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ABSTRACT: Some experimental observations indicate that a sequential
formation of secondary (2°) carbocations might be involved in some
biosynthetic pathways, including those of verrucosane-type diterpenoids
and mangicol-type sesterterpenoids, but it remains controversial whether or
not such 2° cations are viable intermediates. Here, we performed
comprehensive density functional theory calculations of these biosynthetic
pathways. The results do not support previously proposed pathways/
mechanisms: in particular, we find that none of the putative 2° carbocation
intermediates is involved in either of the biosynthetic pathways. In
verrucosane biosynthesis, the proposed 2° carbocations (II and IV) in the
early stage are bypassed by the formation of the adjacent 3° carbocations
and by unusual skeletal rearrangement reactions, and in the later stage, the
putative 2° carbocation intermediates (VI, VII, and VIII) are not present
as the proposed forms but as nonclassical structures between homoallyl and cyclopropylcarbinyl cations. In the mangicol
biosynthesis, one of the two proposed 2° carbocations (X) is bypassed by a C−C bond-breaking reaction to generate a 3°
carbocation with a CC bond, while the other (XI) is bypassed by a strong hyperconjugative interaction leading to a nonclassical
carbocation. We propose new biosynthetic pathways/mechanisms for the verrucosane-type diterpenoids and mangicol-type
sesterterpenoids. These pathways are in good agreement with the findings of previous biosynthetic studies, including isotope-labeling
experiments and byproducts analysis, and moreover can account for the biosynthesis of related terpenes.
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■ INTRODUCTION

Terpenes/terpenoids are fascinating compounds due to their
complicated and diverse structures and wide range of
bioactivities. They are biosynthesized from simple unsaturated
hydrocarbons via successive carbocation-mediated reactions
triggered by terpene cyclases.1 A detailed knowledge of their
biosynthetic mechanisms would be very helpful for under-
standing the evolution of particular biosynthetic pathways as
well as for designing new biosynthetic routes for complex
functional molecules. However, the mechanistic issues are
extremely difficult to resolve fully by means of experimental
studies alone, since terpene cyclization is a domino-type
reaction occurring inside a single enzyme (“black box”). We
recently established a powerful combination of quantum-
chemical calculations with the artificial force induced reaction
(AFIR) method2,3 to unveil complicated biosynthetic path-
ways/mechanisms, such as those leading to trichobrasilenol,4

quiannulatene,5 and cyclooctatin.6,7 In general, experimental
and theoretical studies indicate that a terpene biosynthesis
involves a sophisticated exothermic cascade of reactions, in
which carbocation intermediates are converted into more
stable intermediates such as allyl cations, tertiary (3°)

carbocations, and cycloalkylcarbinyl cations. On the basis of
experimental observations, it has been proposed that secondary
(2°) carbocation intermediates play a role in some cases, such
as in the biosynthesis of verrucosane-type diterpenoids and
mangicol-type sesterterpenoids, but it remains controversial
whether such 2° cations are viable intermediates. The stability
of carbocations is one of the most important concepts in
organic chemistry, and their stability relationships are
fundamental to understanding many aspects of the reactivity
of organic molecules/intermediates. For example, experimental
studies show that sec-Bu+ is 14.5 kcal mol−1 more unstable than
tert-Bu+.8−11 Therefore, it is of considerable interest to verify
the putative involvement of 2° carbocations in the biosynthesis
of natural products.
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Verrucosane-type Diterpenoids

Verrucosan-2β-ol (ver) and neoverrucosan-5β-ol (neo),
featuring a unique 3,6,6,5-tetracyclic system, are diterpenoids
isolated from Chlorof lexus aurantiacus, a filamentous, gliding,
thermophilic phototrophic bacterium.12 Rieder et al. exten-
sively investigated the biosynthetic pathway of verrucosan-2β-
ol by means of an in vivo incorporation of singly or doubly 13C-
labeled acetate, and they proposed a biosynthetic pathway
involving the formation of many secondary carbocations (II,
IV, VI, VII, and VIII) (Figure 1).13,14 Another important issue
is to identify the bifurcation mechanism leading to the ver and
neo skeletons.15 At the bifurcation point, a unique C−C bond
rearrangement via a cyclopropylcarbinyl cation was proposed.
A similar skeletal rearrangement is seen in the cyclooctatin
biosynthesis.6,7 However, the key cyclopropylcarbinyl/homo-
allyl cation intermediates in cyclooctatin biosynthesis are
categorized as 3° carbocations, whereas those in the proposed
verrucosane-type biosynthesis are all 2° cations (VI, VII, and
VIII).

Mangicol-type Sesterterpenoids

Mangicols are a family of marine fungal sesterterpenoids with a
unique 6,5,5-spirotricyclic skeleton (Figure 2A),16,17 isolated
from Fusarium heterosporum, and they show weak cytotoxicity
toward various cancer cell lines. On the basis of experimental
studies, the biosynthetic pathway shown in Figure 2B was
proposed,16,17 involving the successive formation of two 2°
carbocations (X and XI).
We began our study by evaluating the proposed pathways of

verrucosane and mangicol biosynthesis with density functional
theory (DFT) calculations. Since the results did not support
the involvement of the proposed 2° carbocations, we then
comprehensively explored the biosynthetic pathways by means
of DFT calculations combined with the AFIR method. On the
basis of these findings, we propose new routes that are in good
agreement with previous experimental biosynthetic studies and
also provide plausible pathways for the formation of other
related terpenes/terpenenoids.

■ COMPUTATIONAL METHODS
All calculations were performed with GRRM112,18−21 based on the
Gaussian 16 program.22 Structure optimizations were performed at
the M06-2X level in the gas phase using the 6-31+G(d,p) basis set.23

The vibrational frequencies were computed at the same level to check
whether each optimized structure is an energy minimum (no
imaginary frequency) or a transition state (single imaginary
frequency). Intrinsic reaction coordinates (IRC) calculations24−27

were performed to track minimum energy paths from transition
structures to the corresponding local minima. Single-point energies
were calculated at the mPW1PW91/6-31+G(d,p) level28,29 based on
the structures optimized by the M06-2X method. The Gibbs free
energy used for discussion in this study was calculated by adding the
gas-phase Gibbs free energy correction.

■ RESULTS AND DISCUSSION

Verrucosane-type Biosynthesis

We first discuss the biosynthetic pathway of verrucosane-type
diterpenoids. A systematic search of reaction pathways showed
that the reaction IM0 → IM7 depicted in Figure 3A is the
most favorable pathway. The dissociation of pyrophosphate
followed by an E/Z isomerization30,31 initiates the exothermic
carbocation cascade of verrucosane biosynthesis and yields an
allylic carbocation (IM0). Then, the C3−C4 single bond
rotates with a small activation barrier of 4.9 kcal mol−1 so that
the C1 carbon can interact directly with the C6−C7 π bond to
afford the 3° carbocation intermediate (IM1). As can be seen
from the elongated C1−C6 bond distance (1.63 Å) as well as
the natural population analysis (NPA) charges on C3 (+0.04)
and C11 (+0.04), the 3° carbocation (+0.48) at the C7
position is partially stabilized by the C1−C6 σ bond and the
distal C2−C3/C10−C11 π bonds. Thus, the monocyclic six-
membered 3° cation IM1 undergoes a smooth skeletal
rearrangement to afford 7,5-bicyclic 3° cation (IM2) in a
single step with a large stabilization energy. A close
examination of the IRC calculation results revealed that this
step is actually concerted but involves two asynchronous
events, namely, (1) a reverse (3° → 2° cation) Wagner-
Meerwein rearrangement (ring expansion to give the 7-
membered ring) and (2) an annulation to yield the 7,5-
bicyclic system. Notably, the experimentally supported

Figure 1. Proposed biosynthetic pathways of verrucosan-2β-ol and neoverrucosan-5β-ol.
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monocyclic seven-membered secondary carbocation structure
(Figure 1, II) is not a minimum on the potential energy surface
(PES). A conformational change of IM2 with an activation
barrier of only 1.0 kcal mol−1 yields IM3, in which the 3°
cation center is further stabilized by a cation-σ bond
interaction assisted by the distal C14−C15 π bond, leading
to the second skeletal rearrangement to afford 7,6,5-tricyclic 3°
carbocation intermediate (IM4). Again, the experimentally
supported 7,6-bicyclic 2° carbocation structure (Figure 1, IV)
is not located. Thus, the proposed intermediary 2°
carbocations in the early stage of the biosynthesis are bypassed
by the formation of the adjacent 3° carbocations together with
skeletal rearrangement via a kind of nonclassical carbocation
interaction with a through-space participation of the C−C σ
bond and the distal π bond. Note that, in these skeletal
rearrangement processes (IM1 → IM2/IM3 → IM4), a direct
attack of the corresponding (C10−C11/C14−C15) π
electrons on the 3° carbocation centers (at C7/C11) does
not occur due to the destabilization associated with a four-
membered ring formation. From IM4, a 1,5-H shift takes place
with a reasonable activation energy of 6.7 kcal mol−1 to migrate
the isopropyl 3° cation to a homoallyl cation in a seven-
membered ring (IM5) with a slight endothermicity. As judged
from the NPA charge distributions and the bond lengths, we
consider IM5 to be an intermediate structure between the
homoallyl cation and the corresponding cyclopropylcarbinyl
cation. The cyclopropylcarbinyl cation has highly distorted
cyclopropane C−C σ bonds that can effectively stabilize the
adjacent carbocation. Indeed, it has been reported that
homoallyl/cyclopropylcarbinyl 3° cations play pivotal roles as
stable intermediates in various stages of brasilane-type
sesquiterpene3 and cyclooctatin-type diterpene biosynthesis.6,7

It is noteworthy that these were all 3° cations, whereas IM5 is

a more unstable 2° cation, presumably reflecting the
nonclassical intermediate (equilibrium) structure. Finally, an
unusual C−C bond rearrangement takes place via a highly
distorted bicyclobutonium 3° cation32,33 (IM6) with very low
activation energy to give another homoallyl-cyclopropylcarbin-
yl intermediate structure (IM7). IM7 is slightly more stable
than IM5 by 3.7 kcal mol−1, probably owing to hyper-
conjugation from neighboring moieties. The energy diagram
(Figure 3B) immediately suggests that this is a thermodynami-
cally and kinetically favorable biosynthetic reaction cascade:
(1) the activation barriers are all low enough for the reactions
to proceed smoothly at ambient temperature, (2) the entire
energy profile descends as the reactions proceed, and (3) the
overall exothermicity is very large (ca. 40 kcal mol−1). Any of
the three skeletal rearrangements (IM1 → TS_1−2/IM3 →
TS_3−4/IM5 → TS_5−6) could be the rate-determining
step.

Mangicol-type Biosynthesis

Next, we discuss in detail the biosynthesis of mangicol-type
sesterterpenoids. Only a few C20/C25 terpenoids based on
5,11-bicyclic systems, such as ophiobolin,34,35 cotylenin A,36

and fusicoccadiene,37 have been reported,38 in contrast to
those derived from 5,15-systems, such as quiannulatene,5,39

sesterfisherol,40,41 (+)-astellatene,42,43 arathanadiene deriva-
tives, sestermobaraenes,44 and aspergildienes.45 In the present
study, IM8 was adopted as the simplest chemical model
(Figure 4).46−49 The reaction pathway for the conversion of
IM8 into IM11 is shown in Figure 4A, together with the
relative energies with respect to IM8. The generation of allyl
cation IM8, upon the loss of pyrophosphate of SM, triggers the
carbocation cyclization cascade and affords a 5,11-bicyclic
intermediate IM9a, which is a 3° carbocation intermediate, as

Figure 2. (A) Chemical structures of mangicol A−G. (B) Proposed mechanism of mangicdiene biosynthesis.
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generally found in terpene biosynthesis. After the conforma-
tional change of IM9a to IM9b with an activation barrier of
only 0.2 kcal mol−1, an unusual C−C bond cleavage to afford
the monocyclic 15-membered 3° carbocation IM10a proceeds
in a single step from the 5/11 bicyclic structure via TS_9b−
10a with an activation energy of 11.3 kcal mol−1. Notably, the
experimentally supported 6,11-bicyclic 2° carbocation struc-
ture (X) is not a minimum on the PES.16,17 We anticipated
that the present skeletal rearrangement would involve two
asynchronous events, namely, (1) the 1,2-alkyl shift (ring
expansion to give 6,11-bicyclic skeleton) and (2) the unusual
C−C bond cleavage. Indeed, we found the corresponding
peaks (shoulder_9b−10a-1 and shoulder_9b−10a-2, respec-
tively) located before and after the main peak (TS_9b−10a)
upon a close examination of the IRC analysis results (Figure
4B). As judged from the elongated C10−C11 (1.65 Å) and
C13−C15 (1.65 Å) bond distances as well as the near linearity
of the C10−C14−C15 moiety (dihedral angles of empty

orbital of C14 with C10−C11 and C13−C15: 165.8° and
176.5°, respectively), we consider that shoulder_9b−10a-1 is
close to the putative 2° carbocation structure in which the
carbocation at C14 is partially stabilized by hyperconjugative
interactions with the C10−C11 and C13−C15 σ bonds. If the
C13−C15 bond were broken, a primary (1°) carbocation
would be generated at C13, which would be very unstable.50,51

Hence, the C10−C11 bond is elongated (while the C13−C15
bond is shortened) to provide TS_9b−10a, leading to the
formation of a stable 3° carbocation at C11 (IM10). Note that
the distance between the C10−C14 double bond and 3° cation
center C11 in IM10a is more than 3 Å, and there are NPA
charges at C10 (−0.18) and C14 (−0.25), suggesting little or
no interaction between these locations. IM10a has a
homoallylic 3° carbocation moiety. Thus, IM10a is converted
via TS_10a−10b to a more stable cyclopropylcarbinyl 3°
cation IM10b, of a type that is often observed in various stages
of brasilane-type sesquiterpene,4 cyclooctatin-type diterpene,6,7

Figure 3. Results of a DFT evaluation of (A) the whole biosynthetic pathway and (B) the energy diagram of verrucosane. IM stands for
intermediate. TS stands for transition state. Potential energies (kcal mol−1, Gibbs free energies calculated at the mPW1PW91/6-31+G(d,p) level
based on M06-2X/6-31+G(d,p) geometries) relative to IM0 are shown in parentheses.
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and isoafricanol biosynthesis.52 Thus, IM10 has three
equilibrium structures within ca. 4 kcal mol−1, and
interconversion (conformational change) between homoallyl
carbocations IM10a and IM10c proceeds via viacyclopropyl-
carbinyl cation IM10b. Then, a cation-mediated transannular
cyclization takes place from the reactive conformer IM10c to
form the 5,12-bicyclic system IM11 with a very low activation
energy (2.6 kcal mol−1). Intermediate IM11 has an elongated
C14−C15 single bond (1.66 Å) and C10−C14 double bond
(1.41 Å), reflecting the partial breakdown of the C−C σ bond
(1.54 Å) and π bond (1.34 Å), respectively. This suggests a
nonclassical structure8,53 between the monocyclic 3° cation
and bicyclic humulyl 2° cations, leading to the following
multiple annulations (vide inf ra). A similar reaction is also
found in variediene biosynthesis.54,55

We next located the later stage of mangicol biosynthesis, that
is, the formation of the spirotricyclic structure (Figure 5).
Route A is very similar to the previously proposed pathway, in
which the annulation of IM11 takes place to give 5,9,5-tricyclic

intermediate IM12 having B- and D-rings with a slight
endothermicity, followed by 1,2-H shift via TS_12−13 with a
large stabilization energy to give the bridgehead 3° carbocation
IM13. From IM13, a smooth annulation involving conforma-
tional change of the nine-membered ring and 1,2-H shift
proceeds to construct the 6,5,5-spirotricyclic skeleton IM14a
in a single step with a large exothermicity. Then, IM14a is
subjected to deprotonation to give the mangicol core skeleton
(PD). The energy profile is consistent with the previously
proposed pathway (Figure 2B), with reasonable activation
barriers (all low enough for the reactions to proceed smoothly
at ambient temperature) and with an overall large
exothermicity (over 35 kcal mol−1). However, another
unprecedented route, Route B (via 5,6,5,5-tetracyclic inter-
mediate IM17 having A- and D-rings), which was located by
application of the AFIR method for comprehensive searching
of reaction paths, turned out to be the most favorable (Figure
5B). As supported by the NPA charge distribution of IM11,
where C10 (+0.26) and C3 (+0.04) are more positive than the

Figure 4. (A) Reaction pathways and potential energy changes from IM8 to IM11 (early stage of mangicol biosynthesis). The numberings are
derived from those of GFPP. Potential energies (kcal mol−1, Gibbs free energies calculated at the mPW1PW91/6-31+G(d,p) level based on M06-
2X/6-31+G(d,p) geometries) relative to IM8 are shown in parentheses. (B) A representative example of the evolution of key bond lengths in the
conversion of IM9b to IM11.
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C6 and C7 carbons, cation-stitching multiple annulation
initiates this pathway with a very low activation energy (3.8
kcal mol−1) to form the 5,5,7,4-tetracyclic intermediate IM15a
with a large exothermicity (22.2 kcal mol−1), in which the
highly distorted cyclobutane C3−C6 bond effectively stabilizes
the adjacent C7 carbocation.56 Thus, after the interconversion
from IM15a to IM15c, a 1,2-H shift takes place smoothly to
give a 5,5,9-tricyclic 3° cation (IM16) stabilized by a cation-π
interaction3,57 with the newly generated C6−C7 double bond.
This is followed by another smooth cation-mediated

annulation to give the 5,5,6,5-tetracyclic skeleton IM17,
which undergoes a 1,2-H shift via TS_17−18a to give
IM18a. Then a C−C bond rearrangement takes place to
yield the 5,6,5,5-tetraspirocyclic mangicol core skeleton
(IM14b), which is subjected to a deprotonation to form PD.
Notably, this new route is not only kinetically and
thermodynamically the most favorable pathway but also
appears to provide a versatile biosynthetic pathway leading
to the formation of related terpenes/terpenoids, including
tsukubadiene,58 variediene,54,55 deoxyconidiogenol/conidioge-

Figure 5. Reaction pathways and potential energy changes from IM11 to PD (later stage of mangicol biosynthesis, Part 2). See Figure 3 for details.
(A) Previously proposed route. (B) New route. (C) Comparison of the energy profiles of route A (dashed line) and route B (solid line). Potential
energies (kcal mol−1, Gibbs free energies calculated at the mPW1PW91/6-31+G(d,p) level based on M06-2X/6-31+G(d,p) geometries) relative to
IM8 are shown in parentheses.
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none,59,60 and phomopsene/methyl phomopsenonate61,62

(Figure 5B,C). A careful structural comparison of the terpene
cyclases responsible for the formation of mangicol, tsukuba-
diene, variediene, deoxyconidiogenol, and phomopsene could
be helpful to clarify how the structural diversification is
controlled.

■ CONCLUSION
In conclusion, the current computational study has uncovered
in detail the biosynthetic pathways of the verrucosane-type
diterpenoids and mangicol-type sesterterpenoids as well as
provided new insight into the mechanisms of structure
diversification in terpene biosynthesis, especially the exquisite
skeletal construction processes and conformational changes
(the Cartesian coordinates of the three-dimensional structures
of all species are given in the Supporting Information).
Remarkably, we found that none of the previously proposed 2°
carbocation intermediates was obtained as a minimum on the
PES. The verrucosane biosynthetic cascade bypasses the
formation of unstable 2° carbocations II and IV by the
formation of adjacent 3° carbocations (IM1 and IM3)
combined with skeletal rearrangement reactions involving
reverse (3° → 2° cation) Wagner-Meerwein rearrangements.
Other putative 2° cations were located in equilibrium with
nonclassical carbocation intermediates (IM5 and IM7) via viaa
bicyclobutonium cation (IM6), and this could be the
branching point between the verrucosan-2β-ol (ver) and
neoverrucosan-5β-ol (neo) biosyntheses. In the mangicol
cyclization cascade, the formation of putative 2° carbocation
X is bypassed by breaking the adjacent C−C bond to form the
more stable 3° carbocation (IM10). Although C−C bond
cleavage is an endothermic reaction, the unfavorable energy
loss is compensated by the simultaneous generation of a CC
double bond and a more stable 3° carbocation. Another
proposed 2° carbocation XI is avoided as a result of a strong
hyperconjugative interaction with the adjacent C−C bond,
affording a nonclassical structure (IM11) between a 3°
carbocation and a humulyl 2° cation. We further found a
new, energetically viable pathway for the 6,5,5-spirotricycle
formation in the mangicol biosynthesis, and this can also
account for the formation of other terpenes/terpenenoids. A
future comparative study of the terpene cyclases responsible
for mangicol, tsukubadiene, variediene, deoxyconidiogenol,
and phomopsene formations could help to establish the
molecular basis of the regulation of the branching biosynthetic
pathways by these enzymes. Thus, the results presented here
are helpful to complete the picture of verrucosane and
mangicol biosynthesis and also offer insights into the stability
and reactivity of various carbocations and bonds that should be
useful not only in terpene biosynthesis but also in fundamental
organic chemistry. In particular, this work underlines that great
caution is needed in suggesting the involvement of 2°
carbocations (even in the cases of humulyl cations and
cycloalkylcarbinyl cations) in the biosynthesis of natural
products, since they are very unstable compared with 3°
cations. We hope this work will be helpful for future
mechanistic investigations of terpenes/terpenoids biosynthesis.
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