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ABSTRACT: Uranyl-photocatalyzed hydrolysis of diaryl ethers
has been established to achieve two types of phenols at room
temperature under normal pressure. The single electron transfer
process was disclosed by a radical quenching experiment and
Stern−Volmer analysis between diphenyl ether and uranyl cation
catalyst, followed by oxygen atom transfer process between radical
cation of diphenyl ether and uranyl peroxide species. The 18O-
labeling experiment precisely demonstrates that the oxygen source
is water. Further application in template substrates of 4-O-5
linkages from lignin and 30-fold efficiency of flow operation display
the potential application for phenol recovery via an ecofriendly and
low-energy consumption protocol.
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Lignin, one of the largest renewable resource of arenes in
nature, is a kind of macromolecule polymerized from

aromatic monomers through C−C bonds (e.g., β-5, β-β, β-1,
and 5-5 linkages) and C−O bonds (e.g., α-O-4, β-O-4, and 4-
O-5 linkages) (Scheme 1a).1 The recovery of aromatic
chemicals from lignin would help solve the problems caused
by accelerating consumption of fossil resources and corre-
sponding environmental crisis, in which activation of C−O
linkages is one of the pivot points.2 The 4-O-5 linkage is the
most challenging part owing to its higher bond dissociation
energy (BDE = 77.74 kcal/mol) in comparison to α-O-4 (BDE
< 57.28 kcal/mol) and β-O-4 (BDE < 69.35 kcal/mol)
(Scheme 1b).3,4

Typical studies mainly focused on hydrogenolysis and
hydrolysis for C−O bond cleavage in diphenyl ether (DPE:
template substrate for 4-O-5 linkage) (Scheme 1c). A series of
elegant strategies by Hartwig, Grubbs, Mauriello, and others
have been developed for selective hydrogenolysis with or
without the assistance of transition-metal catalysts.5−13

Hydrolysis of DPE was reported by Katritzky et al.14 and
Lercher and co-workers15−17 for cleaving the 4-O-5 linkage
with great significance in lignin-first biorefinery,18 which is
thermodynamically challenging with the reaction energy of
−7.1 kcal/mol comparing to −14.2 kcal/mol in hydro-
genolysis.19 Recently, the degradation of DPE was realized
by Li et al. through esterification under light with an
acridinium photocatalyst with two molecules of phenols
obtained via the following hydrolysis.20 Meanwhile, the
cleavage of C−C21 and β-O-422,23 linkages of lignin were
achieved with the development of photocatalysis.24−27
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Scheme 1. C−O Bond Cleavage of Diphenyl Ether
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Based on our previous study on uranyl species,28 the ligand-
to-metal charge transfer (LMCT) mode and superior oxidative
ability [Eox = +2.60 V vs SCE]29−32 supply great potential for
DPE activation [Eox = +1.88 V vs SCE].33 Herein, the
photocatalyzed hydrolysis of diaryl ethers was established to
afford two kinds of phenols via uranyl catalysis with visible
light stimulation at room temperature and normal pressure
(Scheme 1d).
We commenced our study with DPE and uranyl nitrate

hexahydrate as the photocatalyst stimulated with 460 nm light
at room temperature, in which water was added as the oxygen
source and diverse acids as coactivators (Table 1, entries 1−3).

Encouragingly, the desired product phenol was afforded in
55% yield with trichloroacetic acid. Considering the solvent
effect, acetone turned out to be the optimal one, while
tetrahydrofuran and dichloromethane were not due to the
tendency of free radical generation (Table 1, entries 4−6).34,35
Increasing the amount of water disturbed the transformation,
while decreasing the water helped the reaction (Table 1,
entries 7 and 8). It is worth noting that the transformation was
greatly promoted even without additional water being supplied
(Table 1, entry 9), in which water was supplied by the
dimerization and dehydration of acetone. Two equivalents of
trichloroacetic acid afforded the optimal results (Table 1,
entries 10−12). Control experiments further demonstrated
that UO2(NO3)2·6H2O and blue light were essential (Table 1,
entries 13 and 14). Compared to the uranyl cation,
Ir(ppy)2(dtbbpy)·PF4 [E1/2 = +0.66 V vs SCE],26 Ru-
(bpy)3Cl2·6H2O [E1/2 = +0.77 V vs SCE],26 or Eosin Y
[E1/2 = +0.78 V vs SCE]36 was inefficient for the trans-
formation (Table 1, entry 15).
With the optimized conditions in hand, symmetrical diaryl

ethers were first investigated as shown in Scheme 2. A broad
range of diaryl ethers with electron-neutral, -deficient, and -rich

groups at the para-position were well tolerated in this reaction,
delivering the desired products with good to excellent yields.
The transformation went smoothly for phenol 2b, though it
was latent to be oxidized at the benzylic position. C−O bonds
were successfully disconnected to obtain the corresponding
phenols 2d and 2e with halogen substituents, which were never
found in previous reports due to the C−X bond dissociation
tendency.9,11 Remarkably, easily hydrolyzed carboxylic ester
(2g) and cyano (2h) were preserved during the trans-
formation. Diaryl ethers with substitutions at the meta-position
afforded the corresponding phenols 2i−2l as well.
Subsequently, the cleavage of C−O bond with unsym-

metrical diaryl ethers was tested, starting with diaryl ethers
possessing unilateral groups. Phenol derivatives bearing
electron-withdrawing substitutions (2f−2h and 2m) at the
para-position along with phenol were readily obtained with
good efficiency as expected. Phenol 2n with the methoxy group
substituted at the meta-position was also compatible.
Remarkably, substrates with ortho-position substituted groups
could be degraded to corresponding products (2o−2r).
Furthermore, diaryl ethers bearing different substitutions
varied on both sides of the aromatics were successfully
transformed. Good yield was obtained when both parts of the
diaryl ether possessed electron-donating groups (Scheme 2,
22). The substituted diaryl ethers with electron-deficient and
-rich groups on both sides could be converted to
corresponding phenols in middle to good yields (Scheme 2,
23−27). Good to excellent yields could be obtained when
both parts of the diaryl ether possessed electron-withdrawing
groups (Scheme 2, 28, 29). It is noteworthy that nitrofen
(herbicide) and triclosan (antibiotic) with multiple substitu-
ents were transformed smoothly (Scheme 2, 30, 31), showing
the potential for the degradation of pesticide waste. For our
lignin degradation target, models of 4-O-5 linkage in lignin
were evaluated. For trisubstituted substrates, 2z1 and 2n were
obtained in 48% and 54% yield, respectively. The cleavage of
the C−O bond of the pentasubstituted one, whose presence
was confirmed in lignin by 2D NMR spectroscopy,37,38 was
achieved at room temperature and normal pressure for the first
time. 2z1, widely used for food additives and spices, was
obtained in 14% yield. And 2z2, the midbody for Tinib
anticancer drugs, was obtained in 22% yield.
To further demonstrate the application potential of the

strategy, a flow device was designed for the transformation of
lignin templates (Scheme 3). Compared to tube operation, the
desired products were obtained in up to 30 times efficiency
with a flow device, in which the reaction mixture was pumped
into light permeable PTFE tube wrapping around a high
reflective aluminum bar, surrounded by 60 tandem LED lamps
(430 nm), despite the residue volume of the flow pipeline
being about 4.7 mL.
Mechanistic studies were carried out to understand the

process. First, radical quenching experiments with 2,2,6,6-
tetramethyl-1-piperinedinyloxy (TEMPO) and butylated hy-
droxytoluene (BHT) suggested the radical property of the
system (Scheme 4a). The uranyl cation was approved to serve
as the photosensor via UV−vis absorption at 424 nm (Scheme
4b), and it was also confirmed to interact with DPE directly via
Stern−Volmer analysis (Scheme 4c). Based on the above
results, this transformation was initiated with excited uranyl
cations through a single electron transfer (SET) process
between DPE under blue light irradiation.

Table 1. Condition Optimizationa

entry H2O (equiv) acid (equiv) solvent 2a (%)

1 20 CF3COOH MeCN 26
2 20 CH3COOH MeCN 33
3 20 CCl3COOH MeCN 55
4 20 CCl3COOH DCM NR
5 20 CCl3COOH THF NR
6 20 CCl3COOH acetone 79
7 40 CCl3COOH acetone 68
8 10 CCl3COOH acetone 84
9 CCl3COOH acetone 96(80)b

10c CCl3COOH acetone 83
11d CCl3COOH acetone 76
12 acetone 48
13e CCl3COOH acetone NR
14f CCl3COOH acetone NR
15g CCl3COOH acetone NR

aGeneral conditions: DPE (0.4 mmol), UO2(NO3)2·6H2O (4 mol
%), acid (2 equiv), solvent (2 mL), N2, RT, 48 h, blue light (460 nm),
1H NMR yields with CH2Br2 as the internal standard.

bIsolated yields.
cAcid (1 equiv). dAcid (4 equiv). eWithout light. fWithout
UO2(NO3)2·6H2O. gRu(bpy)3Cl2·6H2O, Eosin Y, or Ir-
(ppy)2(dtbbpy)·BF4 take place of UO2(NO3)2·6H2O. NR = No
reaction.
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18O labeling experiments unambiguously demonstrated the
oxygen source from water (Scheme 4d). According to the
previous study,39,40 uranyl peroxide complexes were obtained
from uranyl photolysis of water, which is responsible for the
oxygen atom transfer (OAT) process. Then, the bias of C−O
bond breaking was investigated (Scheme 4e). Whether diaryl
ethers possessed a tert-butyl or cyano group at the para-
position with the other side unsubstituted or a tert-butyl group
on one side and a cyano group on the other, both phenols were
labeled with 18O, indicating that the cleavage of the C−O bond
took place on both bond 1 and 2 as shown in Scheme 4e.
Moreover, the ratio of the different phenols depicted the
cleavage trend on the bias of the low electron cloud density
side. A Hammett plot was carried out to illustrate the
relationship between the reaction rate and substituent effect

(Scheme 4f). The ρ-value of +0.5096 for reactions showed that
the electron-withdrawing groups promoted the transformation
and the decisive step was the process of negative charge
accumulation.41

Therefore, a possible reaction pathway is depicted in
Scheme 5. The uranyl photoredox catalysis was stimulated
by blue light through the LMCT process, generating *UO2

2+.
The SET process between *UO2

2+ and diaryl ether 1 produced
UO2

+ along with radical cation A, which was attacked by the
uranyl peroxide dimer afforded via water-splitting,39,40 yielding
the radical cation of phenol B and phenyl oxygen anion C,
accompanied by cleavage of the original C−O bond and
formation of the new one. The protonation of C, together with
the SET process between B and UO2

+ [Eox(B•+/2) = + 1.56 V

Scheme 2. Hydrolysis of Diaryl Ethers to Phenolsa

aStandard conditions: Diaryl ethers (0.4 mmol), UO2(NO3)2·6H2O (4 mol %), CCl3COOH (0.8 mmol), acetone (2.0 mL), N2, RT, blue light
(460 nm), isolated yields. bDiaryl ethers (0.2 mmol). cBlue light (430 nm). dUO2(NO3)2·6H2O (6 mol %), blue light (430 nm).
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vs SCE > Eox(UO2
+/UO2

2+) = + 0.32 V vs SCE]34,42 afforded
desired product 2 and regenerated the catalyst.

In summary, Csp
2−O bond activation of diaryl ethers

affording phenols was achieved at room temperature and

Scheme 3. Flow Reactiona

aReaction conditions: Diaryl ethers (10 mmol), UO2(NO3)2·6H2O (4 mol %), CCl3COOH (2 equiv), acetone (50 mL), N2, RT, blue light (430
nm), isolated yields. bBased on starting material recovery.

Scheme 4. Mechanistic Studies

(a) Radical quenching experiments. (b) UV−vis experiments. (c) Stern−Volmer analysis. (d) Labeling experiments. (e) Investigation of cut-off
bond. (f) Hammett plot.
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normal pressure under blue light stimulation. Both symmetrical
and unsymmetrical substrates were achieved with high
compatibility. The Csp

2−O bond was activated via the SET
process between the diaryl ethers and excited uranyl cation.
The dimerization of uranyl transferred the oxygen atom from
the water to generate easily oxidized phenols with the LMCT
process of uranyl excitation. The synergistic mechanism of SET
and OAT contributes a straightforward pathway for mild
photocatalytic transformation. Further application of the 4-O-5
linkage model with a flow setup indicates the potential for
upgrading the degradation of lignin. Further studies on uranyl
catalyzed reactions are ongoing in our laboratory.
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