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Abstract: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide.
Additionally, the efficacy of targeted molecular therapies with multiple tyrosine kinase inhibitors is
limited. In this study, we focused on the cellular signaling pathways common to diverse HCC cells
and used quantitative reverse phase protein array (RPPA) and statistical analyses to elucidate the
molecular mechanisms determining its malignancy. We examined the heterogeneity of 17 liver cancer
cell lines by performing cluster analysis of their expression of CD90 and EpCAM cancer stem cell
markers. Gaussian mixture model clustering identified three dominant clusters: CD90-positive and
EpCAM-negative (CD90+), EpCAM-positive and CD90-negative (EpCAM+) and EpCAM-negative
and CD90-negative (Neutral). A multivariate analysis by partial least squares revealed that the former
two cell populations showed distinct patterns of protein expression and phosphorylation in the EGFR
and EphA2 signaling pathways. The CD90+ cells exhibited higher abundance of AKT, EphA2 and its
phosphorylated form at Ser897, whereas the EpCAM+ cells exhibited higher abundance of ERK, RSK
and its phosphorylated form. This demonstrates that pro-oncogenic, ligand-independent EphA2
signaling plays a dominant role in CD90+ cells with higher motility and metastatic activity than
EpCAM+ cells. We also showed that an AKT inhibitor reduced the proliferation and survival of
CD90+ cells but did not affect those of EpCAM+ cells. Taken together, our results suggest that AKT
activation may be a key pro-oncogenic regulator in HCC.

Keywords: hepatocellular carcinoma; reverse phase protein array; liver cancer stem cells; EpCAM;
CD90; EphA2; AKT

1. Introduction

Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause
of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent
type of primary liver cancer, accounting for 75–85% of liver cancer cases [1]. Even with
the three pillars of HCC treatment (hepatectomy, local ablative therapies and transcatheter
arterial chemoembolization), the rate of cancer recurrence is extremely high, as compared
with other cancers, with recurrence rates of approximately 70% to 80% over 5 years. The
prognosis for HCC patients is poor, with a low 5-year survival rate of less than 20% [2,3].
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Sorafenib, a tyrosine kinase inhibitor (TKI), is the first-line treatment for advanced-stage
HCC [4–6]. However, it only provides a modest median survival benefit of 2–3 months.
Furthermore, its effectiveness is limited to approximately 30% of HCC patients. Most
patients acquire sorafenib resistance within 6 months [7]. In recent years, additional TKIs,
lenvatinib [8–10] and regorafenib [11,12] have been approved as first- and second-line
treatments for advanced HCC, respectively. However, their therapeutic response and
survival benefits are still low and limited.

This limited efficacy of TKIs for HCC most likely stems from tumor heterogene-
ity. This heterogeneity is proposed to arise from a subset of cancer stem cells (CSCs)
with self-renewal and differentiation capabilities [13]. Liver CSCs are known to express
specific cell surface markers, such as EpCAM, CD90 (Thy1), CD133, CD24 and CD44.
Yamashita et al. [14] revealed that these CSCs are heterogeneous in their morphology,
tumorigenicity and metastasis. Notably, EpCAM-positive HCC cells have an epithelial cell
morphology and are highly tumorigenic but poorly metastatic. In contrast, CD90-positive
HCC cells have a mesenchymal cell morphology and are highly metastatic but poorly
tumorigenic. Furthermore, EpCAM-positive and CD90-positive HCC cells have differ-
ential sensitivity to various chemotherapeutic and targeted molecular agents, including
sorafenib [14–18]. Thus, elucidating the regulatory mechanisms underlying these CSCs
may help in a deeper understanding of HCC tumorigenicity, metastasis and drug resis-
tance, as well as facilitate the development of more effective chemo- and targeted molecular
therapies for advanced HCC.

Several signaling pathways have been implicated in the pathogenesis of HCC [19,20].
The epidermal growth factor receptor (EGFR) signaling cascade is one of the main signaling
pathways involved in HCC tumorigenesis [21]. Activation of EGFR leads to downstream
activation of the ERK/MAPK and PI3K/AKT/mTOR pathways. The ERK/MAPK pathway
is involved in cell proliferation and differentiation. The PI3K/AKT/mTOR pathway is
crucial for cell survival and growth and is involved in the regulation of cell motility and
metastasis [22]. EGFR is overexpressed in a variety of malignant tumors, including HCC.
Its inhibitors have been successfully used to treat breast, lung, colorectal and pancreatic
cancers. However, for patients with advanced HCC, EGFR inhibitors show only modest
clinical activity [20]. This raises the issue of HCC tumor heterogeneity likely to be due to
CSCs; thus, the need to elucidate the regulatory mechanisms responsible for modulating
the function of the EGFR signaling cascade should be considered.

Ephrin type A receptor 2 (EphA2) is a receptor tyrosine kinase that has been found
to be overexpressed in a variety of cancers, including HCC [23]. Increased expression of
EphA2 is associated with poor patient prognosis in HCC [24,25]. Intriguingly, EphA2 can
cross-talk with EGFR and its downstream signaling pathways [26]. Furthermore, EphA2
signaling can be either anti- or pro-oncogenic, depending on ligand binding [27–29]. Bind-
ing of ephrin-A to EphA2 induces autophosphorylation of tyrosine residues and recruits
p120-GTPase activating protein (Ras-GAP) to the plasma membrane, thereby suppress-
ing the activation of the ERK/MAPK and PI3K/AKT/mTOR signaling pathways. Thus,
ligand-dependent EphA2 signaling is anti-oncogenic. In contrast, when unliganded, EphA2
activation stimulates the ERK/MAPK and PI3K/AKT/mTOR signaling pathways. Acti-
vated AKT or RSK, a downstream kinase of the ERK/MAPK cascade, can phosphorylate
EphA2 on the serine residue at 897 (Ser897). This, in turn, activates Rho GTPase signaling,
resulting in cell migration and metastasis. Thus, ligand-independent activation of EphA2
has pro-oncogenic functions. The relative balance between these two types of EphA2
activation may be a key determinant of tumor heterogeneity. However, the mechanisms
underlying ligand-dependent and ligand-independent EphA2 signaling have not been
fully explored in HCC; hence, their connections to liver CSCs are largely unknown.

In this study, we classified 17 liver cancer cell lines based on the expression of EpCAM
and CD90 CSC markers. Additionally, we compared the patterns of protein expression and
phosphorylation of the EGFR and EphA2 signaling pathways between EpCAM-positive
and CD90-positive cells. We found that pro-oncogenic EphA2 signaling was more pro-
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nounced in CD90-positive cells, in that they exhibited higher levels of EphA2, pEphA2-
Ser897 and AKT. We further demonstrated that an AKT inhibitor selectively affected CD90-
positive cell proliferation and survival.

2. Results
2.1. EpCAM and CD90 Expression Classify Hcc Cells into Functionally Distinct Clusters

To address the heterogeneity of HCC cells in terms of CSCs, we first applied Gaussian
mixture model (GMM) clustering to examine the potential clusters in 17 liver cancer cell
lines based on EpCAM and CD90 expression, as detected on the RPPA analysis (Figure S1).
The clustering revealed three dominant HCC cell clusters (Figure 1A): EpCAM-negative
and CD90-positive HCC cells (hereinafter ‘CD90+ cell cluster’), EpCAM-positive and CD90-
negative HCC cells (‘EpCAM+ cell cluster’) and EpCAM-negative and CD90-negative HCC
cells (‘Neutral cell cluster’). We did not find HCC cells with high expression of both EpCAM
and CD90. The results confirmed the previously described pattern of mutually exclusive
expression of EpCAM and CD90 in HCC cell lines [14]. Additionally, they are almost
consistent with the following cell classifications [14]: HuH-1, HuH-7 and Hep 3 B were
EpCAM+ cell lines; HLE, HLF and SK-Hep-1 were CD90+ cell lines; PLC/PRL/5 was a
CD90+ cell line, but contained only a small population of CD90+ cells.
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Figure 1. Clustering of 17 HCC cell lines with protein expression and phosphorylation. (A) GMM clustering of the cell lines
based on the RPPA analysis of EpCAM and CD90. A VEV model (ellipsoidal, equal shape) with three components (clusters)
was selected using BIC. The clusters are colored by red (CD90+), blue (EpCAM+) and grey (Neutral). Each point is the
mean of six replicates. Error bars represent the SDs. Error ellipses denote the 1 σ regions of mixture Gaussian components.
(B) Heat map and hierarchical clustering of the cell lines and all the RPPA analysis. Average linkage and Euclidean distance
were used to create the dendrograms. The clustering result is depicted by colored bars (dark blue, Cluster 1; magenta,
Cluster 2). The GMM clusters are also depicted by bars with the same color as (A).

Next, we conducted RPPA analysis of protein expression and phosphorylation in
the EGFR and EphA2 signaling pathways (EGFR, pEGFR, MEK, pMEK, ERK, pERK,
RSK, pRSK, AKT, pAKT, EphA2, pEphA2-Tyr588 and pEphA2-Ser897. Here, ‘p’ denotes
phosphorylated proteins) for 17 liver cancer cell lines. Then, using this data and RPPA data
for EpCAM and CD90, we performed hierarchical clustering of those cell lines (Figure 1B,
column-wise). In this clustering, the cell lines were classified into Clusters 1 and 2, with
the exception of Kami41. Cluster 1 corresponded to the EpCAM+ and neutral cell clusters,
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whereas Cluster 2 coincided with the CD90+ cell cluster. The consistent clustering result
proved the validity of the GMM clustering with EpCAM and CD90; therefore, it was used
in the analysis below.

2.2. Protein Expression and Phosphorylation Specific to Cd90+ and Epcam Cell Clusters

Results of the hierarchical clustering of protein expression and phosphorylation
(Figure 1B, row-wise) reveal that EpCAM is in the same cluster as ERK, RSK and CD90,
as AKT. In fact, ERK and RSK seem to be overexpressed in the EpCAM+ cell cluster and
AKT in the CD90+ cell cluster. To statistically show this, we used one-way analysis of
variance (ANOVA) followed by multiple comparisons to analyze protein expression and
phosphorylation specific to each cell cluster (Figure 2). We found that EGFR, AKT and
EphA2 were significantly overexpressed in the CD90+ cell cluster; pEphA2-Ser897 was
significantly overexpressed in both the CD90+ and Neutral cell clusters. High expression
of these proteins leads to malignancy via ligand-independent, oncogenic EphA2 signaling
and is consistent with known phenotypes of the CD90+ cell cluster [14]. In contrast, pMEK,
ERK, RSK and pRSK in the EGFR signaling pathway were significantly overexpressed in
the EpCAM+ cell cluster. ERK is known to indirectly inactivate GSK-3β [30] and enhance
sorafenib sensitivity in HCC [31]. Thus, the result is in agreement with the high sorafenib
sensitivity of the EpCAM+ cell cluster [32].
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Figure 2. Comparison of protein expression and phosphorylation among the different GMM clusters.
Bars represent the means ± SD of the GMM cluster cells. For all the proteins and phosphoproteins except
for pAKT, pEGFR and pEphA2-Tyr588, the GMM cluster had a significant effect on the RPPA analysis
(p < 0.05, Welch’s ANOVA with multiple correction). For the significant proteins and phosphoproteins, a
Games-Howell post-hoc test was used for pairwise comparisons. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.3. Partial Least Squares Analysis Reveals Anti- and Pro-Oncogenic Activity of Epcam+ and
Cd90+ Cells

We further examined the differential expression of proteins and phosphoproteins
among the GMM clusters using partial least squares (PLS) analysis [33–35]. PLS is a
multivariate technique similar to principal component analysis (PCA), with the exception
that PLS extracts latent variables (LVs) that maximize the covariance between independent
and dependent datasets using singular value decomposition. Thus, when applied to the
current data, it seeks to find LVs that maximize the covariance between the RPPA data and
the GMM clusters. These LVs are likened to the factor scores in the PCA. The LVs also have
a counterpart of factor loadings in PCA, a pair of singular vectors, or saliences. The relative
contribution of each LV to the covariance is assessed through a singular value, which is the
square root of an eigenvalue in the PCA. As there are three GMM clusters, the number of
LVs to be obtained is at most two (equivalent to the number of independent orthogonal
contrasts for the three groups).

Using a mean-centered PLS [33], we found only one significant latent variable (LV1)
that accounted for 84% of the covariance (1000-fold permutation tests, p < 0.0001). Figure 3A
shows the cluster salience, which corresponds to the optimal contrast between GMM
clusters that accounts for variation in the RPPA data. This indicates that the current data
are best characterized by contrasting activation between CD90+ and EpCAM+ cells. In
addition, the fact that the salience of the Neutral cell cluster is almost zero indicates that
Neutral cells do not have a common pattern of protein expression and phosphorylation
into which they are clustered. This means that they are heterogeneous in their protein
expression and phosphorylation, which explains why hierarchical clustering did not reveal
a distinct cluster for Neutral cells (Figure 1B).

Figure 3B depicts the protein salience, which illustrates the pattern of protein expres-
sion and phosphorylation that optimally differentiates the GMM clusters as identified in
the cluster salience (i.e., between the CD90+ and EpCAM+ clusters). Negative salience
indicates the proteins and phosphoproteins that are more abundant in CD90+ cells than
in EpCAM+ cells; positive protein salience indicates those that are more abundant in
EpCAM+ cells than in CD90+ cells. The results are in agreement with those obtained from
the univariate analysis (Figure 2), excepting that pERK level was not statistically significant.
This indicates that when adjusted by multivariate analysis, the contribution of pERK was
not large enough to distinguish between the CD90+ and EpCAM+ clusters. Thus, we found
that CD90+ cells exhibited significantly higher levels of AKT, EphA2 and pEphA2-Ser897,
which is consistent with the upregulation of pro-oncogenic, ligand-independent EphA2
signaling. In contrast, EpCAM+ cells exhibited significantly higher levels of ERK, RSK and
pRSK, which are involved in MAPK signaling. They also exhibit modest, but not significant,
activation of pEphA2-Tyr588, which is reminiscent of anti-oncogenic, ligand-dependent
EphA2 signaling. These results suggest that anti-oncogenic EphA2 signaling may occur in
EpCAM+ cells, but appears too weak to suppress pro-oncogenic MAPK signaling.

Figure 3C shows the PCA style score plot of LVs for the RPPA data. In fact, LV1
is a vector representing how strongly each cell exhibits a pattern of protein expression
and phosphorylation, as indicated by the protein salience depicted in Figure 3B. LV2 was
similarly derived from the other protein salience (not shown). The figure shows that
LV1 separates CD90+, EpCAM+ and Neutral cells from each other. However, they were
less clustered and more broadly distributed than those plotted by EpCAM and CD90
expression (Figure 1A). This implies that the heterogeneity of HCC is likely to be described
as a spectrum in which the relative balance between anti- and pro-oncogenic EphA2
signaling can vary.
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Figure 3. Mean-centered PLS analysis of the RPPA data. (A) Bar graph of cluster salience for the significant latent variable
(LV1). The significance was assessed using 1000-fold permutation tests. (B) Bootstrap ratio (BSR) of the protein salience
for LV1. The BSR is the ratio of salience to its bootstrap estimated SE, which approximates a z-score. The depicted BSRs
are based on 1000 bootstrap resampling. * |BSR| > 1.96 (p < 0.05), ** |BSR| > 2.58 (p < 0.01), *** |BSR| > 3.03 (p < 0.001).
(C) Score plot of LVs for the RPPA data.

2.4. AKT Inhibitor Suppressed Cd90+ Cell Proliferation

Having identified AKT as a potential molecular target specific to the CD90+ cell cluster,
we evaluated the effect of the AKT inhibitor, MK2206, on cancer cell proliferation. Using
two cell lines from each cell cluster (JHH-4 and JHH-6 from the CD90+ cell cluster; Kami41
and PLC/PRF/5 from the Neutral cell cluster; JHH-7 and HuH-7 from the EpCAM+ cell
cluster), we first compared cell proliferation among these clusters under low-serum culture
conditions (Figure 4A). When we started culturing at 5,000 cells/well on day 0, all cell
lines significantly proliferated until day 3. In particular, the Neutral and EpCAM+ cell
clusters showed higher cell proliferation up to day 3, as compared with the CD90+ cell
cluster. However, the former clusters could not survive until day 7, whereas the latter
cluster continued proliferating from day 3 to day 7. This indicates the capacity of the
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CD90+ cell cluster to proliferate in an anchorage-independent manner under high cell
density conditions.
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Figure 4. Cell proliferation and migration assays. (A) Proliferation of six representative HCC cell lines. For each cell line,
absorbance data were normalized with respect to the mean of Day 0 (n = 3). The significant effect of Day was confirmed for
all the cell lines (p < 0.0001, Welch’s ANOVA) and every pairwise comparison between Days was significant in each cell line
(p < 0.05, Games-Howell post-hoc test). (B) The effect of the AKT inhibitor MK2206 on the proliferation of JHH-6 and JHH-7.
For each cell line, absorbance data were normalized with respect to the mean of Day 0 (n = 3). Significant effects of Day,
AKT inhibitor and their interaction (p < 0.0001, two-way ANOVA) were confirmed in JHH-6; only a significant effect of
Day (p < 0.0001, two-way ANOVA) was confirmed in JHH-7. (C) JHH-6 cells were seeded in a migration chamber with the
medium containing 0.5% FBS and indicated concentrations of MK2206. After 4 h of incubation, the migrated cells were
stained with either 0.25% crystal violet/20% methanol and counted on microscopy (10× magnification). Scale bar: 100 µm.
(D) Transwell migration of JHH-6 cells was suppressed by MK2206 in a dose-dependent manner. The data were normalized for
each experiment with respect to that of control cells (0 µM). The plot shows the mean + SD of three independent experiments.
The significance was assessed using one-sample t-test with Bonferroni correction. * p < 0.05, ** p < 0.001.

Noting this marked difference in cell proliferation between the CD90+ and EpCAM+
cell clusters, we next examined the effect of AKT inhibition on cell proliferation in the
CD90+ cell cluster by comparing it with that in the EpCAM+ cell cluster. Both JHH-6
(CD90+ cell cluster) and JHH-7 (EpCAM+ cell cluster) were treated with MK2206 under
the same culture conditions (Figure 4B). For JHH-6, two-way ANOVA revealed significant
main effects of day, AKT inhibitor and their interaction (p < 0.0001). This indicates that
the inhibitor changed the pattern of proliferation time course from a monotonic increase
to an inverted V-shape, making it similar to that of EpCAM+ cells without the inhibitor.
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Thus, MK2206 suppressed the growth of JHH-6 from day 3 to day 7. In contrast, for JHH-7,
two-way ANOVA revealed only a significant main effect of day (p < 0.0001). This suggests
that the inhibitor did not affect the proliferative ability of JHH-7 cells. Overall, these results
suggest that the effect of AKT inhibition on proliferation is specific to the CD90+ cell cluster.

2.5. AKT Inhibitors Suppress Cd90+ Cell Migration

We also examined the effect of AKT inhibitor on cell motility using a transmigration
chamber (Figure 4C,D). JHH-6 cells seeded at 20,000 cells/well in the upper chamber mi-
grated to the lower chamber in growth medium containing 0.5% and 10% FBS, respectively.
The number of migrating cells significantly decreased with the addition of MK2206 in a
dose-dependent manner, demonstrating that AKT inhibition suppressed cell motility in
the CD90+ cell cluster.

3. Discussion

The prognosis of HCC remains poor because of its high recurrence rate and drug
resistance. Despite recent progress in targeted molecular therapies for advanced HCC,
their clinical benefits are still limited. This probably stems from the tumor heterogeneity of
HCC, which is linked to liver CSCs. In our study, 17 liver cancer cell lines were classified
into clusters (EpCAM+, CD90+ and Neutral) according to their expression of CSC markers,
EpCAM and CD90. This classification was congruent with their known phenotypes:
EpCAM+ cells show typical epithelial morphology and high tumorigenicity, whereas
CD90+ cells show mesenchymal cell morphology and high metastatic activity to distant
organs in vivo [14].

Furthermore, we found that these CSC-positive cell clusters showed differential
protein expression and phosphorylation in the EGFR and EphA2 signaling pathways.
In particular, CD90+ cells exhibited higher levels of AKT, EphA2 and pEphA2-Ser897.
High levels of AKT expression and pEphA2-Ser897 were consistent with our observation
that these cells were able to survive under high cell density conditions. Additionally,
pEphA2-Ser897 activates the small GTPase RhoG and enhances cell motility, invasion and
metastasis [28] and is also involved in mediating anchorage-independent cell survival
and resistance to anoikis [36]. Thus, CD90+ cells show enhanced pro-oncogenic, ligand-
independent EphA2 signaling. In contrast, EpCAM+ cells exhibited higher levels of ERK,
RSK and pRSK. Consistent with the activation of the ERK/MAPK pathway, these cells
showed higher growth activity than CD90+ cells. In addition, the absence of activation of
the PI3K/AKT/mTOR pathway explains the observation that they did not survive under
high cell density conditions.

Finally, we demonstrated that the AKT inhibitor, MK2206, blocks the prolonged
survival of CD90+ cells and reduces their motility. Previous reports have suggested that
the drug inhibits the proliferation of some HCC cell lines [37–40]. Our results confirmed
this theory and further established that inhibition works particularly on CD90+ cells.
Importantly, CD90+ cells do not express conventional tumor markers for HCC, such as
PIVKA-II or AFP. Recently, we reported that CD90+ HCC cells express monomeric laminin-
γ2 (LG2m) as a tumor marker. Serum LG2m enables the detection of HCC, including CD90+
HCCs [41]. The development of targeted molecular therapies against CD90+ cells is an
urgent task for the complete cure of HCC. When combined with existing TKIs, we speculate
that AKT inhibitors are therapeutic agents that may potentially target HCC heterogeneity.

4. Materials and Methods
4.1. Antibodies

Monoclonal antibodies against EGFR (D38B1), phospho-EGFR (Tyr1068) (D7A5), phosp
ho-MEK1/2-Ser217/221 (41G9), ERK1/2 (4696), phospho-ERK1/2-Thr202/Tyr204 (13.14.4E),
RSK1/2/3 (32D), phospho-RSK1/2/3-Ser380 (D3H11), AKT (40D4), phospho-AKT-Ser437

(D9E), phospho-EphA2 -Tyr588 (D7 × 2L) and phospho-EphA2 -Ser897 (D9A1) were pur-
chased from Cell Signaling Technology (Danvers, MA, USA). A monoclonal antibody
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against EphA2 (C-3) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA).
A polyclonal antibody against EpCAM (21050-1-AP) and a monoclonal antibody against
CD90 (66766-1-Ig) were purchased from Proteintech (Rosemont, IL, USA). All antibodies
were validated for RPPA analysis by western blot analysis (Figure S2).

4.2. Cell Lines and Culture Conditions

Nine human hepatocellular carcinoma (HCC) cell lines (JHH-4, JHH-5, JHH-6, JHH-7,
HuH-1, HuH-7, PLC/PRF/5, HLE and HLF) and two hepatoblastoma cell lines (HuH-
6 clone5 and Hep G2) were obtained from the JCRB Cell Bank (National Institute of
Biomedical Innovation Health and Nutrition, Osaka, Japan). Additionally, KH, Km, Kami41
and MT cell lines were established at Kanazawa University [42–44]. Hep 3B and SK-Hep-1
cell lines were purchased from the American Type Culture Collection (ATCC, Manassas, VA,
USA). JHH-4, JHH-7, HuH-1, HuH-7, PLC/PRF/5, HLE, HLF, SK-Hep-1, HuH-6 clone5,
Hep G2 and Hep 3B cells were cultured in DMEM (Thermo Fisher Scientific, Waltham,
MA, USA). JHH-5 and JHH-6 cells were cultured in William’s E medium (Thermo Fisher
Scientific, Waltham, MA, USA). KH, Km, Kami41 and MT were cultured in collagen-coated
plates in DMEM medium. All cells were cultured in a medium supplemented with 10%
FBS at 37 ◦C with 5% CO2.

4.3. Reverse Phase Protein Array (RPPA)

Confluent liver cancer cells were cultured under serum-starved conditions for 24 h and
were lysed using T-PER protein extraction reagent (Thermo Fisher Scientific), supplemented
with inhibitors (100 mM NaF, 1mM Na3VO4, 10 mM NaPi-IIb, 1 mM EDTA, PhosSTOP
(Sigma-Aldrich, Missouri, MO, USA) and protease inhibitor cocktails (1.04 mM AEBSF,
800 nM aprotinin, 40 µM bestatin, 14 µM E-64, 20 µM leupeptin, 15 µM pepstatin A, Sigma-
Aldrich). The lysates were scraped from the culture dish, collected and centrifuged at
15,000× g at 4 ◦C for 20 min; the supernatant was subjected to the following analyses. After
adjusting the protein concentration to approximately 1.0 mg/mL according to Bradford
protein assay (Bio-Rad), the lysates were manually diluted in two-fold serial dilutions
with an extraction buffer. The diluted lysates were boiled with 2% SDS and 2.5% β-
mercaptoethanol and printed onto nitrocellulose-coated slides in four replicates (Grace
Bio-Labs, Bend, OR, USA) using an Aushon Biosystems 2470 arrayer (Burlington, MA,
USA). After blocking with an ODYSSEY blocking buffer (LI-COR Biosciences, Lincoln, NE,
USA) supplemented with 0.1% Tween-20, the blotted slides were probed with validated
primary antibodies, followed by secondary antibodies conjugated to infrared dyes, IRDye
680RD and 800CW (LI-COR Biosciences) (Figure S3). A total of six replicate slides were
scanned using an ODYSSEY scanner (LI-COR Biosciences). The signal intensity of each spot
was quantified using Image Studio (LI-COR Biosciences) according to the manufacturer’s
instructions. For each slide, the RPPA data of protein expression and phosphorylation for
each cell line were normalized by the RPPA intensity of house-keeping protein γ-tubulin,
log2-transformed and z-score standardized across all cell lines.

4.4. Cell Growth and Migration Assays

JHH-6, JHH-7, Kami41, PLC/PRF/5, JHH-7 and HuH-7 cell lines were suspended
in serum-free medium containing 0.5% fetal bovine serum, seeded into a 24-well culture
plate (5 × 103 cells/well; TPP Techno Plastic Products AG, Trasadingen, Switzerland) and
incubated for 7 days at 37 ◦C in 5% CO2. Additionally, the JHH6 and JHH7 cell lines
were further treated with either DMSO or MK2206 (Sigma) at the indicated concentrations
and incubated for 7 days at 37 ◦C in 5% CO2. The number of living cells was counted
using either a hemocytometer or Coulter Counter (Beckman Coulter, Inc., Pasadena, CA,
USA). Transwell migration assays were performed as described previously [45]. Briefly,
transwell inserts with 8 µm-sized filters (Falcon) were inserted into 24-well plates. Growth
medium containing 10% FBS were added to the lower chamber, while a cell suspension
(2 × 104 cells) in growth medium containing 0.5% FBS was introduced into the upper
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chamber. The plates were incubated at 37 ◦C in 5% CO2 for 4 h. After incubation, the cells
that had migrated to the lower side were stained with 0.25% crystal violet/20% methanol
solution and counted using a light microscope at ×10 magnification. The values obtained
represent the averages of the five fields.

4.5. Clustering Analysis

We performed Gaussian mixture model (GMM) clustering of 17 liver cancer cell
lines based on the RPPA intensities for EpCAM and CD90. We used the R (version 4.0.3)
package mclust [46] to fit the GMMs. The optimal number and shape (covariance matrix) of
mixture Gaussian components (i.e., clusters) were selected using the Bayesian information
criterion (BIC). We also performed hierarchical agglomerative clustering (average linkage,
Euclidean distance metric) of the cell lines using all the measured protein expression and
phosphorylation values.

4.6. Partial Least Squares Analysis

Partial least squares (PLS) analysis [33–35] is a multivariate statistical technique for
extracting latent variables (LVs) that maximize the covariance between two datasets using
singular value decomposition (SVD). We conducted a mean-centered PLS [33] to find LVs
that optimally account for the covariance between the RPPA data and GMM clusters. The
RPPA data were transformed into a 17 × 14 data matrix, in which the rows represent each
of the GMM clusters for each cell line, while the columns represent the RPPA intensities
for all the measured protein expression and phosphorylation. The data matrix was then
within-cluster-averaged and column-wise mean-centered. The transformed Matrix M was
then subjected to SVD: M = U∑V’. The columns of U and V (left and right singular vectors)
are referred to as saliences in the PLS literature. The left singular vectors are basis vectors
for the row space of M, representing independent, orthonormal contrasts among the GMM
clusters (cluster saliences). The right singular vectors are basis vectors for the column
space of M, representing independent, orthonormal patterns of protein expression and
phosphorylation (protein salience). LVs are computed by projecting the original data matrix
onto these saliences. The diagonal matrix ∑ provides the singular values, each representing
the covariance between a pair of cluster and protein saliences.

The statistical significance of the LVs was assessed using permutation tests. Each
permutation involves random reassignment of the order of the GMM clusters to each cell
line by sampling without replacement. Each LV was considered significant when the actual
singular value was larger than the permutated singular value in more than 95% of all
permutations (corresponding to a threshold p < 0.05). In addition, the reliability of protein
salience was assessed using the bootstrap estimation of standard errors (SEs). This entails
random sampling with replacement of each cell line data, keeping the cluster membership
fixed for each cell line. Bootstrapped SEs were used to calculate bootstrap ratios (BSRs;
original saliences divided by bootstrapped SEs). The BSR is approximately equivalent to
a z-score and can be used to define a threshold to assess significance (e.g., |BSR| > 1.96
corresponds to p < 0.05). We computed 1000 permutation tests and 1000 bootstrap es-
timations. We note that no corrections for multiple comparisons are necessary, as PLS
analyses are conducted in a single mathematical step on the whole set of protein expression
and phosphorylation.

4.7. Statistical Analysis

The differences in protein expression and phosphorylation among the GMM clusters
were evaluated by Welch’s analysis of variance (ANOVA) with Benjamini–Hochberg mul-
tiple testing correction, followed by a post-hoc Games–Howell test. Moreover, the effect
of incubation day on cell growth was evaluated for each cell line using Welch’s ANOVA
with Games–Howell post-hoc test. The effects of incubation day and AKT inhibitor on cell
growth were evaluated for each cell line by two-way ANOVA using a heteroscedasticity-
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corrected coefficient covariance matrix. The effect of the AKT inhibitor on cell migration
was evaluated by a one-sample t-test (two-tailed) with Bonferroni correction.

5. Conclusions

In summary, liver cancer cell lines were distinctively clustered according to their
expression of CSC markers, EpCAM and CD90. While EpCAM+ cells exhibited higher
levels of ERK, RSK and pRSK, CD90+ cells exhibited higher levels of AKT, EphA2 and
pEphA2-Ser897. This indicates that CD90+ cells show enhanced pro-oncogenic, ligand-
independent EphA2 signaling. We further demonstrated that the AKT inhibitor MK2206
reduced the proliferation and survival of CD90+ cells. Our findings suggest that AKT
activation may be a key pro-oncogenic regulator in HCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijms22168652/s1, Figure S1: RPPA analysis of protein expression and phosphorylation across
17 HCC cell lines, Figure S2: Antibodies used for RPPA were validated by Western blots, Figure S3:
Captured images of RPPA analysis. Primary antibodies probed to target proteins in samples were
detected using secondary antibodies conjugated to infrared dyes against rabbit (red) or mouse (green).

Author Contributions: Conceptualization, N.A., N.N., A.M., Y.N., N.K. and T.S.; formal analysis,
N.A. and A.M.; investigation, A.M., K.I. and N.K.; resources, T.Y., S.K. and N.K.; visualization, N.A.;
project administration, N.K. and T.S.; funding acquisition, N.A., N.N., A.M. and N.K.: writing—
original draft preparation, N.A., N.N., A.M. and N.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI 17H06329 (N.A., N.N., A.M. and N.K.) and
by AMED 20ae0101075h and 20fk0210049h (N.K.).

Data Availability Statement: Data is contained within the article or supplementary material.

Acknowledgments: We thank Vito Quaranta (Vanderbilt University, Nashville, TN, USA) for helpful
discussion. We also thank Masashi Enomoto (Osaka University, Osaka, Japan) for technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
2. Bahardoust, M.; Sarveazad, A.; Agah, S.; Babahajian, A.; Amini, N. Predictors of 5 year survival rate in hepatocellular carcinoma

patients. J. Res. Med. Sci. 2019, 24, 86. [CrossRef]
3. Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [CrossRef]
4. Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY

43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Ty-rosine
Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [CrossRef]

5. Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al.
Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [CrossRef] [PubMed]

6. Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S.; et al. Efficacy and safety of
sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind,
placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [CrossRef]

7. Zhu, Y.-J.; Zheng, B.; Wang, H.-Y.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta
Pharmacol. Sin. 2017, 38, 614–622. [CrossRef] [PubMed]

8. Padda, I.S.; Parmar, M. Lenvatinib; StatPearls Publishing: Bethesda, MD, USA, 2021. Available online: https://pubmed.ncbi.nlm.
nih.gov/33620845/ (accessed on 9 August 2021).

9. Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus
sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority
trial. Lancet 2018, 391, 1163–1173. [CrossRef]

10. Suyama, K.; Iwase, H. Lenvatinib. Cancer Control 2018, 25, 1073274818789361. [CrossRef] [PubMed]
11. Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.-H.; Zopf, D. Regorafenib (BAY 73-4506):

A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor
activity. Int. J. Cancer 2011, 129, 245–255. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ijms22168652/s1
https://www.mdpi.com/article/10.3390/ijms22168652/s1
http://doi.org/10.3322/caac.21660
http://doi.org/10.4103/jrms.JRMS_1017_18
http://doi.org/10.1056/NEJMra1713263
http://doi.org/10.1158/0008-5472.CAN-04-1443
http://doi.org/10.1056/NEJMoa0708857
http://www.ncbi.nlm.nih.gov/pubmed/18650514
http://doi.org/10.1016/S1470-2045(08)70285-7
http://doi.org/10.1038/aps.2017.5
http://www.ncbi.nlm.nih.gov/pubmed/28344323
https://pubmed.ncbi.nlm.nih.gov/33620845/
https://pubmed.ncbi.nlm.nih.gov/33620845/
http://doi.org/10.1016/S0140-6736(18)30207-1
http://doi.org/10.1177/1073274818789361
http://www.ncbi.nlm.nih.gov/pubmed/30032643
http://doi.org/10.1002/ijc.25864
http://www.ncbi.nlm.nih.gov/pubmed/21170960


Int. J. Mol. Sci. 2021, 22, 8652 12 of 13

12. Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al.
Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised,
double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [CrossRef]

13. Yamashita, T.; Wang, X.W. Cancer stem cells in the development of liver cancer. J. Clin. Investig. 2013, 123, 1911–1918. [CrossRef]
14. Yamashita, T.; Honda, M.; Nakamoto, Y.; Baba, M.; Nio, K.; Hara, Y.; Zeng, S.S.; Hayashi, T.; Kondo, M.; Takatori, H.; et al. Discrete

nature of EpCAM+and CD90+cancer stem cells in human hepatocellular carcinoma. Hepatology 2013, 57, 1484–1497. [CrossRef]
15. Gao, Q.; Zhu, H.; Dong, L.; Shi, W.; Chen, R.; Song, Z.; Huang, C.; Li, J.; Dong, X.; Zhou, Y.; et al. Integrated Proteogenomic

Characterization of HBV-Related Hepatocellular Carcinoma. Cell 2019, 179, 561–577.e22. [CrossRef] [PubMed]
16. Li, L.; Zhao, G.-D.; Shi, Z.; Qi, L.-L.; Zhou, L.-Y.; Fu, Z.-X. The Ras/Raf/MEK/ERK signaling pathway and its role in the

occurrence and development of HCC. Oncol. Lett. 2016, 12, 3045–3050. [CrossRef] [PubMed]
17. Liu, Y.-C.; Yeh, C.-T.; Lin, K.-H. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic

Strategies. Cells 2020, 9, 1331. [CrossRef]
18. Yoshida, M.; Yamashita, T.; Okada, H.; Oishi, N.; Nio, K.; Hayashi, T.; Nomura, Y.; Hayashi, T.; Asahina, Y.; Ohwada, M.; et al.

Sorafenib suppresses extrahepatic metastasis de novo in hepatocellular carcinoma through inhibition of mesenchymal cancer
stem cells characterized by the expression of CD90. Sci. Rep. 2017, 7, 1–10. [CrossRef] [PubMed]

19. Dimri, M.; Satyanarayana, A. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers 2020,
12, 491. [CrossRef] [PubMed]

20. Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma.
Oncogene 2010, 29, 4989–5005. [CrossRef]

21. Komposch, K.; Sibilia, M. EGFR Signaling in Liver Diseases. Int. J. Mol. Sci. 2015, 17, 30. [CrossRef]
22. Zhou, Q.; Huang, T.; Wang, Y.-F.; Zhou, X.-B.; Liang, L.-J.; Peng, B.-G. Role of tissue factor in hepatocellular carcinoma genesis,

invasion and metastasis. Chin. Med. J. 2011, 124, 3746–3751.
23. Fan, M.; Liu, Y.; Xia, F.; Wang, Z.; Huang, Y.; Li, J.; Wang, Z.; Li, X. Increased expression of EphA2 and E-N cadherin switch in

primary hepatocellular carcinoma. Tumori J. 2014, 99, 689–696. [CrossRef]
24. Cui, X.-D.; Lee, M.-J.; Yu, G.-R.; Kim, I.-H.; Yu, H.-C.; Song, E.-Y.; Kim, D.-G. EFNA1 ligand and its receptor EphA2: Potential

biomarkers for hepatocellular carcinoma. Int. J. Cancer 2009, 126, 940–949. [CrossRef] [PubMed]
25. Iida, H.; Honda, M.; Kawai, H.F.; Yamashita, T.; Shirota, Y.; Wang, B.-C.; Miao, H.; Kaneko, S. Ephrin-A1 expression contributes to

the malignant characteristics of -fetoprotein producing hepatocellular carcinoma. Gut 2005, 54, 843–851. [CrossRef] [PubMed]
26. Cioce, M.; Fazio, V. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to

Anti-EGFR Agents? Cancers 2021, 13, 700. [CrossRef]
27. Koshikawa, N.; Hoshino, D.; Taniguchi, H.; Minegishi, T.; Tomari, T.; Nam, S.-O.; Aoki, M.; Sueta, T.; Nakagawa, T.; Miyamoto, S.; et al.

Proteolysis of EphA2 Converts It from a Tumor Suppressor to an Oncoprotein. Cancer Res. 2015, 75, 3327–3339. [CrossRef] [PubMed]
28. Miao, H.; Li, D.-Q.; Mukherjee, A.; Guo, H.; Petty, A.; Cutter, J.; Basilion, J.P.; Sedor, J.; Wu, J.; Danielpour, D.; et al. EphA2

Mediates Ligand-Dependent Inhibition and Ligand-Independent Promotion of Cell Migration and Invasion via a Reciprocal
Regulatory Loop with Akt. Cancer Cell 2009, 16, 9–20. [CrossRef]

29. Zhou, Y.; Sakurai, H. Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol. Pharm.
Bull. 2017, 40, 1616–1624. [CrossRef]

30. Ding, Q.; Xia, W.; Liu, J.-C.; Yang, J.-Y.; Lee, D.-F.; Xia, J.; Bartholomeusz, G.; Li, Y.; Pan, Y.; Li, Z.; et al. Erk Associates with and
Primes GSK-3β for Its Inactivation Resulting in Upregulation of β-Catenin. Mol. Cell 2005, 19, 159–170. [CrossRef]

31. Zhang, S.; Gao, W.; Tang, J.; Zhang, H.; Zhou, Y.; Liu, J.; Chen, K.; Liu, F.; Li, W.; To, S.K.Y.; et al. The Roles of GSK-3β
in Regulation of Retinoid Signaling and Sorafenib Treatment Response in Hepatocellular Carcinoma. Theranostics 2020, 10,
1230–1244. [CrossRef]

32. Garten, A.; Grohmann, T.; Kluckova, K.; Lavery, G.; Kiess, W.; Penke, M. Sorafenib-Induced Apoptosis in Hepatocellular
Carcinoma Is Reversed by SIRT1. Int. J. Mol. Sci. 2019, 20, 4048. [CrossRef] [PubMed]

33. Krishnan, A.; Williams, L.; McIntosh, A.R.; Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review.
NeuroImage 2011, 56, 455–475. [CrossRef] [PubMed]

34. McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 2004,
23, S250–S263. [CrossRef] [PubMed]

35. McIntosh, A.R.; Bookstein, F.L.; Haxby, J.V.; Grady, C.L. Spatial Pattern Analysis of Functional Brain Images Using Partial Least
Squares. NeuroImage 1996, 3, 143–157. [CrossRef] [PubMed]

36. Harada, K.; Hiramoto-Yamaki, N.; Negishi, M.; Katoh, H. Ephexin4 and EphA2 mediate resistance to anoikis through RhoG and
phosphatidylinositol 3-kinase. Exp. Cell Res. 2011, 317, 1701–1713. [CrossRef]

37. Simioni, C.; Martelli, A.M.; Cani, A.; Cetin-Atalay, R.; McCubrey, J.; Capitani, S.; Neri, L.M. The AKT Inhibitor MK-2206 is
Cytotoxic in Hepatocarcinoma Cells Displaying Hyperphosphorylated AKT-1 and Synergizes with Conventional Chemotherapy.
Oncotarget 2013, 4, 1496–1506. [CrossRef]

38. Wilson, J.; Kunnimalaiyaan, S.; Gamblin, T. MK2206 inhibits hepatocellular carcinoma cellular proliferation via induction of
apoptosis and cell cycle arrest. J. Surg. Res. 2014, 191, 280–285. [CrossRef]

39. Grabinski, N.; Ewald, F.; Hofmann, B.T.; Staufer, K.; Schumacher, U.; Nashan, B.; Jücker, M. Combined targeting of AKT and
mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Mol. Cancer 2012, 11, 85. [CrossRef]

http://doi.org/10.1016/S0140-6736(16)32453-9
http://doi.org/10.1172/JCI66024
http://doi.org/10.1002/hep.26168
http://doi.org/10.1016/j.cell.2019.08.052
http://www.ncbi.nlm.nih.gov/pubmed/31585088
http://doi.org/10.3892/ol.2016.5110
http://www.ncbi.nlm.nih.gov/pubmed/27899961
http://doi.org/10.3390/cells9061331
http://doi.org/10.1038/s41598-017-11848-z
http://www.ncbi.nlm.nih.gov/pubmed/28900199
http://doi.org/10.3390/cancers12020491
http://www.ncbi.nlm.nih.gov/pubmed/32093152
http://doi.org/10.1038/onc.2010.236
http://doi.org/10.3390/ijms17010030
http://doi.org/10.1177/030089161309900608
http://doi.org/10.1002/ijc.24798
http://www.ncbi.nlm.nih.gov/pubmed/19642143
http://doi.org/10.1136/gut.2004.049486
http://www.ncbi.nlm.nih.gov/pubmed/15888795
http://doi.org/10.3390/cancers13040700
http://doi.org/10.1158/0008-5472.CAN-14-2798
http://www.ncbi.nlm.nih.gov/pubmed/26130649
http://doi.org/10.1016/j.ccr.2009.04.009
http://doi.org/10.1248/bpb.b17-00446
http://doi.org/10.1016/j.molcel.2005.06.009
http://doi.org/10.7150/thno.38711
http://doi.org/10.3390/ijms20164048
http://www.ncbi.nlm.nih.gov/pubmed/31430957
http://doi.org/10.1016/j.neuroimage.2010.07.034
http://www.ncbi.nlm.nih.gov/pubmed/20656037
http://doi.org/10.1016/j.neuroimage.2004.07.020
http://www.ncbi.nlm.nih.gov/pubmed/15501095
http://doi.org/10.1006/nimg.1996.0016
http://www.ncbi.nlm.nih.gov/pubmed/9345485
http://doi.org/10.1016/j.yexcr.2011.05.014
http://doi.org/10.18632/oncotarget.1236
http://doi.org/10.1016/j.jss.2014.05.083
http://doi.org/10.1186/1476-4598-11-85


Int. J. Mol. Sci. 2021, 22, 8652 13 of 13

40. Ewald, F.; Nörz, D.; Grottke, A.; Bach, J.; Herzberger, C.; Hofmann, B.T.; Nashan, B.; Jücker, M. Vertical Targeting of AKT and
mTOR as Well as Dual Targeting of AKT and MEK Signaling Is Synergistic in Hepatocellular Carcinoma. J. Cancer 2015, 6,
1195–1205. [CrossRef]

41. Yamashita, T.; Koshikawa, N.; Shimakami, T.; Terashima, T.; Nakagawa, M.; Nio, K.; Horii, R.; Iida, N.; Kawaguchi, K.; Arai, K.; et al.
Serum Laminin γ2 Monomer as a Diagnostic and Predictive Biomarker for Hepatocellular Carcinoma. Hepatology 2021. [CrossRef]

42. Hashiba, T.; Yamashita, T.; Okada, H.; Nio, K.; Hayashi, T.; Asahina, Y.; Hayashi, T.; Terashima, T.; Iida, N.; Takatori, H.; et al.
Inactivation of Transcriptional Repressor Capicua Confers Sorafenib Resistance in Human Hepatocellular Carcinoma. Cell. Mol.
Gastroenterol. Hepatol. 2020, 10, 269–285. [CrossRef] [PubMed]

43. Hayashi, T.; Yamashita, T.; Okada, H.; Nio, K.; Hara, Y.; Nomura, Y.; Hayashi, T.; Asahina, Y.; Yoshida, M.; Oishi, N.; et al. Sporadic
PCDH18 somatic mutations in EpCAM-positive hepatocellular carcinoma. Cancer Cell Int. 2017, 17, 94. [CrossRef] [PubMed]

44. Yamashita, T.; Kaneko, S. Liver cancer stem cells: Recent progress in basic and clinical research. Regen. Ther. 2021, 17, 34–37.
[CrossRef]

45. Nagano, M.; Hoshino, D.; Toshima, J.; Seiki, M.; Koshikawa, N. NH 2 -terminal fragment of ZF21 protein suppresses tumor
invasion via inhibiting the interaction of ZF21 with FAK. Cancer Sci. 2020, 111, 4393–4404. [CrossRef]

46. Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite
Mixture Models. R J. 2016, 8, 289–317. [CrossRef] [PubMed]

http://doi.org/10.7150/jca.12452
http://doi.org/10.1002/hep.31758
http://doi.org/10.1016/j.jcmgh.2020.02.009
http://www.ncbi.nlm.nih.gov/pubmed/32169577
http://doi.org/10.1186/s12935-017-0467-x
http://www.ncbi.nlm.nih.gov/pubmed/29075151
http://doi.org/10.1016/j.reth.2021.03.002
http://doi.org/10.1111/cas.14665
http://doi.org/10.32614/RJ-2016-021
http://www.ncbi.nlm.nih.gov/pubmed/27818791

	Introduction 
	Results 
	EpCAM and CD90 Expression Classify Hcc Cells into Functionally Distinct Clusters 
	Protein Expression and Phosphorylation Specific to Cd90+ and Epcam Cell Clusters 
	Partial Least Squares Analysis Reveals Anti- and Pro-Oncogenic Activity of Epcam+ and Cd90+ Cells 
	AKT Inhibitor Suppressed Cd90+ Cell Proliferation 
	AKT Inhibitors Suppress Cd90+ Cell Migration 

	Discussion 
	Materials and Methods 
	Antibodies 
	Cell Lines and Culture Conditions 
	Reverse Phase Protein Array (RPPA) 
	Cell Growth and Migration Assays 
	Clustering Analysis 
	Partial Least Squares Analysis 
	Statistical Analysis 

	Conclusions 
	References

