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Abstract

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy 

number alterations (CNA), has been impeded by lack of time series single cell sampling of 

polyclonal populations and temporal statistical models1–7. Here, we generated 42,000 genomes 

from multi-year time series single cell whole genome sequencing (scWGS) of breast epithelium 
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and primary triple negative breast cancer (TNBC) patient derived xenografts (PDX), revealing 

the nature of CNA defined clonal fitness dynamics induced by TP53 mutation and cisplatin 

chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, 

we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness 

over a larger number of clones associated with distinct CNAs. Furthermore, in TP53 mutant 

TNBC PDX models, inferred fitness coefficients from CNA-based genotypes accurately forecast 

experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially 

passaged TNBC PDX resulted in cisplatin resistant clones emerging from low fitness phylogenetic 

lineages in the untreated setting. Conversely, high fitness clones from treatment naive controls 

were eradicated, signaling an inversion of the fitness landscape. Finally, upon release of drug 

selective pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Taken 

together, our findings define clonal fitness linked to both CNA and therapeutic resistance in 

polyclonal tumours.

Keywords

tumour evolution; single cell sequencing; fitness; timeseries; phylogenetic reconstruction; drug 
resistance

Quantifying cellular fitness and its causal mechanisms in heterogeneous, polyclonal cancer 

cell populations remain as open problems, impeding progress in developing effective and 

durable therapeutic strategies1–7. Despite well documented genomic plasticity in tumours, 

the question of how copy number alterations (CNA)-induced changes in the genome 

architecture drive etiologic and drug resistance10 processes remains understudied11–13. The 

cancer field has generally lacked serial measurements from patient derived tissues to directly 

observe cancer evolution over realistic timescales with single cell resolution1,2,4,14–21. This 

has hindered thorough investigation of causal factors driving selection, successfully achieved 

in other biological systems22. Here we use single genome-derived CNAs as clone-defining 

heritable genotypes to establish quantitative fitness attributes that serve as predictive 

measures of polyclonal growth potential. Our work has implications in at least three areas: 

predicting evolution in cancer; understanding how genomic instability processes leading to 

CNAs confer fitness; and parsing long term kinetics of drug resistance in polyclonal cancer 

cell populations.

Modeling clonal fitness and selection

We developed an experimental and computational platform consisting of three components: 

timeseries sampling and single cell whole genome sequencing of immortal cell lines and 

patient derived xenografts (Extended Data Fig. 1a,b); scalable phylogenetics for single cell 

genomes (sitka23, Extended Data Fig. 1c); and a population genetics inspired (Wright-Fisher 

diffusion process) model of fitness (fitClone, Extended Data Fig. 1d,e, Supplementary 

Table 1). Using observed longitudinal clonal abundance measurements as input, fitClone 

simultaneously estimates growth trajectories, Zi and fitness coefficients, si for each Clone 

i in the population. The model can be used to forecast evolutionary trajectories, and 

its posterior probability densities can reflect evidence of positive selection in polyclonal 

Salehi et al. Page 2

Nature. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systems. Details of fitClone including theoretical assumptions and limitations of the model 

are discussed in the Supplementary Information.

CNAs and fitness in p53 deficient cells

We first applied the framework to immortalized 184hTERT diploid breast epithelial cell 

lines24 in order to measure clone specific fitness associated with TP53 loss of function. 

Known to be permissive of genomic instability, p53 mutations are often acquired early in 

breast cancer evolution4,25,26 and result in alteration of the CNA genome structure5,6,21,24,27. 

We contrasted 4 timeseries samples of wildtype (p53wt) cells (60 passages over 300 days) 

with two isogenic null (p53−/−) parallel branches (p53−/−a and p53−/−b)28, each passaged 

over 60 generations (285 and 220 days, respectively), and sampled 7 times. A median of 

1,231 cells per passage were whole genome sequenced yielding a total of 2713, 3264, and 

4881 genomes for each timeseries, respectively (Supplementary Table 1). For each of p53wt, 

p53−/−a, p53−/−b, we inferred CNA profiles, constructed phylogenetic trees to establish 

clonal lineages (Methods) and measured clonal abundances over time. Phylogenetic analysis 

(sitka, Extended Data Fig. 2a,b) and modeling of abundances with fitClone (Extended Data 

Fig. 2c, Supplementary Tables 2 and 3) revealed p53wt clonal trajectories consistent with 

small differences in selection coefficients amongst three major Clones E (chromosome 11q 

gain), D (chromosome 20 gain) and F (diploid; and used as the reference clone for fitClone 

modeling). In contrast, p53−/−a showed significant expansions of clones with aneuploid 

genotypes (Extended Data Fig. 2d, Fig. 1a) and higher selection coefficients, where the 

founder diploid population was out-competed (Fig. 1b). A second independent p53 mutant 

timeseries p53−/−b (Extended Data Fig. 2e–g) confirmed that CNA-bearing clones confer 

higher fitness. The p53 mutant lines harboured 11 (size range 47 to 1,474 cells, median 204), 

and 10 (size range 158 to 997 cells, median 404) distinct clones for p53−/−a and p53−/−b, 

respectively (Supplementary Table 2). Notably, selection coefficients were highest in clones 

with focal amplifications of known prototypic oncogenes in breast cancer6,7,25,26(Extended 

Data Fig. 2d,e), in some cases on a whole genome doubled background. Clone A, the 

highest fitness clone in p53−/−a (57% of cells at last timepoint, 1 + s = 1.05 ± 0.09) exhibited 

whole genome doubling and harboured a focal, high level amplification at the MDM4 (1q) 

locus (Extended Data Fig. 2d). Clone G (27% of cells at last timepoint, 1 + s = 1.03 ± 

0.03), the next highest fitness clone in p53−/−a remained diploid, with the exception of a 

focal high level amplification precisely at the MYC locus (8q) (Extended Data Fig. 2d). 

By contrast Clone K, here chosen as the reference clone for modeling, remained entirely 

diploid and exhibited a monotonically decreasing trajectory (from 90% to 0% of cells over 

the timeseries, Fig. 1b). In p53−/−b, two clones exhibited large positive selection coefficients 

(Extended Data Fig. 2f,g): Clone D (52% of cells at last timepoint, 1 + s = 1.05 ± 0.02) 

harboured a 20q single copy gain with an additional high level amplification at the TSHZ2 
locus; and Clone E (35% of cells at the last timepoint, 1 + s = 1.05 ± 0.04) harboured a 

chromosome 4 loss, 19p gain/19q loss and 20q single copy gain (Extended Data Fig. 2e). As 

seen in p53−/−a, the ‘root’ Clone I that remained diploid was systematically out-competed, 

diminishing from 68% to 0% abundance over the timeseries (Extended Data Fig. 2g).

Relative to p53wt, rates of expansion of both p53−/−a and p53−/−b aneuploid clones were 

significantly higher, leading to rapid depletion of diploid cells (Fig. 1c, p = 6.72e − 04). 
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Copy number breakpoints per cell increased as a function of fitness and were higher in 

the p53 mutant lines, however point mutation rate remained comparatively stable (Extended 

Data Fig. 2h,i). In addition, both p53 mutant lines exhibited higher posterior probability 

of positive selection (clone pairs with probability >0.9) relative to the p53wt setting (Fig. 

1d). Accordingly, we sought to experimentally confirm clonal fitness in p53 mutant cells 

associated with increased aneuploidy. We challenged higher fitness aneuploid clones (D 

and E, which dominated by X60) from p53−/−b with p53wt diploid populations in de novo 
population mixtures and collected samples over 5 generations in culture (Fig. 1e). scWGS 

sequencing of the mixture samples revealed Clones D and E to monotonically increasing 

from 18% and 7% to 35% and 37% of the population by passage 5, while the diploid 

p53 wildtype cells were out-competed, decreasing from 75% to 19% at final passage (Fig. 

1f). Thus, the enforced competition resulted in re-emergence of p53 mutant aneuploid 

clones and relative depletion of diploid cells, supporting the original fitClone model fits. 

Together, these results show a broader clone fitness landscape, with overall higher fitness 

of clones harbouring whole genome, chromosomal and segmental aneuploidies arising in 

p53 mutant cells (Extended Data Fig. 2d,e). Notably, high fitness clones featured high level 

amplification of proto-oncogenes often seen in human breast cancer (e.g., MDM4, MYC, 

TSHZ2), suggesting that p53 loss is permissive of fitness-enhancing CNAs with etiologic 

roles in cancer7.

Modeling fitness in human breast cancer

We next studied timeseries CNA clonal expansions of p53 mutant primary human breast 

cancers from four PDX transplant series. We generated serial scWGS samples from one 

Her2 positive (HER2+SA532) and three TNBC (TNBC-SA609, TNBC-SA1035, TNBC­

SA535), sampled over 927, 619, 381 and 353 days, respectively (Extended Data Fig. 3) 

yielding a median of 303 high quality genomes per sample (9,970 total) for downstream 

analysis (Supplementary Table 1). All series exhibited progressively higher tumour growth 

rates over time (Extended Data Fig. 3b–d) and maintained hormone receptor status 

from early to late passages (Supplementary Tables 4 and 5). Bulk WGS and scWGS 

confirmed all four tumours harboured TP53 mutations with bi-allelic and truncal distribution 

across clones (Supplementary Table 6). Resulting phylogenetic analysis indicated all PDX 

were polyclonal at the CNA level (Fig. 2, Extended Data Fig. 4a–i), with in cis gene 

expression impacts inferred from single cell RNA-seq data derived from the same single cell 

suspensions (Supplementary Table 7, Methods).

In contrast with HER2+SA532, all TNBC PDX models exhibited evidence of clonal 

dynamics and variation in selection coefficients consistent with positive selection and 

differential fitness (Fig. 3a). For TNBC-SA1035, 11 clones were detected (Extended Data 

Figs. 4a,b and 5); the reference Clone A had initial prevalence of 20% but was not detectable 

by the last timepoint. Clone E, expanding to 69% at passage X8 from minor prevalence at 

the initial timepoint (1 + s = 1.06 ± 0.03) (Extended Data Fig. 4c,d, Supplementary Table 

3), formed a distinct clade, distinguished by a hemizygous deletion of the centromeric locus 

of 8p, an extra copy gain of the telomeric end of 11q and a focal gain of 19q12 harbouring 

the CCNE1 locus (Extended Data Figs. 4a and 5a). In TNBC-SA535, three of ten clones 

propagated after the initial timepoint (Extended Data Fig. 4d–f). Clone G, characterized 
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by loss of chromosome X, exhibited expansion from minor prevalence at passage X5 to 

76% at passage X9 (1 + s = 1.02 ± 0.01, Extended Data Fig. 4f). For TNBC-SA609 Line 

1, six clones were observed (Fig. 2a,b). Clones E (1 + s = 1.07 ± 0.02) and H (1 + s 
= 1.02 ± 0.02) had the highest selection coefficients, exhibiting growth from undetectable 

levels to 59% and 32% respectively by timepoint X10. Clone C contracted from near 100% 

at the initial timepoint to undetectable levels by X10 (Fig. 2c–e). Growth of Clones E 

(Extended Data Fig. 6a) , G, and H and contraction of Clone C (Extended Data Fig. 6b) was 

observed reproducibly in replicate transplants (Extended Data Fig. 6c–e). Notably, clones in 

the HER2+ series exhibited a maximum probability of positive selection of 0.67 suggesting 

overall clonal selection close to neutral (Extended Data Fig. 4i). In contrast, in all 3 TNBC 

series at least one clone showed probability of positive selection > 0.9 (Fig. 3a).

Forecasting clonal trajectories

Next, we experimentally validated the fitness coefficients as indicators of positive or 

negative selection. We carried out forward simulations from fitClone using selection 

coefficients estimated from the original timeseries, and compared these with serially 

passaged physical clonal mixtures of late (X8) and early (X3) timepoints from TNBC­

SA609 (Line 1). Two mixture-retransplant-serial-passage experiments were conducted with 

different initial starting conditions (Fig. 3b, Extended Data Fig. 7a). Clone E was forecast 

to fixate with highest probability (0.39) in the first, and Clones E and H were forecast 

with high probability of fixation in the second (0.14 and 0.04, respectively) (Fig. 3c, 

Extended Data Fig. 7b). The two series were then sequenced with scWGS, yielding 6,453 

and 6,730 genomes respectively. In the first mixture (Extended Data Fig. 7c), six clones 

from the original timeseries were recovered with between 26 to 767 (median 155) cells. As 

anticipated by the model, Clone E emerged as a high fitness clone (1 + s = 1.08 ± 0.03), 

and by the last timepoint, Clones E and H had swept through, comprising 94% of cells. For 

the second mixture (Extended Data Fig. 7d), four clones (C, E, G, and H) from the original 

timeseries were recovered. Clone E was the only clone that increased in prevalence (from 

5% to 24%) and had the highest selection coefficient (1 + s = 1.02 ± 0.03). In contrast, 

Clones C, G and H exhibited relatively stable prevalences (Extended Data Fig. 7d). Thus, 

both mixture experiments demonstrated expansion of the predicted highest fitness Clone E, 

even when starting from low initial proportions (2% and 5% of cells).

The fitness cost of platinum resistance

Using CNA clone specific fitness measurements, we next asked how drug treatment with 

cisplatin (standard therapy for primary TNBC) perturbs the fitness landscape of the three 

PDX series. For each timeseries, we propagated a separate branch treated with cisplatin 

(Extended Data Figs. 1b and 3, Methods) to induce gradual onset of platinum resistance, 

physically confirmed with progressive reduction in tumour growth inhibition (TGI)29 (%TGI 

from first to last cycle: TNBC-SA609: 77% to 4.7%; TNBC-SA1035: 76% to 15%; 

TNBC-SA535: 58% to 16%, Extended Data Fig. 3b–d). For TNBC-SA609 a total of five 

independent transplant lineages were surveyed with technical replicates for Lines 1 & 2 

(Methods). In each series, emergent clones on treatment were distinct in phylogenetic origin 

from those with high fitness in the untreated setting, indicating an inversion of the clone 
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fitness landscapes (Fig. 4a, Extended Data Fig. 8a). Suppression of high fitness clones 

that dominated in the absence of treatment, and expansion of low fitness and/or previously 

unobserved genotypes led to a substantially altered rank order of selection coefficients in 

treated samples relative to untreated samples (Fig. 4b, Extended Data Fig. 8b–c). For TNBC­

SA609 Line 2, growth dynamics over X3-U; X4-UT; X5-UTT; X6-UTTT; X7-UTTTT (U 

= no treatment timepoint, T = treated timepoint), resulted in expansion of Clone B and its 

derivative clones (A and R), from a starting population comprised primarily of Clones C, 

D and B (Extended Data Fig. 9) in three replicate transplants. Notably, resistant clones in 

all three replicate treated lines were phylogenetically distinct from Clone H - the highest 

fitness clone in the treatment-naive setting (Extended Data Fig. 8a–c left panel, Extended 

Data Fig. 9a,e). The other two TNBC series also supported a fitness inversion, exhibiting 

monotonically decreasing prevalence of treatment-naive high fitness clones, and increasing 

prevalence of low fitness clones. Importantly, in both TNBC-SA535 and TNBC-SA1035, 

both high and low fitness clones were observed in initial conditions, ruling out sampling bias 

as a strict determinant of selection dynamics (Extended Data Figs. 10 and 5). Specifically, 

low fitness clones in the untreated series all increased, with the fittest clones under no 

treatment decreasing to near zero prevalence (e.g., TNBC-SA535 Clone G (Extended Data 

Fig. 10a) ; TNBC-SA1035 Clone E). Probability of positive selection increased in the 

treatment series (Extended Data Fig. 8d), indicating more clones under positive selection in 

the cisplatin setting, and selection coefficients exhibited a wider variance between clones.

Finally, we tested the impact of lifting the drug selective pressure at each timepoint, with 

drug holiday replicate transplants (Extended Data Figs. 1b and 3a–e). In TNBC-SA609, 

inverted fitness was reversible in a short interval (Extended Data Fig. 9). In the first drug 

holiday X5-UTU, clonal composition reverted to consist predominantly of precursor Clone 

B with 90% abundance, and only 10% abundance from Clone A (Extended Data Fig. 9c, 

d-Line 1, Line 3-Holiday panel,e). However, X6-UTTU and X7-UTTTU consisted of >99% 

Clone A, similar to their on-treatment analogues, and no reversion was detected. Thus, when 

clonal competition was possible in the absence of drug, cells derived from the precursor 

B clade outcompeted Clone A, indicating clone-specific cisplatin resistance has a fitness 

cost. Moreover, the specificity of reversion between X4-UT to X5-UTU reflects selection 

of predefined clones with differential fitness. The TNBC-SA1035 series exhibited more 

moderate reversibility. Clone G growth was attenuated from 10% at X5-UT to 9% at X6­
UTU, compared to 20% at X6-UTT (Extended Data Fig. 5b–e). Similarly, in TNBC-SA535 

(Extended Data Fig. 10c–e) growth attenuation of the highest fitness Clone A (Extended 

Data Fig. 10b) in the treatment setting was observed in the holiday setting, and Clone 

E exhibited clonal fractions similar to treated timepoints at X7-UTTU, X8-UTTU, and X9­
UTTTU. However, Clone E increased to 32% in X10-UTTTTU from 10% in X9-UTTTT. 

Thus, in all series, treatment selective pressure was reversible with drug holidays, consistent 

with a fitness cost to platinum resistance.

Discussion

In population genetics, the repeated observation of dominance or decline in clones, defined 

here by CNA genotypes, implies that either the genotype or a factor heritably linked to 

the genotype (such as SNVs or epigenetic states), is a determinant of fitness. We expect 
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additional variation due to SNVs, structural variations from genomic rearrangements, or rare 

CNAs beyond first approximation estimates will additively impact fitness. However, deeper 

population sampling would be required to appropriately capture these effects. Our results, 

decoded by measuring single cell timeseries, suggest that fitness linked to CNAs may 

be under-appreciated. This has implications for interpreting etiologic processes of tumour 

suppressor driven cancers, shown by inducing TP53 loss, where rates of structural variation 

acquisition and deviation away from diploid configurations conferred fitness advantages. 

Over successive generations in vitro with TP53 mutational perturbation and in three TNBC 

PDX in the context of cisplatin drug treatment, emergent CNA measurably contributed 

to the fitness landscape, consistent with a continual diversifying mechanism that induces 

competitive clonal advantages.

Our results demonstrate that timeseries fitness mapping is a realistic initial approach for 

studying how the impact of driver mutations inducing genomic instability leads to clonal 

expansions and evolutionary selection. The ability to genetically manipulate the systems we 

describe provides a future path to mechanistically dissecting fitness impacts of individual 

CNA regions. Furthermore, as the impact of drug intervention on CNA driven cancer 

evolution is a key determinant of patient outcomes across all human cancers20,21,30–32, 

forecasting the trajectories of cancer clones is of immediate importance to understanding 

therapeutic response in cancer, and for deploying adaptive approaches10. We suggest the 

presence of resistant genotypes that have a chemotherapeutic fitness cost may define 

time windows within which clonal competition could be exploited. Future investigation in 

patients with timeseries tumour or cell-free DNA- based population genetics modeling may 

therefore enable evolution-informed approaches to clinical management33.

Methods

All methods are detailed in the Supplementary Information. We studied normal human 

breast epithelial cells24 in vitro and in breast cancer PDX, sequencing >129,500 whole 

genomes from single cells over interval passaging (scWGS DLP+ method28 Extended Data 

Fig. 1a,b, Supplementary Table 1). After read-coverage based quality control and omission 

of replicating cells, we retained >42,000 genomes from 113 libraries across cell lines and 

PDX transplants for analysis (average 995,000 reads/cell, 0.022x coverage). We calculated 

phylogenetic trees over cells to identify genotypic clones and their relative abundances as a 

function of time

Human mammary cell lines and serial passaging and mixtures

The human mammary epithelial cell line 184-hTERT wild type and isogenic 184­

hTERT-P53 KO cell line, generated from 184hTERT WT-L9, were grown as previously 

described24,28. p53−/− was knocked out by using CRISPR/Cas9 technology and one 

clone (99.25) was serially passaged to further subdivided at passage 10 into “branch a” 

and “branch b” parallel knockout branches (NM_000546(TP53):c.[156delA];[156delA]), 

p.(GIn52Hisfs*71), and the absence of TP53 protein was confirmed with western blot 

(Supplementary information). Two branches of 184-hTERT-p53−/− (clone 95.22) along with 

the counterpart wild type branch were serially passaged over ~55-60 generations, by seeding 
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~1 million cells into a new 10 cm tissue culture treated dish (FalconCABD353003) and 

cryopreserving every fifth passage. Mammary Epithelial Cell SingleQuot Kit Supplements 

(MEGM™), Growth Factors (Lonza CC-4136), with 5 μg ml−1 transferrin (Sigma) and 2.5 

μg ml−1 isoproterenol (Sigma) were used as a growth media as previously described24. 

Cells were grown to around 85-90% confluence, trypsinized for 2 minutes (Trypsin/EDTA 

0.25%,VWR CA45000-664), re-suspended in cryopreservation media (10% DMSO-Sigma­

D2650, 40% FBS-GE Healthcare SH30088.03, 50% media) and frozen to −80 °C at a rate 

of −1 °C min−1. Cells were cultured continuously from passage 10 (post initial cloning24) to 

passage 60 for 184-hTERT WT and upto passage 57 and passage 55 for the p53−/− branches 

a and b, respectively, from initial cloning/isolation. Genome sequencing was undertaken at 

passages 25, 30, 51 and 60 from the wild type branch, passages 10, 15, 25, 30, 40, 50 and 

57 from p53−/− branch a and passages 20, 30, 35, 40, 45, 50 and 55 from p53−/− branch 

b. Also, the transcriptome sequencing was carried out on passages 11 and 57 of p53−/− 

branch a and passages 15, 30 and 50 of p53−/− branch b. All cell line cultures were tested 

negative for mycoplasma by ‘PCR Mycoplasma contamination detection test’. The initial 

conditions of the mixtures were biased in favour of diploid cell populations in a 3:1 ratio of 

184-hTERT WT p28 (SA039) and p53−/− clone 95.22 (SA906b) passage 61. Prior to plating 

in the culture, an aliquot was subjected to DLP+ to measure the baseline clonal composition 

labelled as X0, and 2,701 single cell genomes were generated. At 80% confluence on the 

plate, cells from X1 were harvested and serially passaged upto the 20th passage. Single cell 

whole genome sequencing data from three time points X0, X1 and X5 with a median of 898 

cells per timepoint was collected.

Establishment and serial passaging of patient derived xenografts

The Ethics Committees at the University of British Columbia approved all the experiments 

using human resources. Patients in Vancouver, British Columbia were recruited, and samples 

were collected under the tumour tissue repository (TTR-H06- 00289) and transplanted in 

mice under the animal resource centre (ARC) bioethics protocol (A19-0298-A001) approved 

by the animal care committee (University of British Columbia BC Cancer Research Ethics 

Board H20-00170) protocols. After informed consent, tumour fragments from patients 

undergoing excision or diagnostic core biopsy were collected. Tumour materials were 

processed as described in34 and transplanted in 8-12 weeks old, female mice approved 

by the animal care committee. Briefly, tumour fragments were chopped finely with scalpels 

and mechanically disaggregated for one minute using a Stomacher 80 Biomaster (Seward 

Limited, Worthing, UK) 1 ml to 2 ml cold DMEM/F-12 with Glucose, LGlutamine and 

HEPES (Lonza 12-719F). An aliquot of 200 μl of medium (containing cells/clumps) from 

the resulting suspension was used equally for 4 transplantations in mice. Tumours were 

transplanted subcutaneously in mice as previously described34 in accordance with SOP 

BCCRC 009.

Serial passaging of PDX

Tumours were serially passaged as previously described34. Briefly, for serial passaging of 

PDX, xenograft-bearing mice were euthanized when the size of the tumours approached 

1000 mm3 in volume (combining together the sizes of individual tumours when more 

than one was present). The tumour material was excised aseptically, and processed as 
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described for primary tumour. Briefly, the tumour was harvested and minced finely with 

scalpels then mechanically disaggregated for one minute using a Stomacher 80 Biomaster 

(Seward Limited, Worthing, UK) in 1 ml to 2 ml cold DMEM-F12 medium with Glucose, 

L-Glutamine and HEPES. Aliquots from the resulting suspension of cells and fragments 

were used for xenotransplants in the next generation of mice and cryopreserved. Serially 

transplanted aliquots represented approximately 0.1-0.3% of the original tumour volume. 

HER+SA532 and TNBC-SA609 PDX were passaged upto 10 generations and scDNAseq 

was carried out at each timepoint. The other three untreated and treated PDX timeseries 

were generated in the same way for 4-5 passages.

TNBC PDX tumour mixing experiments

Frozen vials from the untreated TNBC PDX passages three (X3) and eight (X8), were 

thawed and physically remixed in two different volumetric proportions of X3:X8 by tumour 

weight. The ratio of approximately 1:1 and 1:0.4, labelled as mixture branch a and branch b, 

respectively. From each of different dilutions, 200 μl of aliquot was transplanted in two mice 

each using the same protocol described above. Before transplantation, a small proportion of 

the physical mixture of cells from the 1:1 ratio, was subjected to whole genome single cell 

sequencing to measure the baseline clonal composition labelled as M0 and its subsequent 

PDX as M1. The tumour cell mixture was then serially passaged over 4 generations for 

branch a and 5 generations for branch b, designating the transplants as M1-M4 and M1 to 

M5, respectively. Tumours from serial passages (X3:X8) from both mixtures branches were 

collected and analysed with scWGS (DLP+) as for other samples.

TNBC PDX timeseries treatment with cisplatin

Female NRG mice of 8-12 weeks of age and genotype were used for randomized controlled 

transplantation treatment experiments. Drug treatment with cisplatin, an analog of platinum 

salts was commenced when the tumour size reached approximately 300 mm3 to 400 mm3. 

Cisplatin (Accord DIN: 02355183) was administered intraperitoneally (IP) at 2 mg kg−1 

every third day for 8 doses maximum (Q3Dx8). The dosage schedule was adjusted 50% 

less than what is mentioned in the literature35,36 and around one third of the maximum 

tolerated dose (MTD) calculated in the immunodeficient female mice of 8-12 weeks of age 

(Supplementary Information). Low dose cisplatin pulse and tumour collection timings were 

optimized to achieve the experimental aims of tumour resistance. The aim was to collect the 

tumour at around 50% shrinkage (from the starting tumour at the time treatment started) in 

size when measured with a caliper. Cisplatin 1 mg ml−1 was diluted in 0.9% NaCl to obtain 

concentrations 200 μl/20 g of mouse weight and kept in glass vials at room temperature. 

Quality control (QC) drug samples were prepared freshly on each day prior to the dosing. 

For all three TNBC PDX, 8 female mice at initial passage were transplanted in parallel 

for the treatment/treatment holiday study group. The choice of sample size was made to 

get atleast 3 mice in the treatment group. Half of the mice were treated with cisplatin 

when tumours exhibited ~ 50% shrinkage, the residual tumour was harvested as above and 

re-transplanted for the next passage in the group of eight mice. Again, half of the mice at X5 

were randomly kept untreated while the other half were exposed to cisplatin following the 

same dosing strategy. Four cycles of cisplatin treatment were generated, with a parallel drug 

holiday group at each passage. Cisplatin treated tumours were coded as UT, UTT, UTTT, 
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UTTTT for each of the four cycles of drug respectively, while the tumours on drug holiday 

were labelled as UTU, UTTU and UTTTU for the three timepoints. The number of Ts in 

the coded label shows the number of cycles of drug exposure. scWGS and scRNAseq was 

carried out on each tumour during the timeseries treatment with counterpart drug holiday 

and untreated controls (Extended Data Fig. 3a). In particular, TNBC-SA609 PDX was 

processed to establish 5 independent lines to explore the biological and technical replicate 

tumours as well as treatment series. All five lines from TNBC-SA609 were passaged 

identically after initial establishment. Line 1 untreated samples were seeded (X3 to X4) 

from a freshly dissociated tumour, whereas 4 other lines (all treated and Line 2 Un-treated) 

were seeded (X3 to X4) from a frozen vial of tumour. Technical replicates were collected 

and sequenced for Lines 1, 2.

PDX tumour growth measurement curves

NRG mice received sub-cutaneous (SQ) inoculation of tumour cells (150 μl) on day 0. The 

tumours were allowed to grow to palpable solid nodules. Around 7-9 days after they were 

palpable, their size was measured with calipers every 3rd day. Tumours were measured in 

two dimensions using a digital caliper and expressed as tumour volume in mm3; defined 

as: [Volume= 0.52×(Length)×(Width)×(Width)]. Record of patient derived xenografts 10 

generations timeseries, HER2+SA532 and TNBC-SA609 exhibited progressively higher 

tumour growth rates in later passages (Extended Data Fig. 3b–d). Tumour growth inhibition 

(TGI) percentage range was defined as: [1 − (mean volume of treated tumours)/(mean 

volume of control tumours) × 100%]29.

Single cell whole genome sequencing and library construction with DLP+

All libraries, including metrics on number of cells, average number of reads per cell and 

quality control metrics are listed in Supplementary Table 1. Tumour fragments from PDX 

samples were incubated with collagenase/hyaluronidase, 1:10 (10X) enzyme mix (STEM 

CELL technologies, Catalog #07912) in 5 ml DMEM/F-12 with Glucose, L-Glutamine and 

HEPES (Lonza 12-719F) and 1%BSA (Sigma) at 37 °C. Intermittent gentle pipetting up and 

down was done every 30 minute for 40-60 seconds, during the first hour with a wide bore 

pipette tip, and every 15-20 min for the second hour, followed by centrifugation (1100 rpm, 

5 min) and supernatant removal. The tissue pellet was resuspended in 1 ml of 0.25 percent 

trypsin-EDTA (VWR CA45000-664) for 1 min, superadded by 1 ml of DNAse/dispase 

(100 μl/900 μl), (StemCell 07900,00082462) pipetted up and down 2 min, followed by 

neutralization with 2% FBS in Hanks’ Balanced Salt Solution (HBSS) with 10 mM HEPES 

(STEMcells Catalog #37150). Undigested tissue was removed by passing through a 70 μm 

filter and centrifuged for 5 min at 1100 rpm after topping it up to 5 ml with HBSS. Single 

cells pellet was resuspended in 0.04% BSA (Sigma) and PBS to achieve ~1 million per ml 

concentration of cells for robot spotting for DLP+.

Robot spotting of single cells into the nanolitre wells and library construction

DLP+ library construction was carried out as described in28. Briefly, single cell suspensions 

from cell lines and patient derived xenografts were fluorescently stained using CellTrace 

CFSE (Life Technologies) and LIVE/DEAD Fixable Red Dead Cell Stain (ThermoFisher) 

in a PBS solution containing 0.04% BSA (Miltenyi Biotec 130-091-376) incubated at 37 
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°C for 20 minutes. Cells were subsequently centrifuged to remove stain, and resuspended 

in fresh PBS with 0.04 percent BSA. This single cell suspension was loaded into a 

contactless piezoelectric dispenser (sciFLEXARRAYER S3, Scienion) and spotted into the 

open nanowell arrays (SmartChip, TakaraBio) preprinted with unique dual index sequencing 

primer pairs. Occupancy and cell state were confirmed by fluorescent imaging and wells 

were selected for single cell CN profiling using the DLP+ method28. Briefly, cell dispensing 

was followed by enzymatic and heat lysis. After lysis, tagmentation mix (14.335 nL TD 

Buffer, 3.5 nL TDE1, and 0.165 nL 10% Tween-20) in PCR water were dispensed into 

each well followed by incubation and neutralization. Final recovery and purification of 

single cell libraries was done after 8 cycles of PCR. Cleaned up pooled single-cell libraries 

were analyzed using the Aglient Bioanalyzer 2100 HS kit. Libraries were sequenced at 

UBC Biomedical Research Centre (BRC) in Vancouver, British Columbia on the Illumina 

NextSeq 550 (mid- or high-output, paired-end 150-bp reads), or at the GSC on Illumina 

HiSeq2500 (paired-end 125-bp reads) and Illumina HiSeqX (paired-end 150-bp reads). The 

data was then processed to a quantification and statistical analysis pipeline28.

Processing of cell lines and patient derived xenografts for scRNAseq data

All libraries generated using 10x scRNAseq are listed in Supplementary Table 8. 

Suspensions of 184-hTERT p53wt and KO cells were fixed with 100% ice-cold methanol 

prior to preparation for scRNAseq. Single cell suspensions were loaded onto the 10x 

Genomics single cell controller and libraries prepared according to the Chromium Single 

Cell 3’ Reagent Chemistry kit standard protocol. Libraries were then sequenced on an 

Illumina Nextseq500/550 with 42bp paired-end reads, or a HiSeq2500 v4 with 125bp 

paired-end reads. 10x Genomics CellRanger, V3.0.2 (V3 chemistry), was used to perform 

demultiplexing, alignment and counting.

Viable frozen tumour clumps and fragments were incubated with digestion enzymes as with 

DLP+ single cells preparation (as above) and the cells were resuspended in 0.04% BSA in 

PBS. Dead cells were removed using the Miltenyi MACS Dead Cell Removal kit and cells 

were processed as previously described37. To avoid processing artifacts and dissociation 

methods, the timings were tightly controlled between the samples. Library construction of 

the samples at the same time point was performed on the same chips. Library construction 

sample batch groupings are listed in Supplementary Table 7.

Phylogenetic tree inference, clone determination and clonal abundance measurements

We developed a single cell Bayesian tree reconstruction method based on copy number 

change point binary variables called sitka23 to fit phylogenetic trees to the copy number 

profiles. In the output of sitka, cells are the terminal leaf nodes of the phylogenetic 

topology. The inferred trees were post-processed to identify clonal populations from major 

clades. With clonal populations defined, their abundances were counted as a function of 

timeseries and these were used for fitness inference (see below). Clones were constructed 

by identifying connected components (each a clade or a paraphyly) in the phylogenetic 

tree reconstruction. The tree was ‘cut’ into discrete populations according to the following 

procedure. The inputs to the algorithm are the rooted phylogenetic tree and the copy number 

states of its cells and the minimum and maximum allowed clone sizes. A clone is defined 
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as connected components (each a clade or a paraphyly) in the graph tree composed of cell 

of sufficient genomic homogeneity. The degree of homogeneity can be tuned by limiting the 

number of loci and the difference in copy number of sub-clades in a clone. The algorithm 

works by first finding the coarse structure, that is dividing the tree into major clades and then 

looking for fine structures within each clade by traversing the tree in a bottom up manner 

and merging loci that are sufficiently similar. The remaining loci constitute the roots of 

detected clades. See the Supplementary Information for more details.

For the cell lines datasets, namely p53wt and p53−/−a and p53−/−b, we opted to also split 

clades by the ploidy of their constituent cells, where ploidy is defined as the most recurrent 

CN state in the cell. Once clones are identified, we set the abundance of each clone at a 

specific timepoint as the fraction of cells in that clone from that timepoint. We note that for 

the data from WGS bulk sequencing34 we used the following procedure to estimate clonal 

fractions: (i) let ν denote the mutational cellular prevalence (rows) estimated over multiple 

timepoints (columns) using the multi-sample PyClone38 model, (ii) define β as the genotype 

matrix (which mutation-cluster (rows) is present in which clones (columns)), (iii) then we 

set βγ = ν where γ = β−1ν are the clonal fractions over time, and (iv) we solve for γ using 

QR-decomposition.

Fitness modelling

We describe in this section a Bayesian state-space model (fitClone) based on the Wright­

Fisher8 diffusion with selection. For simulation studies see the Supplementary Information.

fitClone: a Bayesian fitness model for timeseries data

We developed a Bayesian model and associated inference algorithm based on a diffusion 

approximation to K-allele Wright-Fisher model with selection.

We start with timeseries clonal abundance measurements over a fixed number of clones and 

estimate two key unknown parameters of interest: fitness coefficients si for Clone i which 

represents a quantitative measure of the growth potential of a given clone; and distributions 
over continuous-time trajectories, a latent (unobserved) population structure trajectory in 

‘generational’ time. After briefly reviewing and setting notation for Wright-Fisher diffusions 

with selection, we introduce the Bayesian model we used to infer quantitative fitness of 

clones from timeseries data. We then describe our posterior inference method and ancillary 

methods for effective population size estimation, and reference clone selection. A key 

difference of fitClone with methods that use a transformation of allele fractions to infer the 

existence of clones and focus on attempting to infer dynamics from bulk sequencing and 

single time points (e.g., the method of2) is that the inputs and outputs are fundamentally 

different, addressing fundamentally non-overlapping analytical problems. In particular, (i) 

fitClone models explicitly defined clones and their timecourse data, and (ii) fitClone is a 

generative model which allows for forecasting and prediction. See9 for more background 

on the Wright-Fisher model and39–47 for previous work on inference algorithms for Wright­

Fisher models.
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Wright-Fisher diffusions with selection

Let K denote the number of clones obtained using the tree cutting procedure described 

above, and denote by Zt = (Zt
1, …, Zt

K) the relative abundance of each of the K clones at time 

t in the population. The process Zt satisfies, for all t, the constraints i = 1
K Zt

i = 1 and Zt
i ≥ 0

for i ∈ {1, …, K}. We would like to model the process Zt using a Wright-Fisher diffusion 

with selection.

A Wright-Fisher diffusion can be written in stochastic calculus notation as

dZt = μs, Ne(Zt)dt + σ(Zt)dW t, (1)

where {Wt} is a K-dimensional Brownian motion, and the functions μ and σ, defined below, 

respectively control the deterministic and stochastic aspects of the dynamics.

For z = (z1, z2, …, zK), the vector-valued function μs, Ne:ℝK ℝK is defined as

μs, Ne(z) = (μ1
s, Ne(z), …, μK

s, Ne(z))

μi
s, Ne(z) = Nezi(si − s, z ),

where ⟨x,y⟩ is the inner product of vectors x and y, Ne, the effective population size, 

discussed in more details below, and the parameters s = (s1, s2, …, sK) are called fitness 
coefficients. The interpretation of the fitness parameters is that if si > sj, then subpopulation 

i has higher growth potential compared to subpopulation j. The matrix-valued function 

σ:ℝK ℝK2
 is defined as

σ2(z) = [σi, j2 (z)]i, j ∈ 1, …, K

σi, j2 (z) = zi(δi, j − zj),

where δi,j is the Kronecker delta. Given an initial value z, we denote the marginal 

distribution of the process at time t by Zt ~ WF(s, Ne, t, z).

The fitClone model

Given as input timeseries data measuring the relative abundances of K populations at a 

finite number of timepoints, the output of the fitClone model is a posterior distribution 

over the unknown parameters of interest: the fitness parameters s described in the previous 

section, and the continuous-time trajectories interpolating and extrapolating the discrete set 

of observations.
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To do this, fitClone places a prior on the fitness parameters s, and uses a state space model 

in which the latent Markov chain is distributed according to a Wright-Fisher diffusion, 

and the observation model encodes noisy sampling from the population at a discrete set of 

timepoints.

Each component of the fitness parameter, now a random variable Si, is endowed with a 

uniform prior over a prior range I,

Sk ∼ Uniform(I), k > 1,

where we set S1 = 0 to make the model identifiable. We used I = (−10, 10) in our 

experiments. Note that the posterior is contained far from the boundaries of this prior range 

in all experiments.

The initial distribution, i.e. the distribution of the value of the process at time zero, is 

endowed a Dirichlet distribution with hyper-parameter (1,1,…, 1),

Z0 ∼ Dirichlet(1, 1, …, 1) .

This can equivalently be seen as a uniform distribution over the K-simplex.

Let t1 < t2 < … < tT−1 < tT denote a set of process times at which measurements are 

available. Ideally, we would like the latent transition kernels to be given by the marginal 

transitions of the Wright-Fisher diffusion from last section,

Ztm Ztm − 1, S ∼ WF(S, Ne, tm − tm − 1, Ztm − 1), (2)

where Ne is estimated as a pre-processing step. In practise we resort to approximating the 

distribution in Equation (2) via a Euler-Maruyama scheme.

Finally, for each t ∈ {t1, t2, …, tT}, let Y t = Y t
1, …Y t

K  denote a noisy observation of the 

population prevalences at process time t. In the single-cell context, this is obtained by 

counting, for each clone, the number of cells coming from each passage, and normalizing 

by the number of cells sequenced in that passage. For simplicity, in both cases we use a 

normal observation model, i.e., Y t
i |Zt

i ∼ N(Zt
i, σobs

2 ), where σobs
2 = npi(1 − pi) and n = jY t

j

and pi = Y t
i/n..

Estimating the effective population size

Following48 we use F′s an unbiased moment-based estimator of the Ne where Ne = 1
F′S

; and 

t is the number of generations between each passage.

F′s = (1/t) Fs(1 − 1/(2n)) − 1/n
(1 + FS /4)(1 − 1/ny) , (3)

Salehi et al. Page 14

Nature. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Fs = (x − y)2
z(1 − z)  and z = (x + y)/2 and n =

2nynx
ny + nx

, the harmonic mean of the sample size 

(initial population size at the passage) nx and ny at the two timepoints. x and y are the minor 

allele frequencies at the two timepoints.

In the multi-allelic case, we have:

Fs = 1
K i = 1

K (xi − yi)2
zi(1 − zi)

.

This is equivalent to plan 2 in48, sampling before reproduction and without replacement.

We used the sum of clone sizes as the approximate initial population size at each timepoint/

passage. Supplementary Table 3 lists the resulting Ne estimates. Since fitClone is robust to 

the choice of Ne in this range, we set Ne = 500.0 for all datasets analysed in this paper. We 

note that in our model we assume that the effective population size remains constant over all 

timepoints.

Probability of positive selection

To infer evidence of positive selection, we computed a posterior distribution over the 

difference in selection coefficients between pairs of clones. Here, higher probability reflects 

the posterior density that one clone has higher fitness than another. As such, the higher the 

mass of this distribution, the more likely positive selection is operating over the timeseries.

Distribution of the probability of positive selection over pairs of clones was computed as 

max(P(si > sj), 1 − P(si > sj)) for all pairs of clones i, j such that i > i. Let s1:M = (si, 

s2, …, sM) be the M post burn-in MCMC samples for the selection coefficients where sm 

= {sm,1, sm,2, …, sm,K−1} are the sampled selection coefficients of clones 1 to K − 1 at 

iteration m. Define P(si > sj) = m = 1
M I(sm, i > sm, j) for i, j ∈ {1, …, K − 1} be the posterior 

probability of Clone i having a larger coefficient than Clone j. We computed the effect size 

as the absolute value of the expected difference between the selection coefficients of clones 

i, j, that is |E(si − sj) | = | m = 1
M (sm, i − sm, j)|.

Selecting the reference clone

In our formulation of the Wright-Fisher diffusion one reference clone with selection 

coefficient of zero has to be chosen. The selection coefficient of the other clones are reported 

relative to this value. For instance, if the fittest clone is chosen as reference, the other clones 

will have negative selection coefficients. We chose to set the reference to a clone with 

an approximately monotonically decreasing trajectory (clonal abundance over time). This 

choice was motivated by a desire to infer a non-negative value for the fittest clones. The 

model is robust to the choice of the reference clone. We run the inference procedure over 

the same dataset multiple times, each time changing the reference. The posterior ordering of 

clones over different choices of clones remained mostly identical.
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Forecasting clonal trajectories

We forward-simulated trajectories from fitClone using the sample median of the estimated 

selection coefficients in TNBC-SA609 (Line 1) (B=1.00 ± 0.01, D=1.00 ± 0.01, G=1.01 

± 0.01, H=1.02 ± 0.02, E=1.07 ± 0.02). We compared two independent starting clonal 

proportions of (B=0.08, C=0.25, D=0.51, E=0.02, G=0.08, H=0.07) and (C=0.02, D=0.00, 

E=0.05, G=0.06, H=0.87), derived by physically mixing cells from a late (X8) and an early 

(X3) passage of the TNBC-SA609 (Line 1) series in mixture-retransplant-serial passage 

experiments (Fig. 3b).
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Extended Data

Extended Data Fig. 1. 
Schematic overview of experimental design for quantitatively modeling clone-specific 

fitness. Timeseries sampling from in vitro a) and PDX b) systems. Grey circles represent un­

treated, blue represents Cisplatin treated and grey with a blue outline denotes drug-holiday 

samples. c) Clonal dynamics of cell populations observed over time. Whole genome single 

cell sequencing of timeseries samples gives copy number (left) that in turn is used to infer a 
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phylogenetic tree (middle), and clonal fractions over time (right). d) fitClone: mathematical 

modeling of fitness with diffusion approximation to the K-type Wright-Fisher model. e) 
fitClone inputs of clonal dynamics measured over time series (left), and inferred trajectories 

(middle) and posterior distributions of fitness coefficients (right). Boxplots are as defined in 

Fig. 1b.

Extended Data Fig. 2. 
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Impact of p53 mutation on fitness in 184hTERT cells. a) Heatmap representation of copy 

number profiles of 2,713 p53wt cells, grouped in 6 phylogenetic clades. b) Phylogeny of 

cells over the timeseries p53wt where nodes are groups of cells (scaled in size by number) 

with shared copy number genotype and edges represent distinct genomic breakpoints. 

Shaded areas represent clones. Tree root is denoted by the red circle. c) Observed clonal 

fractions over time, inferred trajectories and quantiles of the posterior distributions over 

selection coefficients of fitClone model fits to p53wt with respect to the reference Clone F. 

d) Analogous to a but for p53−/−a (n=3,264 cells p53−/−a cells). e) Clonal genotypes of three 

representative clones for p53−/−b showing high level amplification of TSHZ2 in Clone D, 

Chr4 loss in Clone E. Reference diploid Clone I is shown for comparison. f, g) Analogous to 

b, c but for p53−/−b (n=4,881 p53−/−b cells; reference Clone I). h) Number of segments per 

clone in hTERT WT and p53−/−a and p53−/−b branches. i) Number of mutations in p53−/−a 
and p53−/−b branches. Boxplots are as defined in Fig. 1b.
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Extended Data Fig. 3. 
PDXs tumour growth and clonal dynamics with cisplatin. a) Experimental design of 

cisplatin treatment in PDX. The solid blue colour representing cisplatin treated tumours 

(UT,UTT,UTTT,UTTTT); blue outlined in grey as drug holiday (UTU,UTTU,UTTTU); grey 

as untreated series. b-d) Tumour response curves in TNBC-SA609, TNBC-SA535 and 

TNBC-SA1035 treated with Cisplatin (blue), in drug Holiday (green) and untreated (red) 

where each tumour replicate is shown in a different shade. The vertical axis on the right 

denotes the status of tumours and on the left denotes the tumour volumes. The top horizontal 

axis represents number of cisplatin cycles and at the bottom days from palpable tumours 

to collection. The red arrows indicate the start of treatment and the black arrows indicate 
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the tumour sampled for scDNAseq. The bottom horizontal axis shows the tumour passage 

number. Each line in the big box is an individual tumour showing the growth over time. e) 
(top) Clonal trajectories of the clone with the highest inferred selection coefficient in the 

treatment regime (solid black line) and the drug holiday counterpart (dashed red line) at each 

timepoint, in the three TNBC PDX timeseries; (bottom) As the top row, but for a clone that 

grows back in the holiday regime.

Extended Data Fig. 4. 
Comparison of fitness landscapes of breast cancer PDX models. a) Heatmap representation 

of copy number profiles of 2,015 cells from TNBC-SA1035, grouped in 11 phylogenetic 

clades. b) Phylogeny for TNBC-SA1035. c) Observed clonal fractions, inferred fitClone 

trajectories and quantiles of the selection coefficients with respect to the reference Clone A 
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for the TNBC-SA1035 UnRx model. d-f) Analogous to a-c but for TNBC+SA535 (n=1,549 

cells; reference Clone C). g-i) Analogous to a-c but for HER2+SA532 (n=2,193 cells; 

reference Clone A). Boxplots are as defined in Fig. 1b.

Extended Data Fig. 5. 
Impact of pharmacologic perturbation with cisplatin on fitness landscapes in TNBC­

SA1035. a) Copy number genotype of Clone E from the untreated timeseries. b) Copy 

number genotype of clone H from treated timeseries (arrows indicate differences to Clone 

E). c) Evolution in absence of treatment and as a function of drug treatment. For each 

sample, the phylogeny with clonal abundance from DLP+ is shown, reflecting selection. d) 
The observed clonal abundances and e) the summarised clonal phylogenetic tree.
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Extended Data Fig. 6. 
Tumour evolution in absence of pharmacologic perturbation in TNBC-SA609 line 1. a) 
Copy number genotype of Clone E and b) copy number genotype of Clone C, the reference 

clone (arrows indicate differences to Clone E). c) Evolution in absence of treatment. 

For each sample, the phylogeny with clonal abundance from DLP+ is shown, reflecting 

selection. d) The observed clonal abundances and e) the summarised clonal phylogenetic 

tree.
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Extended Data Fig. 7. 
Mixture experiment in TNBC-SA609 PDX Line 1. a) Clonal proportions of TNBC-SA609 

Line 1 X3 and X8 used to generate the initial mixture M0 and subsequent serial 

passaging, yielding 5 samples for mixture experiment b. b) Forward simulations from the 

original timeseries and starting population proportions in the initial experimental mixture 

b. Simulated trajectories are shown superimposed with mean simulation (red line) and 

observed clonal fractions (blue dots). The observation time is adjusted to match the 

simulation diffusion time. c) Summary phylogenetic tree, inferred trajectories and fitness 

Salehi et al. Page 24

Nature. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficients (relative to reference Clone C) for mixture a. d) As in c but for mixture b 
(relative to reference Clone C). Boxplots are as defined in Fig. 1b.

Extended Data Fig. 8. 
Fitness landscape reversal in early Cisplatin treatment in TNBC PDX models. In each 

column, the left and right sub-panels are from the untreated and treated branches 

respectively. a) Phylogenetic trees annotated with fittest clones in -Rx and Rx. b) Inferred 

trajectories, first coloured by clonal assignment, and then coloured by fitness rank, and 

c) quantiles of selection coefficients of fitClone model fits to each branch with respect 

to the reference Clone C in TNBC-SA609, Clone C in TNBC-SA535, and Clone A in 
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TNBC-SA1035. e) Distribution over the probability of positive selection over pairs of clones 

for each series. Boxplots are as defined in Fig. 1b.

Extended Data Fig. 9. 
Impact of pharmacologic perturbation with cisplatin on fitness landscapes in TNBC-SA609. 

a) Copy number genotype of Clone H from untreated timeseries. b) Copy number genotype 

of Clone A from the treated timeseries (arrows indicate differences to Clone H). c) Evolution 

in absence of treatment (top) and as a function of treatment (bottom). For each sample, 

the phylogeny with clonal abundance from DLP+ is shown, reflecting selection. d) The 

observed clonal abundances. Starred timepoints are identical and reproduced to denote the 

identical starting point. e) Summarised clonal phylogenetic tree.
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Extended Data Fig. 10. 
Impact of pharmacologic perturbation with cisplatin on fitness landscapes in TNBC-SA535. 

a) Copy number genotype of clone G from untreated timeseries. b) Copy number genotype 

of clone A from treated timeseries (arrows indicate differences to clone E). c) Evolution in 

absence of treatment and as a function of drug treatment. For each sample, the phylogeny 

with clonal abundance from DLP+ is shown, reflecting selection. d) The observed clonal 

abundances and e) the summarised clonal phylogenetic tree.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Replicate branch of p53 mutant cells and engineered mixture experiment. a) Phylogeny of 

3,264 p53−/−a cells, grouped in 11 phylogenetic clades over the timeseries where nodes are 

groups of cells (scaled in size by number) with shared copy number genotype and edges 

represent distinct genomic breakpoints. Shaded areas represent clones. Tree root is denoted 

by the red circle. b) Observed clonal fractions over time, inferred trajectories and quantiles 

of the posterior distributions over selection coefficients of fitClone model fits to p53−/−a 
with respect to the reference Clone K. In the box plots, the white line represents the median 

of the distribution, box edges show 1.5× the interquartile range and whiskers extend to 25th 

and 75th percentiles. c) Clonal fraction of the diploid reference over time. d) Distribution 

over the probability of positive selection (PPS) over pairs of clones computed as max(P(si > 

Sj), 1 – P(si > sj)). Purple dots denote PPS over 0.9. e) Mixture experiment of 75% TP53wt 
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(timepoint X28) and 25% TP53−/−b (timepoint X61). f) Observed clonal fractions in the 

mixture series with diploid, p53wt shown as (WT-F).
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Figure 2. 
Fitness landscapes of untreated TNBC-SA609 UnRx PDX. a) Heatmap representation 

of copy number profiles of 3,198 cells from TNBC-SA609, grouped in 6 phylogenetic 

clades. b) Phylogeny for TNBC-SA609. c) observed clonal fractions, d) inferred fitClone 

trajectories and e) quantiles of the selection coefficients with respect to the reference Clone 

C. Boxplots are as defined in Fig. 1b.
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Figure 3. 
Positive selection in TNBC PDX untreated. a) Distribution over the PPS over pairs of 

clones, analogous to Fig. 1d. b) Clonal proportions of TNBC-SA609 Line 1 at X3 and X8 

used to generate the initial mixture M0 and subsequent serial passaging, yielding 4 samples. 

c) Forward simulations from the original timeseries and starting population proportions in 

the initial experimental mixture a. Simulated trajectories are shown superimposed with mean 

simulation (red line) and observed clonal fractions (blue dots). The observation time is 

adjusted to match the simulation diffusion time.
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Figure 4. 
Fitness landscape reversal in early Cisplatin treatment in TNBC PDX models. a) 
Phylogenetic tree for the TNBC-SA1035 annotated with fittest clones in −Rx and Rx. b) 
Inversion of the fitness landscape. Clones are ranked according to their median selection 

coefficients in untreated and treated conditions, with the top-ranked clones highest.
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