular, the authors described a cascade that begins with endothelial dysfunction 
through Dnmt1 overexpression mediated by DNA methylation changes in mice with 
disturbed blood flow and after leads to infiltration into the intima and subintima by 
macrophages[122,123]. A significant DNA hypomethylation was detected in human 
atherosclerotic lesions and ApoE knock-out mice[124]. The same processes are affected 
by histone acetylation, as illustrated by numerous studies[123]. Histone acetylation is 
connected with the expression of matrix metalloproteinases which play an important 
role in extracellular matrix destruction that leads to plaque rupture[125,126]. Histone 
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modifications were also reported to contribute to oxLDL mediated expression of 
inflammatory IL-8 and monocyte-chemoattractant protein-1 in endothelial cells[127], 
increasing the endothelium permeability and subsequent infiltration by macrophages. 
Another process in atherogenesis is related to increased H3K9 and H3K27 acetylation, 
which is associated with smooth muscle cell proliferation, migration, and stabilization 
of plaque[128].

The influence of DNA methylation changes on T2DM pathogenesis was extensively 
studied. A recent literature review[129] provides information on hypermethylated 
genes responsible for beta cell function in diabetic patients. These genes include 
promoters of INS, encoding insulin[130], PDX1, responsible for beta cell development 
and regeneration[131,132], PPARGC1A, significantly associated with type 2 diabetes 
during increased physical activity[133,134], and GLP1R, encoding receptor of gluca-
gon-like peptide 1[135].

The inflammatory process also plays an important role in the development of 
diabetes[136]. Macrophage activation is mediated by epigenetic changes and 
contributes to chronic inflammation and the pathogenesis of diabetes complications. 
The main mechanisms of epigenetic modification of macrophage activity were 
described in detail in a review article by Ahmed et al[137]. The authors described a 
hyperlipidemia-induces pathway of macrophage activation through DNA methylation 
and suppression of anti-inflammatory genes in macrophages of diabetic rats with 
hindlimb ischemia[138] and obese mice[139]. Another reported activation pathway 
was through increased histone methylation of the promoter of RelA (or p65) subunit of 
NF-κB (nuclear factor-κappa beta), a regulator of innate immune cell responses[140-
142]. The research also concluded hypoxia stimulated macrophage activation through 
histone acetylation.

Overweight and obesity are associated with insulin resistance and metabolic 
syndrome. It is a well-known risk factor for T2DM and its complications. Several 
recent studies indicated the altered level of DNA methylation in the adipose tissue of 
diabetic patients. Genes with aberrant methylation status were mainly related to 
carbohydrate and lipid metabolism, insulin resistance, inflammation, and cell cycle 
regulation[143]. For instance, methylation of PPARG, KCNQ1, TCF7L2, and IRS1 was 
different in adipose tissue of individuals with T2DM and subjects from the control 
group[144]. DNA methylation level was also increased in B cells from obese and 
T2DM patients and natural killer cells from diabetic patients, and associated with 
insulin resistance[145,146].

Epigenetic changes may also mediate the impact of environmental factors on the 
development of T2DM, in addition to controlling the regulation of gene expression. 
For example, transient spikes of hyperglycemia result in epigenetic changes in the 
promoter of RelA subunit of the nuclear factor κB in aortic endothelial cells in mice, 
leading to upregulated RelA expression, associated with endothelial cell inflammation
[147,148].

MANAGEMENT OF MVC IN T2DM PATIENTS
Prophylactic measures play an important role in preventing the development of MVC 
in T2DM patients and include correction of hyperglycemia, dyslipidemia, anti-
hypertensive therapy, and lifestyle modification with diet, physical activity, and 
smoking cessation[149]. Main standards for hypoglycemic therapy were described by 
the American Diabetes Association and European Association for the Study of 
Diabetes[150,151]. The effectiveness of antiglycemic therapy largely depends on 
genetic factors, which was repeatedly shown by many pharmacogenetic candidate 
gene studies and GWAS. The data on the main polymorphisms affecting the effect-
iveness of both metformin and new oral hypoglycemic drugs were summarized in a 
recent review by Mannino[152]. Interindividual variability in response to different 
classes of antihypertensive drugs and adverse reactions may also be partially 
explained by genetic polymorphisms[153]. Pharmacogenetics is of particular 
importance in the correction of dyslipidemia in T2DM due to muscle toxicity of statins, 
observed in about 10% of patients[154]. However, the results of many pharmaco-
genetic studies conducted in small cohorts were not replicated in larger populations. 
Also, the inconsistency may be associated with the ethnicity of the population 
analyzed, which must be taken into account when prescribing personalized therapy
[155].
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IMPACT OF GENETIC FACTORS IN VASCULAR COMPLICATIONS IN 
DIABETIC PATIENTS WITH CORONAVIRUS DISEASE 2019
Coronavirus disease 2019 (COVID-19) pandemic made it clear that the presence of 
metabolic syndrome and its components (T2DM, hypertension, and obesity) 
significantly aggravated the severity of infectious diseases[156,157]. The most common 
comorbidity in COVID-19 patients is hypertension, followed by T2DM, which are 
observed in 30% and 19% of patients respectively[158]. Diabetic patients with COVID-
19 are more likely to suffer from CVD and associated vascular complications which 
lead to a poor prognosis and an increased risk of in-hospital death[159]. The high 
incidence of MVC in COVID-19 patients with T2DM and hypertension can be 
explained by the virus targeting the endothelium[160]. Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) is known to bind to angiotensin-converting 
enzyme 2, encoded by ACE2 gene, for entering cells[161]. Previous researches showed 
that variants in the ACE2 and its expression level might influence the severity of the 
disease[162,163]. Also, the question of the possible influence of ACE2 expression on the 
clinical outcome during therapy with ACE inhibitors and angiotensin II receptor 
blocker remains open. A recent study by Sardu et al[164] showed that anti-
hypertensive drugs did not affect the clinical outcomes in COVID-19 patients. 
Moreover, a combination of those drugs with anti-inflammatory and immune 
therapies might even improve the prognosis. ACE2 is expressed in lungs, kidneys, 
heart, and, importantly, in pancreatic islets, namely, in β-cells producing insulin[165,
166]. Besides, there is evidence of the participation of ACE2 in glucose metabolism. 
Ace2-knockout mice had β-cells defects in research performed by Bernardi et al[167], 
although the defect was compensated by energy shift to glucose utilization. ACE2 
deletion also led to cardiovascular dysfunction, which was demonstrated in studies in 
mice[162,168,169]. At the same time, ACE2 overexpression resulted in improvement of 
β-cell function[170]. The association between ACE2 polymorphisms and SARS-CoV-2 
susceptibility or severity of outcomes was investigated in numerous previous studies. 
For instance, ACE2 variants were shown to be protective against COVID-19 in African 
and Eastern Mediterranean populations, but no association was found in American 
and European cohorts[171]. Three rare variants in ACE2 were found to have a possible 
impact on the disease severity in patients of Russian ancestry[172]. A recent analysis of 
a large genomic dataset allowed to identify 17 potentially protective polymorphisms in 
ACE2 gene and 9 variants increasing susceptibility[173]. Interestingly, the ACE2 gene 
promoter region contains a binding site for hepatocyte nuclear factor 1 alpha that 
induces ACE2 expression in pancreatic islet cells[174]. Polymorphisms within the 
promoter region of ACE2 may thus also contribute to the severity of disease, especially 
in diabetic patients, and should be considered as possible variants predisposing to 
susceptibility to SARS-CoV-2 and severe course of COVID-19 disease[175].

CONCLUSION
Type 2 diabetes is associated with vascular complications of both small and large 
vessels, which seriously impair the overall quality of life and can result in lower life 
expectancy. The discovery of genetic determinants of T2DM complications would 
advance the development of personalized treatment of diabetic patients and 
significantly reduce adverse outcomes. Despite the recent progress in the discovery of 
new genetic and epigenetic determinants of T2DM and its complications, the 
pathogenetic mechanisms of their participation remain largely unknown. An 
additional challenge for genetic studies of complex diseases is to establish the causal 
relationship of the genes involved in pathogenesis and their interactions in the 
development of the underlying disease and comorbid pathologies. Further research in 
the large independent cohorts, deep phenotyping of participants, and functional 
studies are needed to reveal pathogenetic pathways underlying the disorders. It is 
especially important to pay attention to genetic and epigenetic factors during 
pregnancy or in cases when a diabetic individual has a comorbid disease. As for 
pregnancy, the frequency of MI was shown to be 3-4 times higher during the 
peripartum period[176]. As was discussed above, the presence of an acute infectious 
pathology can significantly increase the risks of diabetes complications. The study of 
the development of macrovascular complications in diabetic patients with SARS-CoV-
2 infection may be of particular interest.
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