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Abstract: In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3
(NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the
maturation and release of some inflammatory cytokines in the state of an inflammatory response.
After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase
1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic
cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of
many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide
range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3
inflammasome. During the activation process, various post-translational modifications (PTM) of the
NLRP3 protein are required to form a complex with other components. The regulation of ubiqui-
tination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3
inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and
deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as
potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.

Keywords: inflammasome; NLRP3; ubiquitination; therapeutic target; inhibitors; post-translational
modification

1. Introduction

Innate immune signaling plays a protective role against pathogens and mediates an
inflammatory state that has been linked with many inflammatory diseases [1]. The effector
responses caused by the innate immune system are induced by various pattern recognition
receptors (PRRs), which can detect endogenous danger signals (danger-associated molec-
ular patterns—DAMPs) or exogenous signals (pathogen-associated molecular patterns—
PAMPs) [1]. In 2002, a novel PRR called inflammasome was identified by Martinon and
shown to take part in the effector response against PAMPs or DAMPs [2]. Inflammasomes
are multimeric protein complexes that regulate the activation and cleavage of caspase-1,
and the processing of pro-IL-1β and pro-IL-18 into their mature forms [2]. Among in-
flammasomes, nucleotide-binding domain (NLR) and pyrin domain-containing receptor 3
(NLRP3) has been linked with many inflammatory and autoimmune diseases [3,4]. NLRP3
regulates the immune response against a wide range of stimuli that can be found endoge-
nously due to aging [5]. The NLRP3 inflammasome contributes to the pathogenesis of
age-associated diseases such as atherosclerosis, type 2 diabetes, and gouty arthritis [6].
Many studies suggest that neuroinflammatory and neurodegenerative diseases such as
Alzheimer’s disease [7] and Parkinson’s disease [8] are linked with the NLRP3 inflamma-
some. The dysregulation of NLRP3 inflammasome activation leads to several autoimmune
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diseases such as multiple sclerosis (MS) [9] and experimental autoimmune encephalomyeli-
tis (EAE) [10]. The NLRP3 inflammasome is also linked with various cancers such as
breast cancer, colon cancer, gastrointestinal cancer, and melanoma [11,12]. The molecular
mechanisms of NLRP3 inflammasome activation and how they are linked with disease
pathogenesis are emerging topics of research interest. The post-translational modifications
(PTMs) of the NLRP3 inflammasome, such as ubiquitination and phosphorylation, are
critical for NLRP3 inflammasome activation [13–16].

A plethora of studies has established that ubiquitination is indispensable for control-
ling inflammasome activation [13,17,18]. The ubiquitin system fundamentally controls
cellular protein homeostasis by lysosomal or proteasomal degradation [19,20]. However,
the ubiquitin system also maintains other cellular outcomes such as signal transduction,
protein–protein interaction, and alteration of subcellular localization [21,22]. Additionally,
components of ubiquitination such as E3 ligases and deubiquitinases (DUBs) are successful
therapeutic targets in cancer [23].

A comprehensive understanding of the ubiquitin system’s regulation of the NLRP3
inflammasome cascade may contribute to targeted therapeutic interventions for NLRP3
inflammasome-mediated diseases. In this review, we focus on NLRP3 inflammasome
activation regulation by the ubiquitination system and the potential pharmacological
inhibitor of NLRP3 regulation through the ubiquitin system, which could have therapeutic
implications for NLRP3 inflammasome-associated diseases.

2. NLRP3 Inflammasome Activation

Inflammasomes are multiprotein signaling complexes composed of sensor proteins,
adaptor proteins, and caspases [2,24–26]. Inflammasomes control the inflammatory re-
sponse and coordinate host defenses against infection. In response to pathogenic mi-
croorganisms and danger signals, inflammasome complexes are assembled by pattern-
recognition receptors (PRRs) followed by an adaptor molecule, ASC, and an inflamma-
tory caspase, caspase-1 [27]. The activation of caspase-1 produces mature forms of pro-
inflammatory cytokines, such as IL-1β and IL-18, and cleaves gasdermin D (GSDMD),
which leads to pyroptotic cell death [26]. Inflammasome formation requires PRRs to sense
the pathogenic or danger signals. To date, five PRRs have been reported to form inflam-
masome complexes: three from the NOD-like receptor (NLR) family (NLRP1, NLRP3,
and NLRC4), Pyrin, and AIM2. In addition, it has been reported that other inflamma-
somes of the NLR family (NLRP6, NLRP7, NLRP12) and the PYHIN (IFI16) family form
inflammasome complexes without any defined components [28,29].

The NLRP3 receptor, a member of the NLR family, is a tripartite protein that contains
three domains: an amino-terminal pyrin (PYD) domain; a NACHT domain, which is
vital for NLRP3 self-association and function due to its ATPase activity; and a carboxy-
terminal leucine-rich repeat (LRR) domain, which is capable of auto-inhibition by folding
back onto the NACHT domain [30–32]. To form an inflammasome complex, the NLRP3
inflammasome needs a sensor NLRP3, an adaptor apoptosis-associated speck-like protein
containing a CARD (ASC or also known as PYCARD), and an effector caspase-1 [33]. ASC
consists of two domains: an amino terminal PYD domain and a carboxy-terminal caspase
recruitment domain (CARD) [34]. A full-length caspase-1 is composed of one amino-
terminal CARD domain and two catalytic domains, the latter composed of a central large
catalytic (p20) domain and a carboxy-terminal catalytic small subunit (p10) domain [31].
There are two proposed signals for the activation of the NLRP3 inflammasome—the
priming or first signal, and the activation or second signal [31,35].

2.1. Priming Signal (Signal 1) of NLRP3

Diverse exogenous and endogenous signals, such as damaged-associated molecular
patterns (DAMPs) released from damaged or dying cells; pathogen-associated molecular
patterns (PAMPs) released from microbial infections; PRRs, such as Toll-like receptors (TLR)
and NOD-like receptor (NLR) ligands [36]; TNF-α [35]; IL-1 [37]; and toxins (MPTP) [38] all
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act as priming or first signals [39]. The basal level of NLRP3 in macrophages is not enough
in quantity for NLRP3 inflammasome activation. Therefore, priming signals are essential
for the increase in NLRP3 transcription, which licenses NLRP3 for the activation step [35].
Pro ILIβ also does not express steadily in resting macrophages that are rather inducible by
PAMPs [35,40]. After sensing a priming signal, a sequence of events is induced, including
translocation of transcription factor NF-κB to the nucleus and its activation, which results
in transcription of NLRP3 and pro-IL-1β [35].

2.2. Activation Signal (Signal 2) of NLRP3

Mitochondrial reactive oxygen species (mtROS), K+ efflux, Ca+ flux, different mis-
folded proteins, lysosomal disruption, adenine triphosphate (ATP), pore-forming toxins,
crystalline substances, particulate matter, and viral RNA [41] are the most common activa-
tors or second signals of NLRP3 inflammasome activation [6,42,43]. These signals initiate
the activation, assembly, and inflammasome complex formation [44,45].

Following an activation signal, NLRP3 molecules are oligomerized through the
NACHT domain homotypic interactions [39]. The NLRP3 oligomer recruits ASC through a
PYD–PYD interaction and promotes ASC speck formation through the assembly of mul-
tiple ASC filaments. ASC then recruits caspase-1 through a CARD–CARD interaction
and activates caspase-1 through proximity-induced self-cleavage between p20 and p10
of caspase-1 [46]. Studies suggest that a serine-threonine kinase, NIMA-related kinase
7 (NEK7), interacts with NLRP3 and form oligomers that are essential for ASC speck
formation and caspase-1 activation [47,48]. A recent study showed that this NEK7−NLRP3
interaction can be regulated by the phosphorylation of NEK7. The phosphorylation of
NEK7 occurs at Ser204 by polo-like kinase 4 (PLK4) upon LPS stimulation [49]. Since
the phosphorylation attenuates the association of NEK7 with NLRP3, it might serve to
restrain inflammasome activation [49]. Following cleaved mediated activation of caspase-1,
heterotetrameric caspase-1 proteolytically cleaves the pro-form of IL-1β and IL-18 to yield
mature IL-1β and IL-18. Mature IL-1β and IL-18 are then released through the non-classical
secretion pathway [50,51]. In addition, activated caspase-1 cleaves and activates another
protein—gasdermin D (GSDMD). After activation, GSDMD translocates to the plasma
membrane and forms pores that contribute to the release of IL-1β and IL-18 into the extra-
cellular space. Subsequently, pore formation of GSDMD induces a pro-inflammatory form
of cell death known as pyroptosis [52].

3. Post-Translational Modification (PTM) of NLRP3

Post-translational modification (PTM) plays a crucial role in the activation of the
NLRP3 inflammasome upon priming stimuli. Before priming, NLRP3 remains in an
inactive conformation [31]. NLRP3 activation may be controlled through combinations of
different post-translational modifications. The phosphorylation of NLRP3 has been found
to both induce and inhibit NLRP3 activation depending on the site of phosphorylation
and stage of NLRP3 activation [15,53–55]. TLR-dependent phosphorylation of NLRP3
prepares it for the following stimulation [54]. Ubiquitination and deubiquitination also
play crucial roles in the degradation or activation of the NLRP3 inflammasome [17,56].
TLR or IL-1R triggers TRIM31 and MARCH 7 ubiquitinase, which targets the degradation
of NLRP3 through ubiquitination [57], whereas priming activates BRCC3 deubiquitylates
NLRP3, which promotes its homo-oligomerization [17]. Phosphorylation can alter the
ubiquitination of NLRP3; for example, the phosphorylation of NLRP3 at S194 is critical
for NLRP3 deubiquitination and self-association [54], and the phosphorylation of NLRP3
at S291 facilitates K48- and K63-linked polyubiquitination and inhibits NLRP3 activation
by promoting its degradation [54]. Notably, PTM plays an important role in NLRP3
inflammasome activation; thus, targeting post-translational modifications of the NLRP3
inflammasome is a potential therapeutic avenue by which to treat NLRP3-associated
inflammatory disorders.
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4. Mechanism of Ubiquitination

Ubiquitination is a form of post-translational modification of proteins by the con-
jugation of a ubiquitin protein to the substrate proteins. Ubiquitin (Ub) is a 76 amino
acid protein and is usually conjugated to the lysine residue of substrate proteins through
an isopeptide bond [58]. Ubiquitination occurs through a sequential activity of three en-
zymes, namely, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2),
and ubiquitin-ligating (E3) enzymes [59]. The cascade of reaction starts with the activation
of the C-terminus of Ub by the E1 enzyme to form a thioester bond. The Ub is then trans-
ferred to the active cysteine site of the E2 enzyme by trans-thioesterification. Finally, Ub is
transferred to the substrate protein by E3 ligase and facilitates isopeptide bond formation
among the C-terminal glycine of the Ub and the lysine residue of the substrate protein [58].
E3 ligases can be classified into three major categories: really interesting new gene (RING),
homology to E6AP C terminus (HECT), and RING between RING (RBR). Among them,
the RING family can bind to both E2~Ub thioester and the substrate concurrently and can
directly transfer Ub to the substrate. HECT and RBR functions through a two-step reaction:
Ub is first transferred from E2 to an active-site cysteine site in the E3, and from there is
transferred to the substrate [60].

Only two families of E1 have been discovered, whereas there are around 40 and 600
known families for E2 and E3 enzymes, respectively [61–63]. Both E2 and E3 enzymes are
responsible for the specificity of the ubiquitination to its substrate [64]. Deubiquitinating
enzymes (DUB) are responsible for the removal of ubiquitin chains from proteins by the
cleavage of isopeptide bonds among lysine residue on the protein and the Ub C-terminus
glycine [65]. Around 100 deubiquitinating enzymes (DUB) have been discovered that
can potentially remove Ub from substrate proteins [66]. Broadly, these DUBs have been
classified into seven major classes: (1) ubiquitin-specific proteases (USPs), (2) ubiquitin
C-terminal hydrolases (UCHs), (3) ovarian-tumor proteases (OTUs), (4) Machado–Joseph
disease protein domain proteases (MJD), (5) monocyte chemotactic protein-induced pro-
tein (MCPIP), (6) MIU-containing novel DUB family (MINDY), and (7) JAMM/MPN
domain-associated metallopeptidases (JAMMS). Among them, JAMMS is the only zinc
metalloprotease group and the others are in the thiol protease group [67,68].

During ubiquitination, the C-terminus of ubiquitin is conjugated to the lysine (K)
residue of its substrate. Based on the number of ubiquitins and the attachment type, dif-
ferent types of ubiquitination can occur. If ubiquitination occurs in a single residue, it
is called monoubiquitination; if multiple ubiquitination occurs in the same protein but
at different sites, it is known as multimonomeric ubiquitination [58]; and when multiple
ubiquitination occurs at a single site, it is referred to as poliubiquitination. Ubiquitin
itself contains seven lysine residues (K6, K11, K27, K29, K33, K48, K63) and one methion-
ine [58]. During the formation of a polymeric chain, the ubiquitin lysine residue attached
to the substrate serves as a platform to conjugate additional ubiquitin residues. If the
same residue is modified, it causes homogenous polymeric chain formation. However,
additional ubiquitins can conjugate to any of these eight ubiquitin residues to form mixed
polyubiquitin chains [58,69].

5. Regulation of NLRP3 Inflammasome Activation by Ubiquitination

Ubiquitination is crucial to control NLRP3 inflammasome activation [17,56]. Since the
discovery of the potential role of ubiquitination in NLRP3 activation, NLRP3 ubiquitination
has been studied widely and the involvement of several E3 ligases and DUBs has been
confirmed.

5.1. Molecules Involved in the Ubiquitination of NLRP3
5.1.1. E3 Ligases Regulating NLRP3

Ubiquitination of a protein requires E1, E2, and E3 ligases, and so far, E3 ligases
have mainly been reported to be linked with NLRP3 inflammasome activation [70]. How-
ever, some E3 ligases prevent NLRP3 inflammasome activation and work as a negative
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regulator of NLRP3 inflammasome activation [71,72]. NLRP3 is maintained at low lev-
els within inactivated cells, which may be a result of its degradation by K48-linked Ub
chain-dependent proteasomal degradation and K63-linked Ub chain-dependent autophagic
degradation [56,73]. This is thought to be the case because in inactivated cells, NLRP3 is
highly ubiquitinated by both K63- and K48-linked polyubiquitin chains [56]. To date, sev-
eral E3 ligases have been identified to regulate NLRP3 inflammasome activation (Table 1,
Figure 1).

Table 1. Regulation of NLRP3 by E3 ligases.

Name

Regulation
of NLRP3
Inflamma-

some

Impact on
NLRP3

Type of
UB

Linkage

Ubiquitination
Site Interaction

Stage of
NLRP3

Activation
Reference

MARCH7 Negative
Autophagy

mediated NLRP3
degradation

K48 LRR domain NACHT,
LRR Active state [55]

SCF-
FBXL2 Negative NLRP3

degradation
Not

identified K-689(human)

Trp-73 in
PYD,

Lys689 in
LRR

Priming [71]

TRIM31 Negative
Proteasomal

NLRP3
degradation

K48 Not identified PYD
domain Priming [68]

ARIH2
(Ariadne
homolog

2)

Negative
Suppress NLRP3
inflammasome

activation
K48/K63 Not identified NACHT

domain
Priming/

Activation [69]

Cullin 1 Negative

Suppresses
NLRP3

inflammasome
activation

K63 K-689
PYD,

NACHT, and
LRR domain

Priming [72]

Cbl-b Negative
Proteasomal

NLRP3
degradation

K48 K496 LRR
domain

Priming/
Activation [18]

RNF-125 Negative

Recruits Cbl-b
and promotes

NLRP3
degradation

K63 LRR domain
of NLRP3

LRR
domain Priming [18]

Pellino-2 Positive Ubiquitinates
NLRP3 K63 Not

identified
Not

identified Priming [73]

TRAF6 Positive

Oligomerization
of NLRP3 and

facilitates
NLRP3–ASC
interaction

Not
identified

Not
identified

No
interaction

with NLRP3

Nontranscriptional
priming [74]

HUWE1 Positive
Promotes

inflammasome
assembly

K27 K21, K22,
and K24

NACHT
domain Activation [75]

Parkin Negative

Induces A20,
which

suppresses
NF-κB activation
and subsequent

NLRP3
activation

Not
identified

Not
identified

Not
identified Priming [76]
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cAMP binds to NLRP3, leading to K48-linked ubiquitination of NLRP3 initiated by 
MARCH 7. The ubiquitinated NLRP3 becomes self-associated to form aggregates and is 
finally targeted for autophagy-mediated degradation. Therefore, the E3 ligase MACH7 
inhibits NLRP3 inflammasome activation through the induction of ubiquitination and 
degradation of NLRP3 [57]. 
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through NLRP3 inflammasome activation [70]. This demonstrates the inhibitory role of 
TRIM31 on the NLRP3 inflammasome activation in pathological conditions.  
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A previous study demonstrated that an E3 ligase, ARIH2, which is derived from the 
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NLRP3 inflammasome activation [77]. ARIH2 can interact with the NACHT domain 
(aa220-575) of NLRP3 through its RING 2 domain to induce K48- and K63-linked 
polyubiquitination. Although ARIH2-mediated K48-linked ubiquitination was not in-
volved with any proteasomal degradation of the NLRP3, the deletion of endogenous 
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the depletion of ARIH2 in cells completely halts NLRP3 ubiquitination, which suggests a 

Figure 1. E3 ligases and DUBs involved in ubiquitination and deubiquitination of NLRP3. E3 ligases and DUBs targets
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deubiquitinase (DUB).

MARCH7

A study showed the inhibiting effect of dopamine, a neurotransmitter, on NLRP3
inflammasome activation by NLRP3 protein degradation [57]. In the study, they identified
an E3 ligase—MARCH7—by mass spectrometry that ubiquitinates NLRP3 and promotes
its proteasomal degradation. Dopamine initiates dopamine D1 receptor (DRD1) signaling,
which in turn facilitates cyclic adenosine monophosphate (cAMP) production. Then, cAMP
binds to NLRP3, leading to K48-linked ubiquitination of NLRP3 initiated by MARCH
7. The ubiquitinated NLRP3 becomes self-associated to form aggregates and is finally
targeted for autophagy-mediated degradation. Therefore, the E3 ligase MACH7 inhibits
NLRP3 inflammasome activation through the induction of ubiquitination and degradation
of NLRP3 [57].

SCF-FBXL2

Another E3 ligase, SCF-FBXL2, has been reported to negatively regulate NLRP3
inflammasome activation [74]. It is well acknowledged that LPS priming induces an
increase in NLRP3 levels in cells [35]. A study showed that SCF-FBXL2 targets K689
and initiates NLRP3 protein degradation, which keeps the NLRP3 protein at low levels
in inactivated cells. However, LPS priming suppresses the ubiquitin-mediated NLRP3
degradation [74]. LPS priming induces FBXO3-mediated ubiquitination and degradation
of FBXL2, which increases the NLRP3 levels and enhances the NLRP3 inflammasome
activation [74].

TRIM31

TRIM31, an E3 ligase, has been demonstrated to regulate the NLRP3 inflammasome
activation as a feedback suppressor [71]. TRIM31 directly binds to the PYD domain of
NLRP3 via the N-terminal RING domain and induces K48-linked polyubiquitination. This
causes NLRP3 proteasomal degradation in both activated and inactivated cells. In addition,
a deficiency of TRIM31 attenuates dextran sodium sulfate (DSS)-induced colitis through
NLRP3 inflammasome activation [70]. This demonstrates the inhibitory role of TRIM31 on
the NLRP3 inflammasome activation in pathological conditions.

ARIH2 (Ariadne Homolog 2)

A previous study demonstrated that an E3 ligase, ARIH2, which is derived from the
really interesting new gene (RING) in between RING (RBR) E3 ligase family, suppresses
NLRP3 inflammasome activation [77]. ARIH2 can interact with the NACHT domain
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(aa220-575) of NLRP3 through its RING 2 domain to induce K48- and K63-linked polyubiq-
uitination. Although ARIH2-mediated K48-linked ubiquitination was not involved with
any proteasomal degradation of the NLRP3, the deletion of endogenous ARIH2 suppresses
NLRP3 ubiquitination and enhances NLRP3 activation [72]. Moreover, the depletion of
ARIH2 in cells completely halts NLRP3 ubiquitination, which suggests a predominant role
of ARIH2 in NLRP3 ubiquitination [72]. ARIH2 acts as a fine-tuning regulator of aggregate-
prone proteins [78]; therefore, it is possible that ARIH2 regulates NLRP3 inflammasome
aggregation and negatively regulates NLRP3 inflammasome assembly and activation [72].

Cullin 1

Cullin 1 is an E3 ubiquitin ligase and part of the Skp1-Cullin-1-F-boxE3 ligase com-
plex [79,80]. The C-terminal of Cullin 1 interacts directly with the PYD domain of NLRP3
and promotes its K63-linked ubiquitination [75]. The elevation of K63-linked ubiquitination
by Cullin 1 prevents the formation of NLRP3 inflammasome assembly. However, in the
presence of an NLRP3 inflammasome activator such as ATP, Cullin 1 dissociates from the
NLRP3, which promotes NLRP3 inflammasome activation [75].

Cbl-b and RNF-125

Casitas-B-lineage lymphoma protein-b (Cbl-b), a RING-finger E3 ubiquitin ligase,
negatively regulates NLRP3 inflammasome activation [81,82]. Upon NLRP3 inflammasome
stimulation, Cbl-b binds to the K63-linked ubiquitin chains in the LRR domain of NLRP3
by its ubiquitin-associated domains (UBA). This binding leads to K48-linked ubiquitination
at the K496 site in the NBD domain of NLRP3 and induces its proteasomal degradation [18].
K63-linked polyubiquitination in the LRR domain of NLRP3, which is indispensable for
Cbl-b recruitment, is initiated by RNF125, another RING-finger E3 ubiquitin ligase [18,83].
Thus, RNF125 and Cbl-b ubiquitinate NLRP3 for K63- and K48-linked polyubiquitination,
respectively, preventing NLRP3 inflammasome activation [18].

Pellino-2

Pellino-2, an E3 ubiquitin ligase [84], regulates NLRP3 inflammasome activation both
positively and negatively [84]. LPS priming leads to an association of pellino-2 with
NLRP3 and promotes K63-linked polyubiquitination of NLRP3. This ubiquitination may
facilitate NLRP3 inflammasome activation [76]. However, Pellino-2 can also inhibit NLRP3
inflammasome activation. In wild-type bone marrow-derived macrophages (BMDM),
Pellino-2 ubiquitinates IL-1R associated kinase 1 (IRAK1), which is required for rapid
activation of NLRP3 [85]. The ubiquitination of IRAK1 can inhibit NLRP3 inflammasome
activation. Since ubiquitinating IRAK1 limits its ability to associate with NLRP3, this
inhibits NLRP3 activation [76].

TRAF6

TRAF6 is associated with the non-transcriptional priming of the NLRP3 inflammasome
via its ubiquitin E3 ligase activity [86]. TRAF6 is known for its role in NF-kB-induced tran-
scription of NLRP3. However, it has been shown that TRAF6 facilitates NLRP3 oligomeriza-
tion and an ASC–NLRP3 interaction [86]. This indicates that TRAF6 is a positive regulator
for TLR-mediated NLRP3 inflammasome activation.

HUWE1

HUWE1 is an E3 ubiquitin ligase [87] that interacts with the NACHT domain of
NLRP3 via its BH3 domain [88]. The interaction of HUWE1 and NLRP3 causes K27-linked
polyubiquitination of NLRP3, which favors NLRP3 assembly, ASC speck formation, and
caspase-1 activation. Therefore, HUWE1 works as a positive regulator of the NLRP3
inflammasome. In addition, HUWE1 regulates AIM2 and NLRC4 inflammasome activation
by the same mechanism [88].
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TRIM33

Tripartite motif-containing 33 (TRIM33) is another positive regulator of NLRP3 inflam-
masome activation [89]. The interaction of the cytosolic dsRNA sensor DHX33 with NLRP3
induces inflammasome activation by the help of an E3 ligase, TRIM33. TRIM33 can initiate
the K63-linked ubiquitination of DHX33 at K218, which results in a DHX33–NLRP3 inflam-
masome complex and activation of the NLRP3 inflammasome [90]. Additionally, NLRP3
inflammasome activation was prevented by the depletion of TRIM 33 in macrophage cells,
which highlights the essential role of TRIM33 in the initiation of NLRP3 inflammasome
activation in response to cytosolic RNA stimulation [89].

β-TrCP1

β–transducin repeat-containing E3 ubiquitin protein ligase 1 (β-TrCP1) is an E3 ligase
from the F-box protein family and has two paralogs, β-TRCP1 and β-TRCP2 [91], whose
role in ubiquitination has long been established [92]. A recent study revealed that β-
TRCP1 increases K27-linked ubiquitination and the overall polyubiquitination of NLRP3
by directly binding to NLRP3 [93]. The study also found that β-TRCP1 promotes K27-
linked ubiquitination in K380 of the NACHT domain of NLRP3, which in turn promotes
its proteasomal degradation to act as a negative regulator for NLRP3 inflammasome
activation [93].

TRIM24

Tripartite motif-containing 24 (TRIM24) belongs to the tripartite motif (TRIM) family
of proteins, which contains RING-finger domain-contributing E3 ligases [71]. TRIM24 is a
transcriptional factor that negatively regulates inflammatory responses [94]. A recent study
showed that TRIM24 interacts with NLRP3 in such a way that it leads to an increase in
NLRP3 ubiquitination [95]. Moreover, TRIM24 deficiency promotes NLRP3 inflammasome
activation. Therefore, E3 ligase TRIM24 may negatively regulate NLRP3 inflammasome
activation via its ubiquitination [95].

Parkin

Parkin, an RBR E3 ligase, has been reported to regulate NLRP3 inflammasome activa-
tion [94]. A study found that Parkin regulates NLRP3 inflammasome activation negatively,
as Parkin-deficient cells have increased NLRP3 activation [96]. Mechanistically, Parkin
induces the ubiquitin-modifying enzyme anti-apoptotic signaling protein 20 (A20), which
attenuates the priming effect on the NLRP3 inflammasome by suppressing NF-κB activa-
tion [96,97].

Ubc13

Ubc13 is an E2 enzyme that regulates the assembly of K63-linked polyubiquitin chains
specifically [98]. Additionally, Ubc13 transduces the NF-κB signal by interacting with TNF
receptor-associated factor 6 (TRAF6) [99]. A recent study found that Ubc13 acts as a positive
regulator for NLRP3 inflammasome activation, as Ubc13 deficiency significantly reduced
NLRP3 inflammasome activation [100]. The study also revealed that Ubc13 interacts with
NLRP3 to induce K63-linked polyubiquitination at K565 and K687 sites. Therefore, Ubc13
works as a positive regulator of NLRP3 inflammasome activation by promoting K63-linked
polyubiquitination of NLRP3 [100].

5.1.2. Deubiquitinase Regulating NLRP3

Deubiquitinases (DUBs) play a crucial role in controlling the level of NLRP3 inflam-
masome activation along with E3 ubiquitin ligases. Several DUBs have been shown to
regulate NLRP3 inflammasome activation (Figure 1, Table 2) [17,101,102].
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BRCC3

BRCA1/BRCA2-containing complex subunit 3 (BRCC3) is a DUB in the JAMM
domain-containing Zn2+ metalloprotease that also takes part in the formation of the
BRCC36 isopeptidase complex (BRISC) [103,104]. BRCC3 was identified as a DUB through
screening the DUB library expression that can regulate NLRP3 inflammasome activa-
tion [105]. BRCC3 can directly bind to NLRP3 and favors NLRP3 inflammasome activation
through its deubiquitination. The G5 BRCC3 inhibitor blocks NLRP3 inflammasome acti-
vation, which verifies the role of BRRC3 as a positive regulator of NLRP3 inflammasome
activation [17]. A later study identified an upstream molecular mechanism for the regu-
lation of NLRP3 through BRCC3 [106]. The study identified another component of the
BRISC complex, Abraxas brother 1 (ABRO1), which also regulates NLRP3 inflammasome
activation [106]. The study revealed that upon LPS priming, ABRO1 binds to NLRP3 and
recruits BRISC to promote K63-dependent deubiquitination of NLRP3 [106] and that a
deficiency of BRCC3/ABRO1 attenuates NLRP3-associated inflammatory diseases such as
peritonitis or sepsis [107].

Table 2. Regulation of NLRP3 by DUB.

Name
Regulation of

Inflammasome
Activation

Type of
UB Linkage

Ubiquitination
Site Interaction Stage of NLRP3

Activation Reference

BRCC3 Positive Not identified LRR Not identified Priming [17]

USP7/USP47 Positive Not identified Not identified Not identified Priming [108]

UAF1 Positive K48 Not identified LRR, NACHT Priming [101]

STAMBP Negative K63 Not identified Not identified Upon endotoxin
stimulation [109]

USP7/USP47

USP7 and USP47 are members of the ubiquitin-specific protease DUB family [110,111].
USP7 cleaves several ubiquitin-linked chains such as K11, K63, and K48 [112], whereas
USP47 is known for its enzymatic activity as a deubiquitinase and DNA repair [113]. USP47
contains the adjacent structure of USP7 [111]. Both chemical inhibition and knockout of
USP7 and USP47 in macrophages demonstrated a blockage of transcription-independent
NLRP3 inflammasome activation through the prevention of ASC oligomerization and speck
formation [108]. Additionally, upon NLRP3 inflammasome stimulation, USP7/USP47 activ-
ity was increased, which suggests a concurrent post-translational modification. However,
it is not clear whether USP7 and USP47 directly contribute to NLRP3 deubiquitination or
regulate the process somewhere upstream of NLRP3 inflammasome action [108].

UAF1

Ubiquitin specific peptidase 1 (USP1)-associated Factor 1 (UAF1) [102] is a component
of three DUB enzyme complexes, namely, UAF1/USP1, UAF1/USP12, and USP1/USP46 [102].
The cellular NLRP3 level is kept in check by the K48 ubiquitination-dependent proteasomal
degradation [71,72]. A recent study identified the UAF1/USP1 deubiquitinase complex
that removes K48-linked ubiquitination of NLRP3 [101], which prevents the proteaso-
mal degradation of NLRP3 and increases NLRP3 mRNA and protein, which facilitates
NLRP3 inflammasome activation [101]. Additionally, the study also found out that the
UAF1/USP12 and UAF1/USP46 complexes increase p65 expression, which promotes
NF-κB activation and increases NLRP3 and IL-1β expression levels. Thus, UAF1 deubiq-
uitinase complexes work as a positive regulator for NLRP3 inflammasome activation. In
support of these results, the UAF1 deficiency both in vitro and in vivo further showed a
decrease in NLRP3 inflammasome activation and IL-1β secretion [101].



Int. J. Mol. Sci. 2021, 22, 8780 10 of 21

STAMBP

Signal transducing adaptor molecule-binding protein (STAMBP) is an endosome-
resident deubiquitinase in the Jab/MPN metalloenzyme (JAMM) family [114]. STAMBP
regulates the endolysosomal cellular trafficking of ubiquitinated proteins such as NALP7 [115].
A recent study found that STAMBP negatively regulates NLRP3 inflammasome activa-
tion [109]. Moreover, STAMBP deficiency increases the IL-1β gene expression and cytokine
level in response to LPS, and showed an increase in ASC speck and active caspase-1 levels.
In addition, STAMBP knockout cells showed an increase in K63-linked NLRP3 polyubiqui-
tination upon endotoxin exposure. Therefore, the deubiquitination of NLRP3 by STAMBP
acts as a negative regulator for NLRP3 inflammasome activation [109]

5.1.3. Ubiquitinase and DUB-Independent Regulation of the NLRP3 Ubiquitination
HDAC6

Histone deacetylase (HDAC6) exhibits ubiquitin-binding activity and can transport
ubiquitinated protein via microtubules [116]. A previous study revealed that HDAC6
can associate with ubiquitinated NLRP3 by its ubiquitin-binding domain and negatively
regulates NLRP3 inflammasome activation. Moreover, treatment of a deubiquitinase
inhibitor PR619 caused an increased association between HDAC6 and NLRP3 [117]. These
results indicate that HDAC6 may negatively regulate NLRP3 inflammasome activation
through a direct association with ubiquitinated NLRP3 [117].

5.2. Regulation of ASC by Ubiquitination
5.2.1. E3 Ligases That Regulate ASC
LUBAC

Linear ubiquitin assembly complex (LUBAC), which consists of HOIP, HOIL-1L,
and SHARPIN (SHANK-associated RH domain interactor), forms Methionine 1 (Met1)-
linked linear ubiquitin chains to the substrate proteins that regulate the classical activation
of NF-κB [118]. A previous study demonstrated that LUBAC is essential for the linear
ubiquitination of ASC in Met1 [119]. Moreover, this study showed that a deficiency
of HOIL-1, a component of LUBAC, results in the suppression of IL-1β secretion both
in vitro and in vivo, independent of transcriptional regulation [119]. Another study demon-
strated that a SHARPIN deficiency hinders NLRP3 inflammasome activation in mouse
macrophages [120]. A SHARPIN deficiency, unlike a HOIL deficiency, results in an im-
paired NF-κB pathway, which suggests that it has a role in the transcription of the NLRP3
inflammasome component [119,120]. These studies suggest that linear ubiquitination of
ASC by LUBAC plays an important role in the activation of the NLRP3 inflammasome.

TRAF3

Severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame
(ORF3) is known to activate the NLRP3 inflammasome by regulating ASC ubiquitination.
ORF3 has been found to interact with TRAF3 and ASC, which leads to K63-linked polyu-
biquitination of ASC [121]. It was also found that ubiquitination of ASC occurs in a TNF
receptor-associated factor (TRAF3)-dependent manner [121]. In another study, it was found
that upon vesicular stomatitis virus infection, ASC goes through K63-dependent polyu-
biquitination at K174 in a mitochondrial antiviral signaling protein (MAVS)-dependent
manner [122]. Moreover, TRAF3 acts as an E3 ligase for the K63 ubiquitination of ASC
(Table 3). Deficiencies of TRAF3 and MAVS showed an impairment of inflammasome
activation caused by ASC speck formation, which indicates that K63-linked ubiquitination
is crucial for inflammasome activation [122].
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Table 3. Regulation of ASC by E3 ligase and deubiquitinase.

Name
Regulation of

Inflammasome
Activation

Impact on
ASC

Type of
UB Linkage

Ubiquitination
Site

Stage of NLRP3
Activation Reference

LUBAC Positive Linear ubiquitination M1 PYD Priming [119]

TRAF3 Positive Ubiquitination at
K174 K63 K174 Priming [122]

TRAF6 Negative Ubiquitination K63 Not identified Not identified [123]

USP50 Positive Deubiquitination Not
identified Not identified Activation [124]

TRAF6

TNF receptor-associated factor 6 (TRAF6)-mediated ASC ubiquitination plays a role
in the suppression of inflammasome activation rather than induction. Upon stimulation
with far-infrared, macrophages undergo K63-linked polyubiquitination in ASC by TRAF6
(Table 3) [123,125]. The polyubiquitination of ASC suppresses NLRP3 inflammasome
activation due to the induction of the autophagic degradation of NLRP3 [123].

5.2.2. DUBs That Regulate ASC

Although the PTM of ASC has not yet been fully clarified, a study identified that
ubiquitin-specific peptidase 50 (USP-50), a DUB, may be involved in regulating NLRP3
inflammasome activation through the deubiquitination of ASC (Table 3) [126]. It was
confirmed that USP50 deubiquitinates K63-linked polyubiquitination of ASC proteins. In
addition, USP-50 knockdown in macrophages significantly impairs NLRP3 inflammasome
activation [124].

5.3. Caspase-1 Ubiquitination

Whether ubiquitination of caspase-1 is required to mediate the NLRP3 inflammasome
complex is not yet clear, but some studies have suggested the involvement of the ubiquiti-
nation of caspase-1 [127,128]. ZIKA virus infection induced inflammasome activation by
regulating caspase-1 ubiquitination [127]. It was shown that a non-structural protein of
ZIKA virus, NS1, recruits USP8, a deubiquitinase (DUB), and targets caspase-1 to remove
K11-linked ubiquitin chains at K134 of caspase-1 [129]. Since K11-linked polyubiquitination
of caspase-1 is responsible for the proteasomal degradation of caspase-1 and DUB, the
recruitment of USP8 can reverse caspase-1 degradation by increasing its stability [127].

Cellular inhibitors of apoptosis proteins (cIAPs) can also regulate inflammasome
activation through caspase-1 ubiquitination [130]. cIAP1/cIAP2 and the adapter protein
TRAF2 potentially interact with caspase-1 and promote its K63-linked polyubiquitination,
which positively regulates NLRP3 inflammasome activation. Moreover, a deficiency of
cIAP1/cIAP2 leads to impaired activity of caspase-1 and subsequent NLRP3 inflammasome
activation in mice [130]. However, a later study obtained a conflicting result that the inhi-
bition of cIAP1, cIAP2, and XIAP activated NLRP3 inflammasome and IL-1β production
in a receptor-interacting protein kinase (RIPK3)-dependent manner [131], which indicates
that cIAP might have an inhibitory effect on NLRP3 inflammasome activation induced by
a non-classical pathway.

5.4. IL-1β Ubiquitination

NLRP3 inflammasome activation eventually results in the cleavage of pro-IL-1β and
its secretion from the cells [2]. IL-1β has also been linked with polyubiquitination and
proteasomal degradation in bone marrow-derived dendritic cells (BMDC) [132]. An E2
ubiquitin ligase, UBEL2L3, promotes K48-linked ubiquitination of pro-IL1β to drive its
proteasomal degradation, thus decreasing the amount of cleaved IL-1β [128]. Another
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study focused on the impact of A20, a deubiquitin-modifying enzyme, on inflammasome
activation [133]. This study demonstrated that the depletion of A20 in macrophages results
in spontaneous IL-1β processing and release in response to priming activation. Further
mechanistic studies showed that ubiquitination at K133 of mouse pro-IL-1β supports the
cleavage of pro-IL-1β and A20 limits this proteolytic cleavage through the restriction of
pro-IL-1β ubiquitination [133].

In line with this notion, another deubiquitinase, POH1, was also reported to restrict
NLRP3 inflammasome activation by removing the K63-linked ubiquitination of pro-IL-1β.
Mechanistically, it was suggested that the removal of ubiquitination on pro-IL-1β reduces
its ability to be cleaved by caspase-1 [134,135].

However, a more recent study suggested that K133 ubiquitination of pro-IL-1β can
limit inflammasome activation [136]. The study showed that the ubiquitination of pro-IL-1β
limits the cellular level of pro-IL-1β by promoting its proteasomal degradation. Moreover,
the ubiquitination inhibited IL-1β release through interfering with the caspase-1-mediated
pro-IL-1β cleavage [136]. These results indicate that the ubiquitination of pro-IL-1β may
play a role in limiting IL-1β level and caspase-1-mediated activation, which is contrary to
previous studies. Further investigation is needed to elucidate why ubiquitination at the
same residue has opposing effects in different sets of experiments.

6. Ubiquitin-Associated NLRP3 Inflammasome Inhibitors

The direct linkage among a wide range of inflammatory diseases and NLRP3 in-
flammasome complexes makes it a prominent therapeutic target [15]. Despite being
known for a long time, the complete and clear regulation of the NLRP3 inflammasome
complex is still not within reach. Targeting ubiquitination for the regulation of NLRP3
inflammasome is critical. Although there are several promising NLRP3 inflammasome
inhibitors, such as MCC950 [137], Bay-117082 [138], parthenolide [138], glyburide [139],
and B-hydroxybutyrate [140], the exact mechanism is still not clear because of the lack of
understanding with regard to the regulation of NLRP3 inflammasome activation. Only
a small number of NLRP3 inflammasome inhibitors has been shown to target solely the
ubiquitination system of NLRP3, as described below (Table 4) [55,102,141–143].

It is well understood that an abundance of NLRP3 and ASC is required for NLRP3
inflammasome activation [35]. The ubiquitination system regulates the stability and avail-
ability of these proteins. Therefore, this system can be targeted to control NLRP3 inflam-
masome activation.

BC1215

The first compound to show its efficacy against NLRP3 inflammasome activation was
BC1215, which was primarily known as an inhibitor of FBXO3, an E3 ligase that increases
NLRP3 inflammasome activation. BC1215 inhibits the interaction of FBXO3 with FBXL2,
which prevents ubiquitin-mediated FBXL2 degradation. The stabilizing FBXL2 causes the
increased ubiquitination of NLRP3 and thereby suppresses its activation [74].

Celastrol

Several species in the Celastraceae family contain the active compound celastrol, a
pentacyclic triterpenoid quinone methide that is known for its anti-inflammatory activity.
A recent study reported that celastrol acts as an NLRP3 inhibitor by regulating K63-linked
NLRP3 ubiquitination. It was demonstrated that celastrol binds directly to BRCC3, a
NLRP3 DUB that prevents further deubiquitination of NLRP3 and the formation of an
NLRP3 inflammasome complex. An in vivo study demonstrated that celastrol inhibits
K63-linked ubiquitination in both LPS- and MSU-treated mice joint and liver tissue [142].

Tranilast

Tranilast (N-[30,40-dimethoxycinnamoyl]-anthranilic acid) is known for its anti-allergic
activity. A recent study showed that tranilast inhibits NLRP3 inflammasome activation
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both in vitro and in vivo [143]. In line with this, a later study identified the regulatory
mechanism of tranilast in NLRP3 inflammasome inhibition [144]. Mechanistically, trani-
last increases K63-linked NLRP3 ubiquitination, which leads to a restriction of NLRP3
oligomerization and NLRP3 inflammasome assembly. Furthermore, the study showed
that tranilast blunts the progression of atherosclerosis in low-density lipid receptor and
apolipoprotein-deficient mice, which are known as the best experimental models with
which to study atherosclerosis [144].

Table 4. NLRP3 ubiquitin-regulating inhibitors of the NLRP3 inflammasome.

Compounds Disease Models Mechanism Outcome Reference

C-1215
U937, THP-1,

primary human
alveolar macrophages

Inhibits FBXO3,
increases E3 ligase FBXL2,
and decreases ubiquitin

to mediate
NLRP3 degradation

Inhibition of NLRP3
inflammasome

activation
[74]

Celastrol

BMDM, THP-1,
LPS-induced liver injury,

MSU-induced gouty
arthritis model

Binding of celastrol
to BRCC3 prevents
K63-linked NLRP3
deubiquitination

Inhibition of NLRP3
inflammasome,

alleviation of LPS
induced liver damage

and MSU induced
arthritis

[142]

Tranilast
J774A.1, BMDM,

atherosclerosis in Ldr-/- and
ApoE-/- mice model

Increased K63-linked
polyubiquitination

Inhibition of NLRP3
inflammasome,

protection against
atherosclerosis

[144]

Zinc
BV2 cells,

spinal cord injury
mouse model

Induces autophagy
and

targets NLRP3
for degradation

Inhibition of NLRP3
inflammasome,
neuroprotection

[145]

Caffeic acid phenethyl
ester (CAPE

BMDM, THP-1
DSS/AOM-induced

colon cancer mouse model

Increased interaction
between NLRP3 and

Cullin 1 and decreased
interaction between
NLRP3 and CSN5

Inhibition of NLRP3
inflammasome

activation,
anticancer

[146]

ML323

Mouse primary peritoneal
macrophages,

folic acid-induced
acute tubular necrosis (ATN)

Inhibits UAF1/USP1
and keeps

NLRP3 in check

Inhibition of Nlrp3
inflammasome

activation
[101]

Zinc

Many studies have shown that zinc exhibits antioxidant and anti-inflammatory ef-
fects [147,148]. A recent study found that zinc contains an NLRP3 inflammasome inhibitory
effect. The same study demonstrated that zinc inhibits NLRP3 inflammasome activation in
BV2 microglial cells and spinal cord injury mouse models. The mechanistic study revealed
that zinc induces autophagy and targets NLRP3 for ubiquitination, which leads to its
subsequent degradation [145].

CAPE

Caffeic acid phenethyl ester (CAPE) is a bioactive compound of propolis from hon-
eybee hives that has antioxidant and anti-inflammatory effects [149]. A recent study
found that CAPE inhibits ATP-induced NLRP3 inflammasome activation in BMDM and
THP-1 cells [146]. Moreover, CAPE is involved in the protection of mice in the DSS or
azoxymethane (AOM)-induced colorectal cancer. The study also showed that CAPE pro-
motes the ubiquitination of NLRP3 through the inhibition of ROS and increases the level of
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interaction between NLRP3 and the E3 ligase Cullin 1, whereas it decreases the interaction
between NLRP3 and CSN5 (a DUB), which together increases NLRP3 ubiquitination. These
results were also found in an AOM/DSS mouse model [146].

ML323

A recent study identified ML323 as a novel NLRP3 inflammasome inhibitor [101].
The study reported that UAF1/USP1 is a deubiquitinase complex that eliminates the
K48-linked polyubiquitination of NLRP3. As K48-linked ubiquitination is linked with
protein degradation, the UAF1/USP1 complex stabilizes the degradation of NLRP3, which
increases cellular NLRP3 levels and promotes NLRP3 inflammasome activation. Since
ML323 has an inhibitory effect on the UAF1/USP1 complex, its treatment keeps NLRP3 in
check at the cellular level and prevents NLRP3 inflammasome activation. Moreover, the
presence of ML323 in folic acid-induced acute tubular necrosis (ATN) inhibited NLRP3
inflammasome-mediated inflammation [101].

7. Conclusions and Future Perspective

Dysregulated or uncontrolled NLRP3 inflammasome activation plays a significant
role in the onset of several inflammatory disorders [15]. The PTM of NLRP3 plays a
critical role in maintaining a controlled NLRP3 inflammasome activation. Recent advances
in this area of research have demonstrated the essential role of the ubiquitin system in
controlling the NLRP3 inflammasome [70] (Figure 2). It has been shown that the ubiquitin
system is a potential therapeutic target with which to treat different forms of cancer and
neurodegenerative disease [150,151].
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Several ubiquitin proteasome system (UPS) modulators/inhibitors, such as borte-
zomib, carfilzomib, ixazomib, and marizomib, are being used successfully in cancer treat-
ment or clinical trials [152–155]. Even though these UPS modulators or inhibitors are a
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promising strategy for cancer treatment, some side effects and non-target effects still need
to be addressed before their wider application [156,157].

Ubiquitin-mediated post-translational modification of NLRP3 inflammasome acti-
vation is an emerging area of interest to search for therapeutic targets to control NLRP3
inflammasome activation. Small molecules such as MCC950, OLT1177, MNS, CY-09, and
BOT4-one have the most potential as small molecular inhibitors of the NLRP3 inflamma-
some [137,158–161], and some are currently undergoing preclinical or clinical trials [162].
Some inhibitors have recently been identified to target the ubiquitin-mediated PTM in
NLRP3 inflammasome activation, and these inhibitors are also potential targets to con-
trol NLRP3 inflammasome activation [101,144]. Targeting specific E3 ligases or DUBs by
these inhibitors might be a new prospect in the future of NLRP3 inflammatory disease
therapeutics.

However, the exact mechanism behind the regulation of NLRP3 inflammasome ac-
tivation through ubiquitination still requires further study. For instance, there is scant
knowledge regarding how the ubiquitination of NLRP3 inflammasome components NEK7,
ASC, caspase-1, and IL-1β regulates NLRP3 inflammasome complex formation. Addition-
ally, the exact sites or types of ubiquitin chains that are involved in the specific NLRP3
inflammasome component ubiquitination need to be elucidated, and the specific E3 ligases
and DUBs that regulate NLRP3 inflammasome activation need to be clarified to make it a
therapeutic target.
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