Skip to main content
. 2021 Aug 13;22(16):8733. doi: 10.3390/ijms22168733

Table 1.

The therapeutic agents for paclitaxel-induced peripheral neuropathy in preclinical experiments.

Therapeutic Targets Therapeutic Agents Dose Animals Symptoms that Showed Improvement Mechanisms References
Oxidative stress and mitochondrial disfunction Anakinra, IL-1β antagonist 50–100 mg/kg, i.p. Rats Pain threshold Reductions of MDA, MPO and IL-1β and increase in GSH in paws [19]
Antimycin A 0.2–0.6 mg/kg, i.p. Rats Mechanical hypersensitivity Inhibition of mitochondrial complex III [20]
Curcumin 100–200 mg/kg, p.o. Rats Histological changes in spinal cord and sciatic nerve Reduction of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL. [21]
Divya-Peedantak-Kwath, a herbal decoction 69–615 mg/kg, p.o. Mice Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration Suppression of oxidative stress and inflammation [22]
Duloxetine 10–30 mg/kg, i.p. Mice Mechanical hyperalgesia and thermal nociception Inhibiting PARP and p53 activation and regulating Bcl-2 family to reverse oxidative stress and apoptosis [23]
Evodiamine 5 mg/kg Rats Mechanical hypersensitivity and thermal hypersensitivity Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG. [24]
Flavonol 25–200 mg/kg, s.c. Mice Tactile allodynia, cold allodynia and thermal hyperalgesia Inhibitions of TNF-α, IL-1β and free radicals [25]
Ghrelin 300 nmol/kg, i.p. Mice Mechanical sensitivity, thermal sensitivity, DRG damage (ATF-3 positive cells), and density of IENF Decreases in plasma oxidative and nitrosative stress and increases in UCP2, SOD2, and PGC-1α [26]
GKT137831, a NOX4 inhibitor 1 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG [27]
Lacosamide 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
Melatonin 5–50 mg/kg, p.o. Rats Mechanical sensitivity Reduction of mitochondrial damage [29]
Nicotinamide riboside 200 mg/kg, p.o. Rats Tactile hypersensitivity N.A. [30]
Phenyl-N-tert-butylnitrone 100 mg/kg, i.p. Mice Mechanical hypersensitivity N.A. [31]
Pregabalin 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
Rosuvastatin 10 mg/kg, i.p. Mice Thermal hyperalgesia, cold hyperalgesia, and mechanical allodynia Downregulations of IL-1β, oxidative stress [32]
Rotenone 1–5 mg/kg, i.p. Rats Mechanical hypersensitivity Inhibition of mitochondrial complex I [20]
Tempol, a mimetic of SOD 20 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α in the DRG [27]
Trimethoxy flavones 25–200 mg/kg, s.c. Mice Tactile allodynia, cold allodynia, and thermal hyperalgesia Inhibitions of TNF-α, IL-1β and free radicals [33]
Umbelliprenin, a prenylated coumarin 12.5–25 mg/kg, i.p. Mice Thermal hyperalgesia Decrease in serum IL-6 levels and oxidative stress [34]
Vitamin C 500 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG [27]
Inflammatory 3-Hydroxyflavone 25–75 mg/kg, i.p. Rats Tactile allodynia, cold allodynia, thermal hyperalgesia, and heat-hyperalgesia Suppressions of TNF-α, IL-1β, IL-6, CGRP, and substance P in the spinal cord, and inhibition of the receptor of substance P [35]
AMD3100, a CXCR4 antagonist 8 mg/kg, i.p. Mice Mechanical allodynia N.A. [36]
Anakinra, IL-1β antagonist 50–100 mg/kg, i.p. Rats Pain threshold Reductions of MDA, MPO and IL-1β and increase in GSH in paws [19]
Anti-HMGB1-neutralizing antibody 1 mg/kg, i.p. Mice Mechanical allodynia N.A. [36]
Berberine 5–20 mg/kg, i.p. Mice Thermal hyperalgesia N.A. [37]
Choline-fenofibrate 6–24 mg/kg, i.p., 15–60 mg/kg, p.o. Mice Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG [38]
Curcumin 100–200 mg/kg, p.o. Rats Histological changes in the spinal cord and sciatic nerve Reductions of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL. [21]
Divya-Peedantak-Kwath, a herbal decoction 69–615 mg/kg, p.o. Mice Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration Suppressions of oxidative stress and inflammation [22]
Duloxetine 30 mg/kg/day, i.p. Mice Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG [39]
ESI-09, a Epac inhibitor 20 mg/kg, p.o. Mice Mechanical allodynia and number of IENF Suppression of spinal cord astrocyte activation [40]
Etanercept 2 mg/kg, i.p. Rats Mechanical hypersensitivity and cold hypersensitivity Blocking of TNF-α signaling [41]
Evodiamine 5 mg/kg Rats Mechanical hypersensitivity and thermal hypersensitivity Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG. [24]
Fenofibrate Diet with 0.2% or 0.4% fenofibrate Mice Mechanical allodynia, cold allodynia, SNAP amplitude, and intra-epidermal nerve fibers density Regulation of PPAR-α expression and reduction in neuroinflammation [42]
Fenofibrate 100–150 mg/kg, i.p., 300–600 mg/kg, p.o. Mice Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG [38]
Fenofibric acid 6–24 mg/kg, i.p., 30–90 mg/kg, p.o. Mice Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude Regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG [38]
Flavonol 25–200 mg/kg, s.c. Mice Tactile allodynia, cold allodynia, and thermal hyperalgesia Inhibitions of TNF-α, IL-1β and free radicals [25]
FPS-ZM1, a RAGE antagonist 1 mg/kg, i.p. Mice Mechanical allodynia N.A. [36]
GKT137831, a NOX4 inhibitor 1 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG [27]
Human intravenous immunoglobulin 1 g/kg, i.v. Rats Mechanical allodynia, loss of IENF, and distal axonal degeneration Suppression of the axonopathy with macrophage infiltration [43]
Icariin 100 mg/kg, p.o. Rats Mechanical allodynia Downregulations of TNF-α, IL-1β, IL-6 and astrocyte activation in spinal cord via SIRT1 activation [44]
IL-1 receptor antagonist 3 mg/kg, i.p. Rats Mechanical hypersensitivity and cold hypersensitivity N.A. [41]
JTC-801 0.01–0.05 mg/kg, i.v. Rats Mechanical allodynia Decreases in PI3K, p-Akt, and inflammatory cytokines in the DRG [45]
Lacosamide 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
Losartan 20–100 mg/kg, i.p. Rats Mechanical hyperalgesia Decrease in inflammatory cytokines including IL-1β and TNF-α in the DRG [46]
Losartan 100 mg/kg, p.o. Rats Mechanical allodynia Attenuations of neuroinflammatory changes and expression of pro-resolving markers (arginase 1 and IL-10) indicating a possible shift in macrophage polarization [47]
Low-molecular-weight heparin, a rage antagonist 2.5 mg/kg. i.p. Mice Mechanical allodynia N.A. [36]
LPS-R, a TLR4 antagonist 0.5 mg/kg, i.p. Mice Mechanical allodynia N.A. [36]
MDA7, a CB₂ agonist 15 mg/kg, i.p. Rats Mechanical allodynia Downregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter [48]
MJN110, a MAGL inhibitor 4–40 mg/kg, i.p. Mice Mechanical allodynia Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn [49]
Polaprezinc 3 mg/kg, p.o. Rats Mechanical allodynia Suppression of macrophage migration into DRG [50]
Pregabalin 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
Rapamycin 5 mg/kg, i.p. Rats Mechanical hypersensitivity and thermal hypersensitivity Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG. [51]
Reparixin 8 mg/hr/kg using micro–osmotic pumps Rats Mechanical allodynia and cold allodynia Inhibition of IL-8/CXCR1/2 pathway and suppressions of p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation [52]
Rosuvastatin 10 mg/kg, i.p. Mice Thermal hyperalgesia, cold hyperalgesia, and mechanical allodynia Downregulations of IL-1β and oxidative stress [32]
S504393, a CCR2 antagonist 5 mg/kg, i.p. Rats Mechanical hypersensitivity and cold hypersensitivity N.A. [41]
Siwei Jianbu decoction 5–10 g/kg, i.g. Mice Mechanical hyperalgesia and thermal nociception Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6. [53]
TAK242, a TLR4 antagonist 1–3 mg/kg, i.p. Rats Mechanical hypersensitivity Antagonism of TLR4 [54]
TAK242, a TLR4 antagonist 3 mg/kg, i.p. Mice Mechanical allodynia N.A. [55]
Tempol, a mimetic of SOD 20 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG [27]
Thrombomodulin alfa 1–3 mg/kg, i.p. Mice Mechanical allodynia N.A. [36]
Trimethoxy flavones 25–200 mg/kg, s.c. Mice Tactile allodynia, cold allodynia, and thermal hyperalgesia Inhibitions of TNF-α, IL-1β and free radicals [33]
Umbelliprenin, a prenylated coumarin 12.5–25 mg/kg, i.p. Mice Thermal hyperalgesia Decreases in serum IL-6 levels and oxidative stress [34]
Vitamin C 500 mg/kg, i.p. Rats Mechanical sensitivity and thermal sensitivity Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG [27]
β-caryophyllene, a CB2 agonist 25 mg/kg, p.o. Mice Mechanical allodynia Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release [56]
K channel 3-Carboxyphenyl isothiocyanate 1.33–13.31 µmol/kg, s.c. Mice Cold hypersensitivity Release H2S activating Kv7 channel [57]
Allyl isothiocyanate 1.33–13.31 µmol/kg, s.c. Mice Cold hypersensitivity Release H2S activating Kv7 channel [57]
Phenyl isothiocyanate 4.43–13.31 µmol/kg, s.c. Mice Cold hypersensitivity Release H2S activating Kv7 channel [57]
Retigabine 10 mg/kg, i.p. Rats Mechanical allodynia, IENF density, and morphological alteration of mitochondria in peripheral nerve Specific KCNQ/Kv7 channel opener [58]
Sodium hydrosulfide hydrate 13.31–38 µmol/kg, s.c. Mice Cold hypersensitivity Release H2S activating Kv7 channel [57]
Ca channel ML218, a T-type calcium channel blocker 1–10 mg/kg, i.p. Rats Mechanical hypersensitivity Inhibition of Cav3.2 [54]
RQ-00311651, a T-type calcium channel blocker 10–40 mg/kg, i.p. Mice and rats Mechanical hyperalgesia Block of Cav3.1/Cav3.2 T channels [59]
TRP channel AMG9810 30 mg/kg, p.o. Rats Mechanical allodynia, hyperalgesia, and thermal hyperalgesia TRPV1 antagonism [60]
Capsazepine 30 mg/kg, s.c. Rats Thermal hyperalgesia TRPV1 antagonism [61]
HC-067047, a TRPV4 antagonist 10 mg/kg, i.p. Mice Mechanical hyperalgesia TRPV4 antagonism [62]
Quercetin 20–60 mg/kg, i.p. Rats and mice Heat hyperalgesia and mechanical allodynia Suppression of PKCε and TRPV1 in the spinal cords and DRG [63]
Ruthenium red 3 mg/kg, s.c. Rats Thermal hyperalgesia TRP antagonism [61]
SB-366791, a TRPV1 antagonist 0.5 mg/kg, i.p. Mice Visceral nociception, mechanical hypersensitivity and heat hypersensitivity TRPA1 antagonism [55]
Tabernaemontana catharinensis ethyl acetate fraction 100 mg/kg, p.o. Mice Mechanical allodynia TRPA1 antagonism [64]
Glutamate Memantine 1–5 mg/kg Rats Mechanical hypersensitivity Antagonism of NMDA receptor [65]
Valproate 200 mg/kg, i.p. Rats Mechanical allodynia Suppressions HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction [66]
PDE Cilostazol Diet containing 0.3% cilostazol Mice Mechanical hyperalgesia and Schwann cell dedifferentiation within the sciatic nerve Differentiation of Schwann cells via a mechanism involving cAMP/Epac signaling [67]
Minoxidil 25–50 mg/kg, i.p. Mice Mechanical hyperalgesia, thermal sensitivity, and damages of sciatic nerve Suppression of neuroinflammation (macrophage and microglia) recruitments and remodeling of intracellular calcium homeostasis in DRG [68]
Cannabinoid receptor Cannabidiol 1–20 mg/kg, i.p. Mice Mechanical sensitivity N.A. [69]
Cannabidiol 2.5–25 mg/kg, i.p., p.o. Mice Mechanical allodynia N.A. [70]
JZL184, a MAGL inhibitor 4–40 mg/kg, i.p. Mice Mechanical allodynia N.A. [49]
KLS-13019 2.5–25 mg/kg, i.p. Mice Mechanical allodynia N.A. [70]
MDA7, a CB₂ agonist 15 mg/kg, i.p. Rats Mechanical allodynia Downregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K+-Cl- cotransporter [48]
MJN110, a MAGL inhibitor 4–40 mg/kg, i.p. Mice Mechanical allodynia Downregulations of monocyte chemoattractant protein-1 (MCP-1 and CCL2) and p-p38 MAPK in dorsal root ganglia as well as MCP-1 in the spinal dorsal horn [49]
URB597, a centrally penetrant FAAH inhibitor 1 mg/kg, i.p. Mice Mechanical hypersensitivity and cold hypersensitivity Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides [71]
URB937, a peripherally restricted FAAH inhibitor 1 mg/kg, i.p. Mice Mechanical hypersensitivity and cold hypersensitivity Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides [71]
β-caryophyllene, a CB2 agonist 25 mg/kg, p.o. Mice Mechanical allodynia CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release [56]
Δ9-THC 2.5–20 mg/kg, i.p. Mice Mechanical sensitivity N.A. [69]
Opioid receptor Morphine 3–6 mg/kg, p.o. Mice Mechanical allodynia N.A. [72]
Oxycodone 24 mg/kg/day, p.o. Mice Mechanical allodynia N.A. [72]
Monoamines SR-17018 1–48 mg/kg/day, p.o. Mice Mechanical allodynia N.A. [72]
Bee venom acupuncture 1 mg/kg, s.c. Rats Mechanical hyperalgesia Via spinal α₂-adrenergic receptor [73]
Bee venom acupuncture 0.25–2.5 mg/kg, i.p. Mice Cold allodynia and mechanical allodynia Via the spinal noradrenergic and serotonergic mechanism [74]
Quetiapine 10–15 mg/kg, p.o. Mice Heat hyperalgesia, mechanical allodynia, and cold allodynia Via α2-adrenoceptors [75]
Reboxetine 10 mg/kg, i.p. Rats Mechanical allodynia and cold hyperalgesia α2-AR mediated antinociception at the spinal cord [76]
Venlafaxine 40–60 mg/kg, s.c. Mice Cold allodynia and mechanical allodynia Via the spinal noradrenergic and serotonergic mechanism [74]
Acetylcholine receptor Nicotine 0.6–0.9 mg/kg, i.p. or 24 mg/kg, s.c. Mice Mechanical allodynia and density of IENF Via α7 nicotinic acetylcholine receptor [77]
Pirenzepine 10 mg/kg, s.c. Mice Mechanical sensitivity and thermal sensitivity Muscarinic ACh type 1 receptor (M1R) antagonism [78]
R-47, an α7 nAChR silent agonist 5–10 mg/kg, i.p. Mice Mechanical hypersensitivity, loss of IENF and morphological changes of microglia N.A. [79]
α-Conotoxin RgIA4 80 μg/kg, s.c. Rats Mechanical allodynia N.A. [80]
cAMP/PKA ESI-09, a Epac inhibitor 20 mg/kg, p.o. Mice Mechanical allodynia and number of IENF Suppression of spinal cord astrocyte activation [40]
PKC HOE140, a kinin B2 antagonist 50 nmol/kg, i.p. Mice Mechanical hyperalgesia inactivation of PKCε [62]
DALBK, a kinin B1 antagonist 150 nmol/kg, i.p. Mice Mechanical hyperalgesia inactivation of PKCε [62]
Tamoxifen 30 mg/kg, p.o. Mice Mechanical allodynia cold allodynia Inhibition of PKC/ERK pathway [81]
MAPK Duloxetine 30 mg/kg/day, i.p. Mice Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG [39]
Duloxetine 10–30 mg/kg, p.o. Mice Mechanical allodynia and cold allodynia Inhibiting ERK1/2 phosphorylation in spinal cord [82]
Gabapentin 30–100 mg/kg, p.o. Mice Mechanical allodynia and cold allodynia Inhibiting ERK1/2 phosphorylation in spinal cord [82]
Lacosamide 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
MJN110, a MAGL inhibitor 4–40 mg/kg, i.p. Mice Mechanical allodynia Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn [49]
PD0325901 30 mg/kg, p.o. Mice Mechanical allodynia and cold allodynia Inhibiting ERK1/2 phosphorylation in spinal cord [82]
Pregabalin 30 mg/kg, p.o. Rats Thermal hyperalgesia and cold allodynia Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3 [28]
Siwei Jianbu decoction 5–10 g/kg, p.o. Mice Mechanical hyperalgesia and thermal nociception Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6 [53]
Tamoxifen 30 mg/kg, p.o. Mice Mechanical allodynia cold allodynia Inhibition of PKC/ERK pathway [81]
Trametinib 0.5 mg/kg Mice Mechanical and cold allodynia Inhibition of the MEK/ERK pathway [83]
β-caryophyllene, a CB2 agonist 25 mg/kg, p.o. Mice Mechanical allodynia Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release [56]
OATP1B2 Nilotinib 100 mg/kg, p.o. Mice Mechanical allodynia Inhibition of paclitaxel intake to neuron via OATP1B2 inhibition [84]
mTOR Rapamaycin 5 mg/kg, i.p. Rats Mechanical hypersensitivity and thermal hypersensitivity Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG. [51]
Others AM9053, a NAAA inhibitor 1–10 mg/kg, i.p. Mice Mechanical allodynia N.A. [85]
Aucubin 15–50 mg/kg, i.p. Mice Mechanical allodynia N.A. [86]
Aucubin 50 mg/kg, i.p. Mice Mechanical allodynia Inhibition of ER stress in peripheral Schwann cells [87]
Bogijetong decoction, a herbal drug formulation 400 mg/kg, p.o. Rats Heat sensitivity Improvement of morphological abnormalities in the sciatic nerve axons and DRG tissue [88]
DALBK, a kinin B1 antagonist 150 nmol/kg, i.p. Mice Mechanical allodynia Antagonism of kinin B1 receptor [89]
FR173657, a kinin B2 antagonist 100 nmol/kg, i.p. Mice Mechanical allodynia Antagonism of kinin B2 receptor [89]
Gelsemium sempervirens 1 mL, i.p. Rats Mechanical allodynia, mechanical hyperalgesia, cold allodynia, and density of IENF N.A. [90]
HOE140, a kinin B2 antagonist 100 nmol/kg, i.p. Mice Mechanical allodynia Antagonism of kinin B2 receptor [89]
Iridoids isolated from Viticis Fructus 15 mg/kg Mice Mechanical allodynia N.A. [91]
Lepidium meyenii 0.5–10 mg/kg, p.o. Rats Cold hypersensitivity N.A. [92]
Metformin 200 mg/kg, i.p. Mice Mechanical hypersensitivity Activation of AMPK [93]
Narciclasine 1 mg/kg, p.o. Mice Mechanical hypersensitivity Activation of AMPK [93]
Neoline 10 mg/kg/day, s.c. Mice Mechanical hyperalgesia N.A. [94]
Nicotinamide riboside 200 mg/kg, p.o. Rats Mechanical hyperalgesia and cold hyperalgesia N.A. [95]
NO-711, a GAT-1 inhibitor 3 mg/kg, i.p. Mice Thermal hyperalgesia and cold allodynia Inhibition of GAT-1 [96]
Processed aconite root 1 g/kg/day, s.c. Mice Mechanical hyperalgesia N.A. [94]
Recombinant human soluble thrombomodulin 3–10 mg/kg, i.p. Rats Mechanical hyperalgesia Inactivation of HMGB1 [97]
Rikkunshito 0.3–1 mg/kg, p.o. Mice Mechanical hyperalgesia Suppression of p-NF-κB in spinal cord [98]
Salicylidene salicylhydrazide 50–75 mg/kg, i.p. Mice Mechanical allodynia and cold allodynia N.A. [99]
Sargassum glaucescens from the Persian Gulf 100–200 mg/kg, i.p. Mice Cold allodynia N.A. [100]
SLAB51, a probiotic formulation 1.5 g (200 billion of bacteria) in 10 mL of drinking water Mice Mechanical allodynia and hyperalgesia Increases in the expression of opioid and cannabinoid receptors in spinal cord, reduction in nerve fiber damage in the paws and modulation of the serum proinflammatory cytokines concentration [101]
SSR240612, a kinin B1 antagonist 150 nmol/kg, i.p. Mice Mechanical allodynia Antagonism of kinin B1 receptor [89]
Staurosporine 0.1 mg/kg, i.p. Mice Mechanical allodynia Inhibitory of PI3K signaling pathway [102]
Telmisartan 5–10 mg/kg, i.p. Mice Mechanical hyperalgesia and thermal hyperalgesia Inhibition of CYP2J isoforms and reductions of EpOME in DRGs and plasma [103]
Terfenadine 1–2 mg/kg Mice Mechanical hyperalgesia Inhibition of CYP2J isoforms [103]
Wortmannin 0.6 mg/kg, i.p. Mice Mechanical allodynia Inhibitory of PI3K signaling pathway [102]

Abbreviations: Ach, acetylcholine; AMPK, AMP-activated protein kinase; Apaf-1, apoptosis protease-activating factor 1; ATF-3, activating transcription factor 3; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra-large; BDNF, brain derived neurotrophic factor; CaMKIIα, calmodulin-dependent protein kinase IIα; CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CGRP, calcitonin gene-related peptide; CREB, cAMP response element binding protein; CXCR, C-X-C motif chemokine receptor; CYP2J, Cytochrome P450 2J; DRG, dorsal root ganglia; EAAT2, excitatory amino acid transporter 2; Epac, exchange protein directly activated by cAMP; EpOME, epoxyoctadecamonoenoic acids; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FAAH, fatty-acid amide hydrolase; FosB, FBJ murine osteosarcoma viral oncogene homolog B; GAT-1, gamma-aminobutyric acid (GABA) transporter 1; GFAP, glial fibrillary acidic protein; GluR1, glutamate ionotropic receptor AMPA type subunit 1; GSH, glutathione; HDAC2, histone deacetylase 2; HMGB1, high mobility group box 1; HO-1, heme oxygenase 1; i.p., intraperitoneal; i.v., intravenous; IENF, intra-epidermal nerve fibers; IL-10, interleukin-10; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; iNOS, inducible nitric oxide synthase; IRF8, interferon regulatory factor 8; JNK, c-Jun N-terminal kinase; MAGL, monoacylglycerol lipase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein 1; MDA, malondialdehyde; MEK, mitogen-activated protein kinase kinases; MPO, myeloperoxidase; NAAA, N-acylethanolamine-hydrolyzing acid amidase; nAChR, nicotinic acetylcholine receptor; NF-κB, nuclear factor kappa-B; NGF, nerve growth factor; NMDA, N-methyl-D-aspartate; NOX4, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4; NQO1, NAD(P)H dehydrogenase [quinone] 1; NR2B, N-methyl D-aspartate (NMDA) receptor subtype 2B; Nrf2, nuclear factor-erythroid 2-related factor 2; OATP1B2, organic anion-transporting polypeptide 1b2; p.o., per os; p-Akt, phospho-protein kinase B; PARP, poly ADP-ribose polymerase; p-CREB, phospho-cAMP response element binding protein; p-FAK, phospho-fokal adhesion kinase; PGC-1α, peroxisome proliferatoractivated receptor γ coactivator-1; PI3K, phosphatidylinositol-3 kinase; p-JAK2, phospho-janus kinase 2; PKC, protein kinase C; p-NF-κB, phospho-nuclear factor kappa-B; p-p38, phospho-p38; PPAR-α, peroxisome proliferator-activated receptor-α; p-STAT3, phospho-signal transducer and activator of transcription 3; RAGE, receptor for advanced glycation endproducts; s.c., subcutaneous; SIRT1, sirtuin-1; SNAP, sensory nerve action potential; SNCV, sensory nerve conduction velocity; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRP, transient receptor potential; TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; UCP2, uncoupling protein 2; VGLUT, vesicular glutamate transporter 3; YY1, Yin-Yang 1.