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Abstract: Due to major artifacts and uncalibrated Hounsfield units (HU), cone-beam computed
tomography (CBCT) cannot be used readily for diagnostics and therapy planning purposes. This
study addresses image-to-image translation by convolutional neural networks (CNNs) to convert
CBCT to CT-like scans, comparing supervised to unsupervised training techniques, exploiting a pelvic
CT/CBCT publicly available dataset. Interestingly, quantitative results were in favor of supervised
against unsupervised approach showing improvements in the HU accuracy (62% vs. 50%), structural
similarity index (2.5% vs. 1.1%) and peak signal-to-noise ratio (15% vs. 8%). Qualitative results
conversely showcased higher anatomical artifacts in the synthetic CBCT generated by the supervised
techniques. This was motivated by the higher sensitivity of the supervised training technique to
the pixel-wise correspondence contained in the loss function. The unsupervised technique does not
require correspondence and mitigates this drawback as it combines adversarial, cycle consistency,
and identity loss functions. Overall, two main impacts qualify the paper: (a) the feasibility of CNN
to generate accurate synthetic CT from CBCT images, which is fast and easy to use compared to
traditional techniques applied in clinics; (b) the proposal of guidelines to drive the selection of the
better training technique, which can be shifted to more general image-to-image translation.

Keywords: image-to-image translation; synthetic images; supervised training; unsupervised training;
U-Net; cycleGAN; CBCT; CT

1. Introduction

Over the past few years, evidence has been accumulating in support of the view that
machine learning and artificial intelligence methods may sensibly impact diagnostic and
therapeutic areas. In this regard, clinical tools have been recently proposed in oncology
to speeding up lesion analysis, improving tumor staging, supporting treatment planning,
and, ultimately, contributing to the main clinical decisions [1,2]. Such tools may incor-
porate deep neural networks for image analysis, within a complete end-to-end clinical
pipeline, providing automatic image segmentation, image synthesis, and image-to-image
translation [3–5]. Especially, in radiation therapy, image-to-image translation has attracted
clinical interest for the potential of using cone-beam computed tomography (CBCT), in-
stead of the conventional computed tomography (CT), for both diagnostics and planning
purposes [6–9]. CBCT is traditionally used for imaging the patient in-room and registering
intra- and inter-fractional changes in the target anatomy along the treatment course [1].
Whether the actual morphological changes significantly alter the anatomy on which the
dosimetric distribution computed at the planning stage was based, a new CT scan is ac-
quired to perform a planning update. Despite allowing for much faster imaging than
CT fan-beam imaging, the CBCT technique introduces a significant amount of scattered
radiations, resulting in image artifacts such as shading, cupping, reduced image contrast,
and beam-hardening [10,11]. Moreover, the pixel values in CBCT images may fluctuate
because of these artifacts, making them not directly usable for dose calculation unless
some correction methods are applied to calibrate CBCT to CT scanner Hounsfield Unit
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(HU) values [12–14]. Thus, the availability of reliable techniques for the correction of
CBCT images would extend their clinical usage, such as tumor shrinkage and organ shift
evaluation, and treatment planning purposes, such as soft tissue segmentation for dose
delivery computation. In addition, CBCT modality is compatible from a patient safety
point of view (less additional non-therapeutic dose compared to traditional CT) with frac-
tional dose delivery [1]. In this paper, generative deep neural networks were investigated
for the translation of CBCT volumes into synthetic CT featuring compatible HU values.
The same generative architecture was trained using supervised and unsupervised training
techniques, exploiting a pelvic CT/CBCT publicly available dataset [15]. The comparison
between the two obtained solutions was first quantified in terms of synthetic CBCT to orig-
inal CT similarity by means of peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). The HU agreement was then evaluated in terms of mean absolute
error (MAE).

1.1. Background

Correction and translation methods for quantitative CBCT can be broadly divided
into hardware-based, prior-CT-based, and model-based approaches. Hardware-based
methods remove scatter based on additional equipment mounted on the acquisition system.
In particular, an anti-scatter grid and partial beam blockers, along with software estimation
of scattering, was proposed for scatter suppression [16–20]. While this kind of approach has
shown promising results, it is not always feasible to be implemented in clinical practice due
to the installation and setup of additional devices on acquisition systems. Moreover, this
type of solution inherently reduces the system quantum efficiency and can degrade image
quality [21]. Prior-CT-based methods leverage information obtained from high-resolution
planning CT applied to up-to-date information contained in CBCT. They can be based
on processing techniques like deformable registration of CT to CBCT [22], or by linearly
scaling the CBCT HU values to CT ones through histogram matching [23,24]. The shading
artifacts inside CBCT can also be estimated by low-pass filtering the difference between
the high-resolution CT projections and the raw CBCT ones and then subtracted from the
CBCT during reconstruction [25]. In general, these methods achieved a limited solution
to CBCT problems since they depend on the accuracy of the spatial alignment between
CBCT and planning CT volume pairs from the same patients. This alignment is not always
possible, particularly in the case of acquisition made on different days or in the presence
of soft tissues. Model-based methods typically use Monte Carlo simulations to model the
scatter contribution to CBCT projection data. Many researchers attempt to model the scatter
distribution via some combination of analytical methods or Monte Carlo algorithms [26–29].
Model-based methods demonstrated to reproduce HU to sufficiently robust accuracy
for clinical application because they rigorously simulate photon transport. However,
their primary limitation comes from the physics models. Moreover, these techniques
are limited by their execution time, usually in the order of minutes to hours, making
them incompatible with an online application (e.g., dose evaluation or pre-treatment
adaptation). In recent years, deep learning-based methods joined traditional approaches
to improve the quality of medical images. These methods leverage the advance in the
field of image-to-image translation, making use of convolutional neural networks (CNNs)
to learn how to map voxels from a source distribution (e.g., CBCT) to a target one (e.g.,
planning CT). Rather than truly correcting scattering or other physical effects, CNN learns
this type of nonlinear mapping iteratively. Therefore, this approach does not need complex
physical model formulation required by, e.g., Monte Carlo-based methods. Moreover,
although deep learning-based methods can be computationally expensive to train, once a
well-trained model is developed, the image correction can be applied in seconds, making
these methods compatible with the clinical practice. The literature presents two main
paradigms to train CNN for image-to-image translation: supervised and unsupervised
training. Supervised training requires paired images from two dominions (e.g., CBCT and
CT) for model training. The input CBCT is processed by the model generating a synthetic
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CT (sCT), which is then compared to the corresponding ground-truth CT to minimize their
pixel-by-pixel difference iteratively. Thanks to its neural encoding-decoding capabilities,
the U-Net architecture is the most common one for this type of training [30–33]. Similar
to prior-CT-based methods, images must be well-registered to achieve good performance
when using supervised training. Since model training is based on a single pixel-wise
loss function, the network could be biased and will tend to learn incorrect mapping
in case of bad registration. It is not always possible to achieve such a good accuracy,
especially in soft tissues, due to the patient’s weight loss, tumor changes, or the presence
of air. On the other hand, unsupervised training enabled the possibility to use unpaired
data for image-to-image translation [34]. The most common architecture for this kind
of training is cycle Generative Adversarial Network (cGAN) [35]. This architecture is
based on two concurrent subnetworks, a generator and a discriminator, which work in
opposition. Given two different datasets, the generator tries to learn the mapping to
convert one dataset to the other. The generator aims to trick the discriminator. On the other
hand, the discriminator objective is to distinguish between real and synthetic images. This
generator-discriminator cycle-consistent loop is designed to improve the generator ability
to produce synthetic images that are virtually indistinguishable from real ones. Cycle
GAN was first proposed for natural image synthesis. Still, recently various researchers
demonstrated its application for many medical image synthesis tasks, like the generation of
synthetic CT from CBCT [36–39], MR synthesis from CT images [40,41] or PET attenuation
correction [42]. The main advantage of this method consists of the possibility to use
unpaired, even unbalanced datasets, as the one-to-one correspondence between both
dominions is no longer necessary. However, the computational power needed to train this
architecture increases dramatically, since there are four models to be trained based on at
least four distinct loss functions.

1.2. Key Contributions of the Work

In summary, the traditional approaches presented some limitations. Hardware-based
methods require the installation and the setup of additional devices on acquisition systems.
These devices involve additional costs and do not always guarantee high flexibility and
generalization capability. For what concerns prior-CT-based methods, their most significant
limitation is the dependence on planning acquisitions and the accuracy of spatial alignment
with CBCT. This condition is not always easily obtainable, especially when the acquisition
period between the two modalities increase. Monte-Carlo-based methods are the most
accurate approaches, but they suffer from two main limitations. Their execution time is usu-
ally incompatible with in-room clinical application, and they have the critical requirements
of a complex physical model formulation. On the other hand, the deep-learning-based
methods proposed in this work aim to overcome some of these limitations. At first, it
does not have any additional hardware requirements, making it of potential utility for
every kind of CBCT acquisition system, e.g., robotic C-arm, gantry mounted systems or
couch-mounted ones. Moreover, while training a deep convolutional neural network is
a time-demanding task, they are very fast in generating output images in a production
application once trained. The execution time for these methods is compatible with clinical
use. Furthermore, the black-box nature of neural networks does not rely in general on any
complex physical modeling. In order to obtain a network with sufficient generalization
capability, it is mandatory to train it with a sufficiently broad and generalized dataset.
The first generative model was based on the U-Net architecture trained according to a
traditional supervised pattern. The second generative model was still a U-Net-based model,
which was coupled to a discriminator network and trained without supervision in a cGAN
configuration. Overall, two main impacts qualify the paper: (a) the feasibility of CNN to
generate accurate synthetic CT scans from CBCT images, which is fast and easy to use
compared to traditional techniques applied in clinics; (b) the proposal of guidelines to
drive the selection of the better training technique, which can be shifted to more general
image-to-image translation.
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2. Materials and Methods
2.1. Dataset Description

The publicly available dataset, called Pelvic Reference Dataset (PRD) [15], used in this
work was obtained from the Cancer Imaging Archive (https://www.cancerimagingarchive.
net accessed on 10 February 2021). PRD included paired CT and CBCT volumes of the
pelvic region of 58 subjects, spanning 28 males and 30 females. CBCT images were acquired
at least 1 week after the corresponding CT volume acquisition. Moreover, PRD includes
47 and 11 volumes acquired in supine and prone positions, respectively. Two subjects
(both female, one prone, and one supine) were removed from the dataset. In the first case,
a metal hip prosthesis made it impossible to distinguish the anatomical structures in both
CT and CBCT. In the second case, the CBCT field of view was too small to contain the
entire subject’s pelvic region. Therefore, a massive part of the subject present in the CT
was missing in its corresponding CBCT. These two cases were considered outliers and
removed from the dataset, so that 56 cases were available for this study. Both CT and CBCT
volumes featured size of 512× 512 pixel on the axial plane with a pixel size of 1.00× 1.00
mm and a single slice thickness of 3.00 mm. The number of slices of each CBCT was 88,
while in CT scans that number was variable. Along with volume files, the PRD dataset
also provided a table with the (x, y, z) coordinates to apply to the CBCT isocenter to align
with their corresponding CT. To sum up, 4053 CT/CBCT 2D axial projections pairs were
available. The entire dataset was split into train, validation, and test sets with a ratio of 80,
10, 10%, respectively, corresponding to 3243, 405, and 405 images per set.

2.2. Image Pre-Processing

Pre-processing steps were performed before feeding data to the neural network.
At first, a binary mask was created to separate the subject from any non-anatomical
content (e.g., treatment couch). This masking procedure avoids any negative impact
from these structures on training procedures. In order to prepare these masks, Otsu
thresholding was applied to each volume. A max connected component analysis was then
performed on each mask to remove any non-anatomical residual finely. A final binary
fill holes filtering and erosion filtering were applied to enhance mask accuracy further.
Finally, the mask was applied to the original volume, obtaining an isolated anatomical
region. Corresponding masked CT and CBCT were then rigidly registered, using isocenter
coordinates provided with PRD Dataset. This step was necessary only for supervised
training since the unsupervised one did not need paired data. However, good alignment
was also required for evaluation analysis. The HU range of the grayscale values was first
clipped to [−1024, 3200] and then rescaled to [0, 1] with a linear mapping. In order to
reduce the computational cost for CNN, every axial slice was resampled to 256× 256 pixel.

2.3. Deep Convolutional Neural Network Models

The two generative models were both based on the U-Net architecture trained ac-
cording to two different training patterns. The supervised generative model required only
this network, while the unsupervised one also required the definition of a discriminative
architecture. In order to make the comparison possible, the generator architecture was
precisely the same for both supervised and unsupervised procedures. The generator was
implemented as an adapted version of the popular U-Net architecture. The basic U-Net is
primarily used to solve pixel-by-pixel classification problems in image segmentation [43].
In the present work, U-Net was adapted to solve an image-to-image conversion task to
generate sCT images from CBCT. The basic building blocks for the generator were depicted
in Figure 1. The first one, called the ConvBlock, was based on a modified version of the
implementation of Isola et al. [34]. It was composed of a 2D convolution with a 3× 3 kernel,
followed by an instance normalization layer and a swish activation function. Instance nor-
malization was demonstrated to improve the performance in image generation tasks [44].
ConvBlock was present in the network both standalone and as a part of another processing
block, called the InceptionBlock. This latter block was adapted from GoogLeNet [45]. It

https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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comprised four parallel ConvBlocks, each with an increasing kernel size of dimensions
1× 1, 5× 5, 7× 7, and 11× 11. In this way, the input received by the InceptionBlock was
processed simultaneously by multiple receptive fields. The output of each branch was
then concatenated, and the entire stack of feature maps was returned as output. The main
purpose of this processing block was to perform multi-scale feature extraction from the
input image. These multi-scale extracted features, ranging from small to large receptive
fields, can provide better results for image synthesis.

ConvBlock

Input

Conv2D

Instance Norm

Swish

Output

InceptionBlock

Input

ConvBlock
1×1

ConvBlock
5×5

ConvBlock
7×7

ConvBlock
11×11

Concatenate

Output

Figure 1. Basic building block architectures. The ConvBlock (left) is composed of a 2D convolutional
step with kernel variable kernel size, followed by instance normalization and a Swish activation
function. The InceptionBlock (right) is composed of the parallel combination of more ConvBblock
with kernel dimension of 1× 1, 5× 5, 7× 7, and 11× 11. The output of each ConvBlock is then
concatenated in a single output tensor.

The overall generator structure, depicted in Figure 2, was composed of a contracting
and an expanding path, both based on the basic processing blocks. The first two upper
processing blocks of the generator were composed of InceptionBlocks, while the deeper
three were composed of ConvBlocks. In this way, the network was divided into two parts
with two different functions: the inception part extracted global contextual information
while the traditional part has the task to capture finer context and precise localization.
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Figure 2. Schematic of the generator network architecture.

The discriminator (Figure 3) was a CNN that performs image classification. Its
architecture was based on the PatchGAN architecture [34], considered to be the gold
standard discriminator for cGAN [35,38,39]. It consisted of four consecutive ConvBlocks,
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with a 4 × 4 kernel size. The convolution for the first three ConvBlock was set with stride 2,
giving as outputs a tensor with half the size and twice the features map. The last ConvBlock
had stride one and maintained the size and the number of feature maps unchanged.
A sigmoid activation function followed the last layer, producing a 32 × 32 map with every
pixel in the [0, 1] range. This output map was used for patch-wise classification of the input
image as real or fake.
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Figure 3. Schematic of the discriminator network architecture.

2.4. Training Methods

The two training routines are schematized in Figure 4. For supervised training, given
the original CBCT image as input to generator CT (GCT) network, the generated sCT is
compared to the corresponding ground-truth CT. During training, the network adapts its
weight according to MAE loss function, expressed as:

Lsupervised(CT, sCT) =
1
N

N

∑
i=0
|CTi − sCTi| (1)

In regard to the unsupervised learning, the cGAN structure incorporated two genera-
tors and two discriminators, competing against one another, namely generator CT (GCT),
generator CBCT (GCBCT), discriminator CT (DCT), and discriminator CBCT (DCBCT). GCT
was used to generate sCT from CBCT, while GCBCT was used to generate synthetic CBCT
(sCBCT) from CT. On the other hand, DCT was used to distinguish between real CT and sCT,
and DCBCT is used to distinguish real CBCT from sCBCT. In the first step of the training,
GCT (GCBCT) took CBCT (CT) as input and generated sCT (sCBCT). Then, GCT (GCBCT)
took sCT (sCBCT) as input and generated a cycleCBCT (cycleCT), which is supposed to be
equal to the original CBCT (CT). Meantime, DCT (DCBCT) tried to discriminate between
real CT (CBCT), labeled as 1, and sCT (sCBCT), labeled as 0. Generator loss functions
included three types of terms: adversarial loss, cycle consistency loss, and identity loss.
Discriminator loss was composed only of an adversarial term. These loss functions were
combined to mapping the distribution of the generated images to the distribution domain
of the target images (see Appendix A).
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sCT GCBCT CBCT GCT sCT GCBCT cycleCBCT

DCBCT DCT

cycleCT GCT sCBCT GCBCT CT GCT sCT

Lcycle−GCBCTLid−GCBCT

Lcycle−GCT Lid−GCT

Ladv−GCBCT

LDCBCT

Ladv−GCT

LDCT

CBCT GCT sCT CT

Lsupervised

Figure 4. Schematic flow chart of supervised (upper panel) and unsupervised (bottom panel)
training routines. Rectangle boxes represent images, and rounded corner boxes depict neural
network models. Dashed boxes indicate a loss function. For a detailed explanation of the training
routines, refer to the Appendix A.

2.5. Performance Metrics

In order to quantitatively evaluate network performances, three widely accepted
numerical metrics were used: peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), and mean absolute error (MAE). PSNR is computed as the ratio
between the maximum possible power of a signal and the mean square error of the images
being compared. Its value is measured in decibel and approaches infinity as the mean
squared error between sCT and ground-truth CT approaches zero. Therefore, a higher
PSNR value corresponded to higher image quality and vice-versa [46]. SSIM was first
introduced in 2004 by Wang et al. [47]. It measures similarity between two images based
on three factors: luminance, contrast, and structure. Compared to PSNR, SSIM provides
an indication of similarity closest to that of the human visual system. The value for this
metric ranges between 0 and 1, where 1 indicates the best possible level. Lastly, MAE is
used to evaluate the HU accuracy between two images quantitatively. Before computing its
value, the amplitude of the network output, i.e., [0,1], was scaled back to the original range,
i.e., [−1024, 3200]. The lower the MAE, the higher the HU accuracy of the two images.
Every metrics was evaluated using CT as the ground truth reference.

2.6. Cross-Validation Analysis

In order to validate the performance of the trained models, a four-fold cross-validation
experiment was carried out on both methodologies. The entire dataset was divided into
four subsets, each subgroup consisting of images of 14 patients. For each experiment,
three subsets were used as the training set, while the remaining one was used as the
test set. The cross-validation allowed a comparison of the performance of the models
against the baseline results, i.e., the difference between the CT and the original CBCT
images. The improvement in terms of SSIM, PSNR, and MAE was quantitatively analyzed.
The statistical difference between the candidate models was also evaluated with Kruskal-
Wallis non-parametric test for median differences (p < 0.01) and Tukey–Kramer post-
hoc comparison.
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2.7. Implementation Details

The Keras [48] and TensorFlow [49] Python frameworks were used to develop the
network models, loss functions, metrics, and training routines. The training was carried
out in the Google Colaboratory Cuda-enabled environment, equipped with a four-core
CPU, 25 GB RAM, and NVIDIA® Tesla® P100 GPU support 16 GB RAM. The number of
epochs has been set to 25. When the validation set SSIM score is maximized, the training
routine was configured to save the set of the best network weights. The training was
optimized with ADAM (Adaptive Moment Estimation) optimizer [50], with the following
parameters: learning rate 2× 10−4, exponential decay rate for the first moment estimates
β1 = 0.5, and exponential decay rate for the second-moment estimates β2 = 0.999. The
batch size was set at 10. In order to generalize network performance as much as possible
and prevent overfitting, data augmentation was performed at run-time during training. At
the beginning of each training epoch, just before giving the image as input to the network,
a series of image elaborations were applied. In particular, the images were randomly
rotated by multiple of 90 degrees and horizontally flipped. The same transformations
were also applied to the corresponding ground truth CT in order to maintain coherence
between pairs. By applying these transformations, each CBCT/CT pair featured eight
different configurations (four rotations times two flips). This implied that at each iteration
the network was fed with different images. As an example, assuming that we have N
images in the training dataset, at each iteration step of the training N different images are
generated from the original samples applying the described random transformations .

3. Results

Supervised training required about 3 minutes per epoch. The only architecture used
for this training pattern was the generator, corresponding to 2,554,977 trainable parameters.
On the other hand, unsupervised training required about 5 minutes per epoch due to its
increased complexity. This method featured two identical generators and two identical
discriminators. Being the discriminator network characterized by 429,185 trainable param-
eters, the overall number of weights for the unsupervised model was 5,968,324. For what
concern inference time, the two approaches were comparable. Generating sCT required
less than 4 seconds for an entire CBCT volume (~70 slices) in both cases, computed on the
same GPU environment used for training.

3.1. Performance Metrics

The cross-validation experiments confirmed that the proposed CNN models improved
the metrics with respect to the baseline (Figure 5), being median and interquartile results
summarized in Table 1. In general, supervised training attained better results for every
metric. Considering SSIM, supervised sCT obtained an improvement of 2.5% with respect
to the baseline (p < 0.0001), while unsupervised sCT gained an improvement of 1.1%. PSNR
also confirmed this trend, resulting in an enhancement from the baseline for supervised
sCT and unsupervised sCT of 4.19 dB (p < 0.0001) and 2.3 dB (p < 0.0001), respectively.
The relative gains for PSNR were 15.7% and 8.6%. Lastly, the supervised model reduced
the mean absolute error between supervised sCT and CT by 58.16 HU (62.3%), while
the unsupervised model resulted in a reduction of 46.92 HU (50.3%). Even in this case,
the supervised model appeared significantly better than the unsupervised one (p < 0.0001).
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Figure 5. Quantitative analysis of SSIM, PSNR, and SSIM values between original CBCT, sCT supervised, and sCT
unsupervised against the corresponding CT, computed for each fold of the four-fold cross-validation.

Table 1. Performance metrics evaluated on original CBCT, sCT supervised, and sCT unsupervised.
Every value is computed against the original CT, considered as the ground truth. Every value is
expressed as median (interquartile range).

SSIM [A.U.] PSNR [dB] MAE [HU]

CBCT 0.887 (0.048) 26.70 (3.36) 93.30 (59.60)
Supervised sCT 0.912 (0.030) 30.89 (2.66) 35.14 (13.19)

Unsupervised sCT 0.898 (0.046) 29.00 (3.38) 46.38 (24.86)

3.2. Qualitative Comparison

Some examples of sCT generated by the supervised and unsupervised approaches
are depicted in Figure 6. The first column represents the ground truth CT image, while
the second one contains the original CBCT input. The third and fourth columns show the
generated sCT images predicted from supervised and unsupervised models, respectively.
The last column compares one intensity profile (the central row depicted with a line) for
every imaging modality. The same example slices are also showed as difference maps in
Figure 7. Every column represents the difference between the modality under evaluation
(CBCT, supervised sCT, and unsupervised sCT) and the ground truth CT.

The first row represents the case of a CBCT/CT pair with a similar field of view
(FOV). From the intensity profile and the difference map, it can be noticed that both
models enhanced overall image qualities in terms of HU mapping, with slightly better
visual details for the supervised model. The second row shows an example in which
CT FOV is wider than CBCT one. In this case, it can be observed that the supervised
model tried to compensate for the missing structures at the border with unrealistic values.
Contours of supervised sCT were blurred and unreliable, while unsupervised sCT coped
better with the original CBCT boundaries. In more detail, the unsupervised model did
not attempt to recreate the missing FOV, resulting in more realistic and reliable contours
with respect to the original CBCT. Concerning the internal anatomical structures, both
models reached good qualitative results, as demonstrated by the corresponding intensity
profile and difference map. The last row in Figures 6 and 7 shows a case in which the
rectum area had an air-filled cavity with different shapes between the CT and the CBCT.
The supervised model reacted by filling the air cavity with the surrounding values, while
the unsupervised model preserved its contours. This latter behavior is preferable, as it
is assumed that the information content of the CBCT is more updated than that of the
CT. Again, the supervised model attempted to scale the HU values without considering
possible changes in the anatomical structures of interest.
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Figure 6. Visual comparison between some axial slices depicted in every modality: CT, CBCT, sCT supervised, and sCT
unsupervised. Every row corresponds to a different example taken from a different subject. The rightmost part of the figure
compares the intensity profiles of the central line of the images, highlighted by the central line in the four representations.
Images are displayed with Window = 2000, Level = 0.
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Figure 7. Difference maps computed between original CBCT, sCT supervised, and sCT unsupervised
using their corresponding CT as reference. Numeric values are in Hounsfield Units. Each row
represents a different example taken from a different subject. The examples depicted in this figure
correspond to the example presented in Figure 6.
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4. Discussion
4.1. Main Findings

This work proposed a deep-learning-based approach for generating synthetic CT
images from CBCT scans, featuring HU values compatible with the traditional CT domain,
providing a fair comparison between supervised and unsupervised training paradigms.
As demonstrated by the cross-validation analysis, the supervised model outperformed
the unsupervised ones. The supervised network guaranteed advantages in terms of
computational cost, having 57% fewer weights to train and requiring 40% less training
time for the same number of epochs. Moreover, it gained an increase of 12% in terms
of MAE with respect to the unsupervised one, showing a superior ability in mapping
HU values. On the other hand, the supervised model showed to be not always reliable,
resulting in some unexpected behavior, especially in the contour regions. This kind of
artifact did not appear in images generated through the unsupervised model, which proved
to be more reliable in preserving the anatomical structure and the up-to-date information
contained in the CBCT scan. One example of this is clearly visible in the bottom row
of Figure 6, where the shape of the air cavity present in CBCT is preserved only for the
unsupervised case, while the others tended to close the air gap. The unsupervised model
did not suffer from this condition due to the cyclic loss functions, consisting of three main
terms, each with a different purpose. The more straightforward loss function defined for
the supervised model, i.e., mean square error, specialized the network to learn mapping
without adequately considering the anatomical structure.

4.2. Comparison with the Literature

To our best knowledge, just one comparison between supervised and unsupervised
training of deep networks, addressing back and forth translation between CT and magnetic
resonance images was proposed in the recent literature [41]. In such a work, the authors
explored different network architectures proposing a modified U-Net (supervised training)
and the ResNet model for the generator (unsupervised training) proposed in [35]. Con-
versely, in our work, the same model was adopted in both the supervised and unsupervised
generative parts, which smoothed out any biases in the comparison. Approaches competi-
tive with our work were reported in the recent literature. Using an MC-based methodology,
HU correction of about 31% for five lung cancer patient images was gained [13]. Another
proposal, which used histogram matching on ten prostate cancer patient scans, resulted
in a 20% HU correction [24]. A phantom-based study was carried out on the Catphan
600 (The Phantom Laboratory, Salem, NY, USA) [25] achieved an overall accuracy of 95%
in HU recovery. Nonetheless, results on patient images were not presented. Concerning
deep-learning-based methods, a proposal based on the U-Net trained with a supervised
approach on 30 prostate cancer patients presented an HU accuracy enhancement of about
69% [30]. A comparative study explored the performances of some supervised models
trained on 42 prostate cancer patients. The results obtained by the three tested models were
55, 17, 47% in terms of HU relative improvement [33]. Exploring the use of cGAN and
unsupervised training, a study disclosed an enhancement of 57% with a dataset containing
120 head and neck scans [36]. Another unsupervised-based research resulted in a 16%
increase for 33 prostate cancer patients [37]. The results proposed in this work are generally
in line with the prior art, with an HU improvement of 62% and 50% for the supervised and
unsupervised models, respectively.

4.3. Technical Challenges and Work Limitations

The use of complex models for remapping HU can be considered oversized when
looking at the intensity profiles (cfr. Figure 6), where linear shifts appear predominant. This
would suggest that regression models may be enough to address HU mapping. However,
the inter-variability between the two modalities (e.g., air gaps, morphological variations
due to postures, lesion progression) may easily introduce non-linearity in the intensity
profile mapping (cfr. Figure 8). In the upper panel of Figure 8, an air gap can be appreci-
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ated in the CBCT and in the corresponding CT. The notch in the intensity profiles is just
produced by such a gap. This kind of deformation is difficult to correct by simple linear
mapping. In the lower panel, relevant beam hardening of the CBCT at the image bound-
aries, corresponding to peripheral density appearance, is traceable in the corresponding
intensity profile (orange curve) as an undue convexity at the borders. Likewise, a linear
transform of the profile does not ensure accurate correction. Consequently, convolutional
neural networks represent a natural approach to address as they feature input/output
non-linear transforms and good generalization capabilities.

CT CBCT Supervised sCT Unsupervised sCT

0 50 100 150 200 250
Pixel

1000

500

0

Intensity Profile (HU)

0 50 100 150 200 250
Pixel

1000

750

500

250

0

Figure 8. Examples of non-linearity of CBCT scans. Air gap introduced a notch in the intensity profile (top). Beam hardening
is visible as a convex shape in the orange curve of both examples (bottom). Images are displayed with Window = 2000,
Level = 0.

As we have shown, quantifying the image translation effectiveness by means of SSIM
and PSNR can be inconclusive. For example, both lower SSIM and PSNR values (supervised
against unsupervised) do not necessarily indicate that the images are qualitatively worse
(cfr. Table 1). In particular, SSIM is a perception-based metric considered to be correlated
with the quality perception of the human visual system, and the higher its value is, the better
is the perception of similarity for human eyes [47]. Still, some studies have shown that
SSIM is less effective when used to evaluate blurry and noisy images [51,52]. This reduces
the relevance of comparisons performed using such metrics. Conversely, MAE provided
an objective quantification of the HU matching. As far as the selection between the two
approaches is concerned, we may argue that the supervised approach is preferable in
the presence of a large amount of paired data, ensuring high accuracy in HU mapping.
Nonetheless, gaining this advantage requires that CBCT and CT images be gathered as
close as possible to minimize the anatomical difference. It is also crucial to mask images
according to the smallest FOV between the two modalities in order to have comparable
information content in between. In detail, masking ensures similar FOVs preventing the
supervised network from attempting to reconstruct the sCT in the CBCT regions where
this information is missing. In order to reduce the dependency on such constraints, the
unsupervised method is suitable, avoiding pairing, requiring fewer pre-processing steps
(e.g., masking) and being more conservative in terms of anatomical features. Removing
the constraint on the pairing, the training effectiveness can benefit from a large amount of
data, easier to collect. Nonetheless, even though obtaining unpaired images is clinically
simpler, using explicitly paired data in training reduces geometric discrepancies at body
boundaries. As verified in [21], unsupervised training may take advantage of paired data
allowing to better focus on soft-tissue contrast than geometric mismatches. To further
validate the methods presented in this work, a dosimetric analysis would be required.
However, the chosen dataset did not allow this type of study to be explored due to the
lack of the original CT dose distribution plan. Moreover, our methodologies focused only
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on a single anatomic district, the pelvic one. We wanted to demonstrate the feasibility of
both methods in a body region particularly subjected to inter- and intra-fractional changes.
The comparison between the two training strategies was made to show their different
approach in addressing image-to-image translation tasks, highlighting their strengths
and limits.

5. Conclusions

We have shown that the proposed methodologies allow generating accurate synthetic
CT images by automatically processing CBCT scans, featuring processing time faster than
traditional Monte-Carlo-based methods. The basic idea behind this approach is to correct
CBCT images exploiting their potential not only in a more accurate patient positioning,
but also for clinical evaluation purposes as tumor shrinkage and organ shift. For what
concerns the integration in the clinical workflow of treatment re-planning, this method can
be integrated into a tool to be deployed that elaborates the reconstructed CBCT images,
acting as an image filtering process. The correction of CBCT also makes possible the direct
morphological comparison with the planning CT. As a consequence, the dose planning
update, according to the new patient condition following fractional treatment, is just one
of the possible usages of the CBCT, corrected with realistic tissue density according to HU.
The clear advantage of using the in-room calibrated CBCT images for online re-planning
consists of the availability of the actual patient anatomy. Nonetheless, this is still a challenge
in radiation therapy and the subject of extensive research, which we plan to investigate in
future works.
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Appendix A

Loss Functions for Unsupervised Training

In the unsupervised training, the generator loss functions included three types of
terms: adversarial loss, cycle consistency loss, and identity loss. Discriminator loss was
composed only of an adversarial term. For GCT the adversarial loss term is the mean
squared error (MSE) between 1 and DCT(GCT(CBCT)):

Ladv−GCT (CBCT) =
1
N

N

∑
i=0

(1− DCT(GCT(CBCTi)))
2 (A1)

Symmetrically, the adversarial objective for GCBCT is:

Ladv−GCBCT (CT) =
1
N

N

∑
i=0

(1− DCBCT(GCBCT(CTi)))
2 (A2)

The second term is represented by cycle consistency loss. It is used during training
to enforce consistency of the two mappings from CT to sCBCT and CBCT to sCT [35].
This term is represented by the mean absolute error (MAE) between real CT (CBCT) and
cycleCT (cycleCBCT), respectively:

Lcycle−GCT (CT) =
1
N

N

∑
i=0
|GCT(GCBCT(CTi))− CTi| (A3)

Lcycle−GCBCT (CBCT) =
1
N

N

∑
i=0
|GCBCT(GCT(CBCTi))− CBCTi| (A4)

The third term, identity mapping loss, was introduced in order to preserve HU values
between real CT and sCT and between real CBCT and sCBCT. Without this term, generator
GCT and GCBCT are free to change the HU values of input images even when it is not
necessary. This loss acts as an identity constraint for the generator. When sCT is used as
input for GCT , it should generate CT too as output. The same applies for GCBCT with CBCT.
Therefore, identity loss is expressed as MAE between GCT (CT) with respect to CT and
between GCBCT (CBCT) against real CBCT:

Lid−GCT (CT) =
1
N

N

∑
i=0
|GCT(CTi)− CTi| (A5)

Lid−GCBCT (CBCT) =
1
N

N

∑
i=0
|GCBCT(CBCTi)− CBCTi| (A6)

Combining all these terms, for the overall loss of the two generators the following
formula holds:

LG = Ladv + λcycle · Lcycle + λid · Lid (A7)

where λcycle = 10 and λcycle = 5 represents the relative importance of the adversarial, cycle
consistency, and identity mapping part of the objective.

The adversarial loss of the discriminator, which constrained the network to classify
real images, labeled as 1, and synthetic images, labeled as 0, cab be written as:

LDCT (CT, CBCT) =
1
N

N

∑
i=0

(1− DCT(CTi) + DCT(GCT(CBCTi)))
2

2
(A8)

LDCBCT (CT, CBCT) =
1
N

N

∑
i=0

(1− DCBCT(CBCTi) + DCBCT(GCBCT(CTi)))
2

2
(A9)
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