Skip to main content
. 2021 Apr 19;1(5):623–645. doi: 10.1021/jacsau.1c00106

Table 4. Numerical EDA-NOCV Results of the Charged Carbonyl Complexes [M(CO)n]q at the M06/TZ2P//M06-D3/def2-TZVPP Level Using the Charged Metals Mq and Neutral (CO)n in Their Electronic Singlet (S) State as Interacting Moietiesa.

  orbital interactionb interacting fragments
    [Ir(CO)6]3+
        Ir3+ (S) + (CO)6 (S)
ΔEint       –718.0
ΔEmetahybrid       105.8
ΔEPauli       405.4
ΔEelstatd       –334.2 (27.2%)
ΔEorbd       –894.9 (72.8%)
ΔEorb(1) (t2g)e [M(d)] → (CO)6 π-backdonation     –70.4 (7.9%)
ΔEorb(2) (eg)e [M(d)] ← (CO)6 σ-donation     –500.4 (55.9%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)6 σ-donation     –73.8 (8.2%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)6 σ-donation     –105.2 (11.8%)
ΔEorb(rest)e       –145.1 (16.2%)
    [M(CO)6]2+
    Fe2+ (S) + (CO)6 (S) Ru2+ (S) + (CO)6 (S) Os2+ (S) + (CO)6 (S)
ΔEint   –398.1 –415.2 –469.3
ΔEmetahybrid   84.5 78.2 89.1
ΔEPauli   286.5 384.7 428.4
ΔEelstatd   –202.5 (26.3%) –283.5 (32.3%) –341.0 (34.6%)
ΔEorbd   –566.6 (73.7%) –594.6 (67.7%) –645.8 (65.4%)
ΔEorb(1) (t2g)e [M(d)] → (CO)6 π-backdonation –92.4 (16.3%) –92.5 (15.6%) –111.1 (17.2%)
ΔEorb(2) (eg)e [M(d)] ← (CO)6 σ-donation –302.0 (53.3%) –340.3 (57.2%) –339.3 (52.5%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)6 σ-donation –30.9 (5.5%) –29.2 (4.9%) –46.2 (7.2%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)6 σ-donation –68.7 (12.1%) –56.3 (9.5%) –63.4 (9.8%)
ΔEorb(rest)e   –72.6 (12.8%) –76.3 (12.8%) –85.8 (13.3%)
    [M(CO)6]+
    Mn+ (S) + (CO)6 (S) Tc+ (S) + (CO)6 (S) Re+ (S) + (CO)6 (S)
ΔEint   –303.2 –317.1 –391.4
ΔEmetahybrid   73.8 67.7 69.2
ΔEPauli   316.0 398.2 434.9
ΔEelstatd   –235.2 (33.9%) –301.5 (38.5%) –359.6 (40.2%)
ΔEorbd   –457.7 (66.1%) –481.5 (61.5%) –535.9 (59.8%)
ΔEorb(1) (t2g)e [M(d)] → (CO)6 π-backdonation –180.0 (39.3%) –174.1 (36.2%) –191.4 (35.7%)
ΔEorb(2) (eg)e [M(d)] ← (CO)6 σ-donation –196.1 (42.8%) –225.6 (46.9%) –235.1 (43.9%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)6 σ-donation –14.3 (3.1%) –15.4 (3.2%) –28.0 (5.2%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)6 σ-donation –32.7 (7.1%) –29.0 (6.0%) –34.7 (6.5%)
ΔEorb(rest)e   –34.6 (7.6%) –37.4 (7.8%) –46.7 (8.7%)
    [M(CO)6]
    V (S) + (CO)6 (S) Nb (S) + (CO)6 (S) Ta (S) + (CO)6 (S)
ΔEint   –523.4 –402.9 –473.7
ΔEmetahybrid   30.2 42.8 32.7
ΔEPauli   318.6 373.6 390.6
ΔEelstatd   –328.4 (37.7%) –333.8 (40.7%) –384.7 (42.9%)
ΔEorbd   –543.8 (62.3%) –485.5 (59.3%) –512.3 (57.1%)
ΔEorb(1) (t2g)e [M(d)] → (CO)6 π-backdonation –448.7 (82.5%) –346.6 (71.4%) –349.5 (68.2%)
ΔEorb(2) (eg)e [M(d)] ← (CO)6 σ-donation –82.8 (15.2%) –109.1 (22.5%) –118.3 (23.1%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)6 σ-donation –0.5 (0.1%) –5.4 (1.1%) –12.3 (2.4%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)6 σ-donation 1.4c (−0.3%) –8.2 (1.7%) –11.3 (2.2%)
ΔEorb(rest)e   –13.2 (2.4%) –16.2 (3.3%) –20.9 (4.1%)
    [Hf(CO)6]2–
        Hf2– (S) + (CO)6 (S)
ΔEint       –490.4
ΔEmetahybrid       39.3
ΔEPauli       317.2
ΔEelstatd       –343.0 (40.5%)
ΔEorbd       –503.9 (59.5%)
ΔEorb(1)(t2g)e [M(d)] → (CO)6 π-backdonation     –373.9 (74.2%)
ΔEorb(2) (eg)e [M(d)] ← (CO)6 σ-donation     –82.8 (16.4%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)6 σ-donation     –11.0 (2.2%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)6 σ-donation     –9.9 (2.0%)
ΔEorb(rest)e       –26.3 (5.2%)
    [M(CO)8]
    Sc (S) + (CO)8 (S) Y (S) + (CO)8 (S) La (S) + (CO)8 (S)
ΔEint   –438.3 –346.4 –279.9
ΔEmetahybrid   21.2 38.9 43.5
ΔEPauli   140.0 169.8 154.6
ΔEelstatd   –200.0 (33.3%) –199.1 (35.9%) –175.0 (36.6%)
ΔEorbd   –399.8 (66.7%) –356.0 (64.1%) –303.0 (63.4%)
ΔEorb(1) (eg)e [M(d)] → (CO)8 π-backdonation –332.1 (83.1%) –267.5 (75.1%) –224.2 (74.0%)
ΔEorb(2) (t2g)e [M(d)] ← (CO)8 σ-donation –48.9 (12.2%) –59.3 (16.7%) –48.3 (15.9%)
ΔEorb(3) (a1g)e [M(s)] ← (CO)8 σ-donation –2.0 (0.5%) –4.7 (1.3%) –3.5 (1.2%)
ΔEorb(4) (t1u)e [M(p)] ← (CO)8 σ-donation –2.4 (0.6%) –6.1 (1.7%) –5.2 (1.7%)
ΔEorb(rest)e   –14.4 (3.6%) –18.4 (5.2%) –21.8 (7.2%)
    M(CO)2
    Ca (S) + (CO)2 (S) Sr (S) + (CO)2 (S) Ba (S) + (CO)2 (S)
ΔEint   –151.3 –147.6 –67.0
ΔEmetahybrid   12.3 10.7 17.1
ΔEPauli   50.1 46.2 44.0
ΔEelstatd   –44.9 (21.0%) –38.4 (18.8%) –40.2 (31.4%)
ΔEorbd   –168.8 (79.0%) –166.0 (81.2%) –87.9 (68.6%)
ΔEorb(1)e [M(d)] → (CO)2 π-backdonation –150.6 (89.2%) –150.5 (90.7%) –66.0 (75.1%)
ΔEorb(2)e [M(d)] ← (CO)2 σ-donation –11.4 (6.8%) –10.0 (6.0%) –12.5 (14.2%)
ΔEorb(3)e [M(p)] ← (CO)2 σ-donation –1.6 (0.9%) –0.8 (0.5%) –2.9 (3.3%)
ΔEorb(rest)e   –5.2 (3.1%) –4.7 (2.8%) –6.5 (7.4%)
         
    Ca+ (D) + (CO)2 (D) Sr+ (D) + (CO)2(D) Ba+ (D) + (CO)2 (D)
ΔEint   –188.2 –185.0 –161.2
ΔEmetahybrid   0.8 1.7 5.8
ΔEPauli   62.9 56.8 50.6
ΔEelstatd   –169.7 (67.4%) –159.1 (65.3%) –149.9 (68.9%)
ΔEorbd   –82.1 (32.6%) –84.4 (34.7%) –67.6 (31.1%)
ΔEorb(1)e [M(d)] → (CO)2 π-backdonation –55.3 (67.4%) –60.7 (71.9%) –43.7 (64.6%)
ΔEorb(2)e [M(d)] ← (CO)2 σ-donation –15.5 (18.9%) –13.9 16.5%) –14.1 (20.9%)
ΔEorb(3)e [M(p)] ← (CO)2 σ-donation –3.5 (4.3%) –2.7 (3.2%) –3.2 (4.7%)
ΔEorb(rest)e   –7.8 (9.5%) –7.1 (8.4%) –6.6 (9.8%)
    [Ba(CO)]•+
        Ba+ (D) + (CO) (S)
ΔEint       –21.2
ΔEmetahybrid       7.4
ΔEPauli       32.0
ΔEelstatd       –22.2 (36.6%)
ΔEorbd       –38.4 (63.4%)
ΔEorb(1)e [M(d)] → (CO) π-backdonation     –20.3 (52.9%)
ΔEorb(2)e [M(d)] ← (CO) σ-donation     –13.2 (34.4%)
ΔEorb(rest)e       –4.9 (12.8%)
a

Results of the neutral alkaline earth dicarbonyls M(CO)2 using neutral and charged fragments in their singlet (S) or doublet (D) states. All energy values are given in kcal/mol.

b

The symmetry notations σ and π refer to the orbitals of the CO ligand and not to the symmetry of the complex.

c

The small positive value is due to a polarization of the orbital charge.

d

The values in parentheses give the percentage contribution to the total attractive interactions ΔEelstat + ΔEorb.

e

The values in parentheses give the percentage contribution to the total orbital interactions ΔEorb.