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Abstract

Recent studies suggest that deep learning systems can now achieve performance on par with 

medical experts in diagnosis of disease. A prime example is in the field of ophthalmology, where 

convolutional neural networks (CNNs) have been used to detect retinal and ocular diseases. 

However, this type of artificial intelligence (AI) has yet to be adopted clinically due to questions 

regarding robustness of the algorithms to datasets collected at new clinical sites and a lack of 

explainability of AI-based predictions, especially relative to those of human expert counterparts. In 

this work, we develop CNN architectures that demonstrate robust detection of glaucoma in optical 

coherence tomography (OCT) images and test with concept activation vectors (TCAVs) to infer 

what image concepts CNNs use to generate predictions. Furthermore, we compare TCAV results 

to eye fixations of clinicians, to identify common decision-making features used by both AI and 

human experts. We find that employing fine-tuned transfer learning and CNN ensemble learning 

create end-to-end deep learning models with superior robustness compared to previously reported 

hybrid deep-learning/machine-learning models, and TCAV/eye-fixation comparison suggests the 

importance of three OCT report sub-images that are consistent with areas of interest fixated upon 

by OCT experts to detect glaucoma. The pipeline described here for evaluating CNN robustness 

and validating interpretable image concepts used by CNNs with eye movements of experts has the 

potential to help standardize the acceptance of new AI tools for use in the clinic.
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I. INTRODUCTION

WITH massive quantities of information being gathered each day from high resolution 

imaging to continuous monitoring of physiologic responses via biosensors, there are few 

disciplines where the critical role of artificial intelligence (AI) and machine learning is more 

apparent than in medicine [1], [2]. It is necessary for this ‘data deluge’ to be efficiently 

and intelligently parsed in order to provide effective medical care; therefore, one modern 

role of AI is to provide robust screening support in the form of automated image analysis, 

allowing more time for nuanced aspects of care (or scrutiny of ambiguous cases) for human 

experts. Specifically within ophthalmology, with moderate to severe unaddressed visual 

impairment afflicting 217 million people worldwide [3], AI can serve to expedite accurate 

and interpretable eye disease screening and diagnosis.

As an example, glaucoma impacts an estimated 76 million people worldwide and is 

projected to impact 112 million people by 2040 [4]. Unlike other eye diseases, glaucoma 

does not have an agreed-upon reference standard for diagnosis [5], so data can be time 

consuming to understand and even more difficult to draw accurate conclusions from. Optical 

Coherence Tomography (OCT) is increasingly becoming a primary modality for detection 

and diagnosis of glaucoma, though interpreting these data typically requires a substantial 

level of expertise. Evident from past work applying deep learning to detection of diabetic 

retinopathy and macular degeneration from OCT images [6], AI can help by learning 

patterns in the data that otherwise require expert interpretation, by distilling important 

features of images that enable accurate classification, ultimately speeding up the work of 

clinicians as well as corroborating their conclusions by helping to define standards and 

arrive at inter-expert consensus.

A. Addressing a Key Challenge for Glaucoma Diagnosis

Unlike for other eye diseases such as diabetic retinopathy (DR) [7], [8] and age-related 

macular degeneration (AMD) [9], developing AI for glaucoma diagnosis carries an 

additional challenge: even among clinicians, there are few universally agreed-upon features 

- especially from OCT reports - to determine presence or absence of glaucoma [10], [11]. 

We address this challenge by describing development of robust end-to-end deep learning 

models which exhibit high performance as well as interpretability. Here, interpretability 

refers to quantitative explanation of which medical concepts are most important for accurate 

glaucoma detection by convolutional neural networks (CNNs), followed by corroboration 

with eye-tracking of medical experts as they viewed OCT reports. Quantification of such 

OCT features that are common between humans and machines for accurate glaucoma 

detection is a step toward arriving at a standard, clinically agreed-upon set of OCT features 

for glaucoma diagnosis.

B. Innovation: Robustness and Interpretability in Conjunction with Expert Eye 
Movements

Evaluation of a deployed diabetic retinopathy deep learning system [12] showed that 

expected performance was impacted by contextual and environmental factors in the clinic 

Thakoor et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that are not reflected in results observed in the lab. For example, a patient may have 

accidentally moved during image acquisition, causing incomplete or anomalous data. 

Toward fulfilling the promise of AI to assist in the clinic, an existing challenge is building 

deep learning models that are robust to variation in environmental factors that impact 

data collection. In this work, we build from the set of high-performing CNNs described 

in previous work [13] by evaluating the robustness of previous high performance on a 

laboratory (‘Lab’) dataset collected in the same location as the training data to a new clinical 

test set. This new dataset (described in detail in [14]), called the ‘Field’ dataset here onward, 

is composed of similar image type as the training data but was collected at a different facility 

and hence has minor variations not represented in the original training data. As anticipated, 

these original models, while exhibiting high performance on a controlled ‘Lab’ test set, 

deteriorated in performance when faced with the ‘Field’ test set [15], [16]. A highlight of 

our work here is that we show how the anticipated drop in performance on the ‘Field’ 

dataset is reduced by employing architectural improvements consisting of pre-trained CNN 

fine-tuning/transfer learning and CNN ensemble learning. We find that our newly-designed 

models, while attaining slightly lower accuracy on the original ‘Lab’ test set in some cases, 

retained robust performance when evaluated on the ‘Field’ test set, unlike their hybrid deep 

learning/machine learning (DL/ML) counterparts [13]. Fig. 1 illustrates the key difference 

between hybrid DL/ML pipelines from our past work and the end-to-end deep learning 

pipelines developed in this work. We also analyzed the impact of using a CNN ensemble on 

robustness to the new ‘Field’ Set.

The second contribution of our work is to enhance explainability of the specific features 

utilized by our CNNs to achieve their classification decisions; to accomplish this, we 

used Testing with Concept Activation Vectors (TCAVs) to quantify human-interpretable 

concepts of importance in OCT images that result in accurate glaucoma classification. 

Testing with CAVs [18] enables interpretability of results beyond qualitative class activation 

maps by attributing a quantitative score to the concepts that CNNs are using to achieve 

their classification results. Our work distinguishes itself by taking the step of corroborating 

concepts of importance for CNNs with image regions on which human experts also fixated 

the most, based on tracking their eye movements as they classified OCT reports. While 

other groups have shown generalizability of glaucoma detection from fundus images [10] 

or interpretability of CNN-based glaucoma detection from OCT B-scans [19], [20], our 

work’s novelty also lies in the development of robust and interpretable deep learning 

models for glaucoma detection specifically from OCT reports and sub-images. In contrast 

to extensively-studied fundus images, our models take as input the highly-informative first 

resource used by eye specialists for glaucoma detection: OCT-derived images, including 

retinal nerve fiber layer (RNFL) and retinal ganglion cell inner plexiform layer (RGCP) 

probability maps and thickness maps as well as full OCT reports (Fig. 3).

II. METHODS

We evaluated the performance of previously-developed hybrid DL/ML models [13] on a 

new ‘Field’ test set of OCT probability maps collected at a different location, by different 

operators, and using a different OCT machine than the set used for training in past work. 

We developed new, robust end-to-end deep learning model architectures, using OCT-image 

Thakoor et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fine-tuned transfer learning of the last few layers of state-of-the-art pre-trained CNNs. For 

the most robust models, we applied interpretability techniques, including Gradient Weighted 

Class Activation Maps (Grad-CAMs) [21] and TCAVs [18], to determine image concepts 

most critical for accurate glaucoma detection by CNNs. Lastly, via tracking experts’ eye 

movements as they viewed OCT reports, we closed the loop by comparing regions on 

OCT reports with maximum expert eye fixation density to important OCT report concepts 

determined by CNN interpretation.

A. Performance Evaluation of Hybrid DL/ML Models on the ‘Field’ Dataset

The performance of five CNNs previously trained to detect early glaucomatous damage from 

OCT RNFL probability maps, which achieved 95% accuracy on a test set of 197 images 

collected in our lab [13], were examined on a new test set without any modification to 

CNN architecture. Training, validation, and testing were carried out in an approximately 

55%:20%:25% split (395 for training, 145 for validation, and 197 for testing), as described 

in detail in previous work [13] (the last 25% comprised the 197-image ‘Lab’ test set). The 

new ‘Field’ test set was composed of 135 OCT RNFL probability maps acquired at the 

Columbia University Medical Center [14]. 1 An example of input provided to the CNNs 

is shown in Fig. 2 (also present in red box within full report, Fig. 3). Ground truth labels 

were obtained from an OCT expert (D.C.H) with extensive experience grading OCT images 

as he viewed full OCT reports (Fig. 3). The OCT expert provided gradings between 0 and 

100, with less than 50 indicating the image was not glaucomatous (NG) and greater than 

50 indicating the image was glaucomatous (G). We used this binary classification (G/NG) 

for the present study. Test accuracy (correctly classified images divided by total number of 

images) was computed for all five hybrid DL/ML models on the ‘Lab’ and ‘Field’ datasets 

[15], [16].

B. Development of Robust End-to-End Deep Learning Models and a Robust CNN 
Ensemble

Using fine-tuned transfer learning [22], we designed and implemented four new end-to-end 

deep learning models as well as a CNN ensemble. The first consisted of the InceptionV3 

[23] network pre-trained on ImageNet [24] followed by three dense layers (interspersed 

with dropout and Rectified Linear Unit (ReLU) or sigmoid activation functions between 

each dense layer) to enable fine-tuning to the OCT medical image domain. The second, 

third, and fourth models consisted of ResNet-18 [25] VGG-16 [26], and DenseNet-121 

[27], respectively, each followed by similar fine-tuned classifier layers as described for the 

first model. Choice of InceptionV3, ResNet-18, and VGG-16 was for direct comparison to 

hybrid DL/ML models from previous work; addition of DenseNet-121 [28] was due to its 

high performance combined with its efficient use of parameters especially for fine-tuning 

scenarios [28], [29]. Each model was implemented using Keras, the Python deep learning 

library [22], and was saved for subsequent performance testing and interpretability analysis 

(code available on GitHub [30] and models available on IEEE DataPort [31]). Training 

1This study (Protocol AAAA7160) was approved on May 26, 2020 by the Columbia University Institutional Review Board and 
adheres to the tenets set forth in the Declaration of Helsinki and the Health Insurance Portability and Accountability Act. Written 
informed consent was obtained from all subjects. The ‘Field’ dataset came from a clinical trial with ClinicalTrials.gov registration 
number: NCT02547740.
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optimization was carried out via RMSprop or Adam [32] optimizers with learning rates of 2 

× 10−5 or 2 × 10−6. A schematic of these end-to-end deep learning models with architecture 

details is shown in Fig. 4. Training was carried out using data augmentation and best-of-ten 

Monte Carlo cross-validation (80%:20%) splits with the 737-image dataset from previous 

work [13]. Training was carried out for 30 epochs with a batch size of 1. Each model’s 

performance was evaluated on the ‘Lab’ and ‘Field’ datasets.

Given that past studies have demonstrated improved detection accuracy when deep learning 

ensembles are applied to ophthalmological data [33], [34], we developed a CNN ensemble 

architecture combining three of the end-to-end deep learning models described above (OCT­

fine-tuned ResNet-18, VGG-16, and InceptionV3). We averaged the predictions from the 

final fine-tuned classifier layers for each model; these fine-tuned classifier layers (optimized 

for each model) were composed of a Flattening Layer followed by a dense layer with 

1024 or 128 units and ReLU activation, another dense layer with 512 or 64 units and 

ReLU activation followed by 0.5 probability of unit dropout for regularization to prevent 

overfitting, and a final dense layer with 1 unit and sigmoid activation. A schematic of this 

CNN ensemble approach is shown in Fig. 5.

C. Quantifying the Importance of OCT Concepts that Enable Glaucoma Detection by 
CNNs

1) Motivating the Value of Concept Activation Vectors: Beyond CNN class 

activation map approaches, which provide qualitative information about abstract regions 

in an image that contribute to a neural network’s classification, Testing with Concept 

Activation Vectors (TCAVs) [18] can be used to arrive at a quantitative score for the 

importance of a particular human-interpretable concept (i.e. capable of being located in 

an image by name) to a neural network’s classification for a given class of images. To 

illustrate the value of TCAVs, we first used Gradient Weighted Class Activation Maps 

(Grad-CAMs) [21] to visualize image regions that influence the model’s classification of a 

given image into a particular class. Grad-CAMs are created by applying a global average 

pooling operation across all pixels for all feature maps assigned to a given class generated 

by the last convolutional layer of a neural network. The gradient for the score yc for a given 

class c with respect to a given feature map A (indexed by k) at a given location (pixel i, j) 

Aij
k  is computed; this gradient is global average pooled across all pixels and normalized (by a 

constant Z) to arrive at a class weight ack for a feature map k for class c (as shown in (1) from 

[21]).

ak
c = 1

Z i j

δyc

δAij
k (1)

The rectified output of the linear combination of these weights across all feature maps for a 

given class (shown in (2) below from [21]) creates the final Grad-CAM heatmap L, in which 

certain regions of the image display higher intensity (increasing from dark blue to red) with 

increasing contribution to prediction of class c.
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LGrad − CAM
c = ReLU

k
ak

cAk
(2)

These highlighted image regions are more (positively) influential to the final model class 

prediction. Grad-CAMs of RNFL maps (and their corresponding original RNFL maps, 

superimposed with visual field locations) for a true positive and a false negative are shown 

in Fig. 6. Grad-CAMs give a qualitative sense for why a CNN may have made mistakes on 

particular input images, as these cases show how a correctly classified true positive (Fig. 

6(a)) has many more abnormal regions (according to both the CNN and a human expert) 

than the missed case (Fig. 6(b)). However, such visual interpretability methods are not 

able to provide generalized quantitative information regarding human-describable concepts 

present across all images of a given class. The next section introduces such a global as well 

as quantitative interpretability method.

2) Concept Activation Vectors to Probe Feature Importance in OCT 
Images: In order to better understand the features (or ‘concepts’) used by the top­

performing CNN to make classification decisions between glaucomatous and healthy 

images, we utilized Concept Activation Vectors (CAVs) [18]. In contrast to class activation 

maps (such as Grad-CAMs) or saliency maps, which generally determine the rate of change 

(gradient) of class predictions (h(x)) as a function of pixel intensity at specific pixel 

locations in x (where x is an image, and h is the class prediction), relevance of a ‘concept’ C 
to an image class (e.g. stripes for zebra images) is found by taking the directional derivative 

of class predictions (for class k) at each layer l of a CNN in the direction of (with respect 

to) a CAV. Concretely, a CAV is the vector υC
l  that is perpendicular to the the linear classifier 

separating CNN activations (at a particular layer fl) of concept images from non-concept 

images. The directional derivative S in the direction of this CAV υC
l  for concept C, class k, 

layer l, and layer-l activation fl(x) for input image x for a given CNN is defined as follows in 

(3) and (4) from [18]:

SC, k, l x = lim
∈ 0

ℎl, k fl x + ∈ υC
l − ℎl, k fl x

∈ (3)

= ∇ℎl, k fl x ⋅ υC
l (4)

To obtain a quantitative score for the influence of concept C on class decision k (the 

conceptual sensitivity to C for class k across all inputs, Xk, in this class), we ‘Test with 

CAVs’ by computing a TCAV score as shown below in (5) from [18]:

TCAV Q = x ∈ Xk:SC, k, l x > 0
Xk

(5)
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The fraction of all input images Xk that have conceptual sensitivity to concept C (as 

quantified by the directional derivative SC,k,l being greater than zero) for a given class k 
and for activation of layer l defines the TCAV score (between 0 and 1) for that concept. 

After multiple CAVs are computed between concept images and random images, if a 

two-tailed, unpaired t-test of TCAV scores (for input images Xk) results in rejecting a 

null hypothesis TCAV score of 0.5 for a given concept, then that concept is considered 

significantly influential for classifying input images Xk into class k. TCAV authors further 

perform Bonferroni correction (p < α/m, m = 2) for multiple comparisons between all 

concept-random pairs to reduce potential for false positives (incorrect rejection of the null 

hypothesis, or a Type I error) to prevent mistaking as significant a truly insignificant concept 

[18].

To guide this TCAV study, a sample Grad-CAM of a full OCT report is shown in Fig. 

7; this example qualitatively suggests the potential importance of concepts such as RNFL 

probability maps, RGCP probability maps, and RGCP thickness maps within the full OCT 

report for accurate glaucoma detection. It is worth emphasizing here that we chose full 

OCT reports as input for this interpretability analysis (including the blank spaces, text, and 

numerical information they contain) specifically because these reports are viewed exactly in 

this format by ophthalmologists. Therefore, we chose this format to enhance explainability 

of results for domain experts as well as to identify the most important report sub-images that 

enable accurate glaucoma detection. Based on this Grad-CAM evidence and the observed 

high performance of our CNN models on RNFL probability maps, we hypothesized that 

RNFL probability map images (concepts) would have the highest TCAV scores when 

input images were whole OCT reports. Similarly, we hypothesized that ‘arcuates’ (typically 

colorized as red in RNFL maps and characteristic of degenerate tissue) would have the 

highest TCAV scores given RNFL probability maps as inputs. We also predicted that red and 

green textured colors would be important for glaucoma detection from full OCT reports as 

well as from RNFL maps.

3) TCAV Experiments: Concepts specific to OCT images were evaluated, such as red/

green image color for RNFL probability map inputs and sub-images (RNFL and RGCP 

probability maps and thickness maps) for full OCT report inputs. Furthermore, specifically 

for RNFL maps as target images, arcuates alone as concepts were analyzed to quantify 

the importance of these red, ‘C’ or backward-‘C’ shaped patterns for accurate glaucoma 

detection (example of arcuate in Fig. 8). Note that the InceptionV3+FC model was trained 

separately on both RNFL images as well as on full OCT reports for the purposes of this 

TCAV analysis, in order to separately probe the importance of concepts present only in 

RNFL images (e.g. arcuates) as well as those present in full OCT reports (e.g. report sub­

images). For each experiment, TCAV scores were computed within three layers (flatten1, 

dense1, and dense3); these comprise the shallowest (flatten1) to the deepest (dense3) of the 

fine-tuned transfer layers of the end-to-end deep learning models that were fine-tuned on 

OCT data. For each OCT concept, 160 random experiments were conducted (using Google 

Cloud resources: 4 virtual CPUs, 15 GB RAM, 1 NVIDIA K80 GPU) with image concepts 

unrelated to OCT data (see all random classes used on Github [30]).
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D. Comparing TCAV Scores with Human Expert Eye Tracking

To validate OCT report concepts of importance for neural networks with OCT report 

concepts of importance for human experts, we compared concepts receiving high TCAV 

scores with concepts receiving the most eye fixations while tracking experts’ eye movements 

as they observed OCT reports. Eye tracking is employed in some medical disciplines to infer 

strategies used by clinicians in diagnostic decision-making to train medical students and 

residents [35], [36]. Specifically, fixation count (the number of times an expert’s eye fixates 

on a particular region of a 2D image, called an Area of Interest, AOI), can indicate salience 

of that region, high informational value, or difficulty involved in processing information in 

that region [35]; here, we used fixation count as an indicator of importance of a given AOI 

for final expert classification of a full OCT report as glaucomatous. We compared TCAV 

scores found in the previous section with eye fixation density for 2 glaucoma expert subjects 

with expertise in OCT image interpretation for glaucoma detection. Each expert was shown 

8 glaucomatous OCT reports, and their eye movements were monitored using a Pupil Labs 

Core device [37], allowing them to move their heads freely while viewing OCT reports on a 

computer screen as they normally would in the clinic/lab. Fixation coordinates and durations 

were aggregated across the 2 subjects and across the 8 glaucomatous OCT reports shown to 

each subject. Eye fixation heatmaps superimposed on full OCT reports were generated by 

modifying existing plotting tools [38].

III. RESULTS AND DISCUSSION

We present impact of CNN architectural improvements on ‘Field’ dataset performance, 

results of probing OCT report concepts using TCAV interpretability analysis, and 

comparison of high-scoring TCAV concepts with AOIs on which human experts fixated 

most in OCT reports.

A. Performance of Hybrid DL/ML Models

Performance accuracy is shown in the left half of Table 1 for all hybrid DL/ML models on 

the ‘Lab’ test set [13] as well as on the ‘Field’ test set (a training optimization study on 

the best of these models is described in more detail in Supplementary Materials and in [15], 

[16]). The fourth column of Table 1 shows the pronounced percent reduction in performance 

for each hybrid DL/ML model between the ‘Lab’ test set and the ‘Field’ test set.

B. Robust End-to-End Deep Learning Models and Robust CNN Ensemble

Our five deep learning models exhibited high performance, notably retaining robustness 

by achieving relatively high accuracy both for the ‘Field’ and ‘Lab’ test sets, as shown 

in Table 1 (right half). The last column of Table 1 shows percent reduction in accuracy 

from ‘Lab’ to ‘Field’ test sets for each end-to-end DL model. Although accuracies for the 

‘Lab’ test set were comparable or slightly lower for some end-to-end DL models compared 

to those of their hybrid DL/ML counterparts, their consistent generalizability with higher 

accuracies on the ‘Field’ dataset suggests that they could be more usable in practice at 

different clinical sites. A Wilcoxon Rank Sum test conducted on the percent reductions 

between the ‘Lab’ and ‘Field’ datasets for the hybrid DL/ML models compared to those 

of the end-to-end DL models indicated a significant decrease in percent reductions for the 
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end-to-end DL models (p = 0.0079). The robustness of the end-to-end DL models can be 

attributed to their combined feature extraction and classification; their fine-tuned classifier 

layers are also better-tailored to image data than the random forest classifiers of the hybrid 

DL/ML models [17]. Training optimizations such as data augmentation (described in detail 

in Supplementary Materials) also contributed to the improved performance of the end-to-end 

DL models. To ensure that enhanced performance of end-to-end DL models was not due 

only to use of data augmentation and cross-validation during training, we applied these 

same training optimizations to hybrid DL/ML models and found that end-to-end DL models 

still performed significantly better (with significantly lower percent reduction on the ‘Field’ 

dataset) than hybrid DL/ML models based on a Wilcoxon Rank Sum test (p = 0.0079). Table 

2 in Supplementary Materials shows accuracy rates and percent reduction for both hybrid 

DL/ML models and end-end DL models after incorporating training optimizations for both 

model types.

It is also interesting to note that the CNN ensemble (second row, right half of Table 1) 

exhibited least percent reduction of all the models between ‘Lab’ and ‘Field’ test sets, 

second only to InceptionV3 + FC, which actually showed slightly higher accuracy on the 

‘Field’ set than on the ‘Lab’ set. The CNN ensemble also exhibited higher accuracy on the 

‘Field’ set than all of the hybrid DL/ML models; this ensemble architecture also provides a 

methodology by which to assess impact on performance of training and testing on multiple 

sub-image inputs (RNFL, RGCP, etc.) from the full OCT report, as each model within the 

ensemble could be trained on a separate sub-image before individual model predictions are 

averaged together. We used the definition of the Pareto Optimal Frontier [39] to choose the 

optimal model to evaluate further in this study; in this case, as shown in Fig. 9, InceptionV3 

+ FC, the CNN ensemble, and VGG-16 + FC exhibited accuracy at the frontier of optimal 

performance on both ‘Lab’ and ‘Field’ datasets. We chose InceptionV3 + FC for further 

TCAV interpretability analysis in this paper due to its exceptionally high performance on 

the ‘Field’ dataset compared to the other models. The high performance of InceptionV3 + 

FC can be attributed to its complexity; compared to the other end-to-end DL models studied 

here, it has the greatest number of operations per forward pass [28]. Such end-to-end deep 

learning models also enabled the streamlined implementation of the TCAV interpretability 

technique, described in the next section.

C. TCAV Results and Observations

1) Important Color Concepts: For full reports, consistent with our predictions, we 

found that red textured colors (characteristic of arcuates) and green textured colors were 

both significant for detection of glaucomatous full reports, with TCAV scores as high as 

0.73 and 0.74 in the dense1 layer, while red and green solid colors were less important, with 

scores as low as 0.31 and 0 across multiple layers (histogram in Fig. 10(a)). Zero indicates 

the TCAV score for an OCT image concept was not significantly different from random 

concepts used for experimentation. Overall, green textured colors and red textured colors 

had higher TCAV scores in shallower layers (flatten1 and dense1). This is consistent with the 

notion that deep learning models learn low-level features such as color in shallower layers. 

Our CNN may be using information from the relatively more textured green and red colors 
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present in RNFL and RGCP probability maps, in addition to interactions with other colors in 

OCT report sub-images, as part of its G vs. NG decision criteria.

2) Importance of Arcuates: Arcuates were statistically significant for detection of 

glaucomatous damage when inputs were RNFL probability maps, as can be seen by the 

high TCAV score for arcuate concepts compared to that of red texture and similar TCAV 

score compared to that of green texture (dense3, Fig. 10(b)). This parallels the observation 

that RNFL probability maps are composed prominently of arcuate features (characterized by 

red textured color) surrounded by healthy tissue (characterized by green textured color), 

consistent with the fact that clinicians also rely on arcuate features for glaucomatous 

damage detection from RNFL maps. In contrast, for full OCT reports, arcuate concepts 

have lower TCAV scores across all fine-tuned transfer layers than red and green textures and 

RNFL maps themselves (Fig. 10(c)), suggesting that these later three concepts carry more 

importance than arcuates for glaucoma detection when full OCT reports are inputted to our 

CNN. Arcuates have highest TCAV scores in the deepest layer (dense3), also consistent with 

the expectation that shapes are learned by CNNs in deeper layers.

3) Important Sub-images for OCT Full Reports: RNFL and RGCP probability 

maps as well as RGCP thickness maps had relatively high TCAV scores across all fine-tuned 

transfer layers probed and thus appear to be important concepts for correct classification 

of glaucomatous full reports by the InceptionV3 + FC model studied here. In contrast, 

RNFL thickness maps received low TCAV scores across all three layers and thus appear to 

be less important for glaucoma classification by our CNN. These results are shown in the 

histogram in Fig. 10(d). The low TCAV scores for RNFL thickness maps across all three 

transfer layers (flatten1, dense1, and dense3) quantitatively confirms the qualitative result 

depicted by the Grad-CAM in Fig. 7: the RNFL probability map, RGCP probability map, 

and RGCP thickness map are highlighted significantly more than the RNFL thickness map. 

These TCAV scores differ from our original hypothesis, based on CNN performance on 

RNFL input images, that RNFL maps alone would have had highest conceptual importance 

for glaucoma classification by CNNs. In fact, this result suggests that a CNN ensemble 

taking as input specifically the three sub-images with highest TCAV scores may arrive at 

better performance than our previous experiments using RNFL probability maps alone as 

CNN input.

D. Comparison of Human Expert Eye Fixation Regions with High-Scoring CNN Concepts

Using eye tracking for 2 expert OCT readers viewing 8 OCT reports, we found that eye 

fixations on OCT-report AOIs are consistent with OCT-report CNN concepts receiving high 

TCAV scores; specifically, RNFL thickness maps acquired the fewest number of expert 

fixations, while RNFL probability maps, RGCP probability maps, and RGCP thickness 

maps aggregated a higher number of fixations. We can see this visually in the eye fixation 

heatmap superimposed on a full OCT report shown in Fig. 11. If we infer ‘importance’ 

of an AOI from expert fixation count, then this suggests the clinical importance of the 

same concepts that the deep learning model found to be important using TCAV scores as 

the metric. RNFL thickness maps received lowest TCAV scores across all layers probed, 

while RGCP thickness maps, RNFL probability maps, and RGCP probability maps received 

Thakoor et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high TCAV scores. Fig. 12 shows fixation count values for the four OCT report TCAV 

concepts/eye tracking AOIs evaluated here and their corresponding TCAV scores. TCAV 

scores (between 0 and 1) were weighted (multiplied) by the maximum fixation count (845 

for RNFL probability maps) in order to bring them into a comparable range with fixation 

counts.

Here we report on eye tracking of 2 experts viewing 8 OCT reports (16 report-fixation 

samples). We acknowledge that our eye tracking results might vary as more subjects and/or 

more OCT reports are added. However, by conducting 160 random concept experiments, 

we have ensured the stability of our TCAV results. Fixations landing on non-AOI regions 

in this study could inspire future studies of other components of the report, such as 

the circumpapillary RNFL and thickness profile plots in the upper left of the report 

and the en-face image in the lower left of the report. This first attempt at quantifying 

important concepts/AOIs both for neural networks and for human eyes is a step in the 

direction of enhancing interpretability of ‘black-box’ deep learning tools with application in 

medicine. By understanding and correlating human expert eye-tracking with neural network 

mechanisms, we move in the direction of developing more ‘bio-inspired’ AI. Future neural 

networks trained using eye fixations of experts can increase accuracy and improve model 

explainability, transforming AI into a valuable team-mate to medical experts in the clinic.

E. Scope for Improving this Work and Role of Eye Tracking in AI for Medicine

Eye tracking has previously been studied in conjunction with visual saliency, revealing that 

experts exhibit characteristic scan and fixation patterns in task-relevant areas of images 

[40], [41]. While this relation is helpful in understanding how humans process visual 

information, it is difficult to determine direction of causality: areas of interest may be 

treated as important because experts view them, or experts may view certain areas because 

they contain underlying information that is critical to understanding the visual scene. 

Furthermore, past analyses have been unsuccessful at parsing concepts from areas of interest 

that correspond with greater fixation time. For example, patterns may be more important 

to a trainee radiologist than colors, but this may be hard to separate when they overlap 

in a region of interest [41]. Correlating concepts derived from neural network activations 

with expert viewing patterns allows parsing of human-friendly concepts rather than strictly 

areas of interest. In this study, we have shown the feasibility of applying this methodology 

within a small group of experts. We suggest future work toward studying eye tracking 

patterns of clinical experts to understand how concepts, rather than areas of interest, may 

be important for task performance. Furthermore, use of concept-agnostic interpretability 

methods inspired by TCAVs [42] but that do not limit to pre-specified concepts, may enable 

finding of previously-unknown patterns/user-friendly concepts that contribute to human as 

well as neural network disease detection. With a bigger population of readers, additional 

questions that can be probed include whether or not the model falls into the variability 

across readers. In other words, with more OCT experts, we can answer the question of 

whether the model’s TCAV scores will still be consistent with expert eye fixation counts in 

relevant OCT regions. Furthermore, if eye movements are collected from experts vs. novice 

readers, we can determine if TCAV results align more with expert or novice eye movements. 

Most importantly, this study encourages future work using eye movements to constrain or 
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bias a CNN to only focus on those regions within the medical image that are most important 

according to experts, enhancing model accuracy and interpretability.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In the face of anticipated reduction in accuracy, end-to-end deep learning architectures 

using pre-trained CNNs followed by fine-tuned transfer layers enabled enhanced robustness 

to a new dataset. In this study, InceptionV3 + FC exhibited robust performance on both 

‘Lab’ and ‘Field’ datasets, and a CNN ensemble yielded least positive percent reduction in 

accuracy when generalizing to a new clinical test set, highlighting the value of combining 

multiple pre-trained CNNs to improve robustness to new datasets. Towards improving 

interpretability of deep learning models, TCAVs indicated that RNFL and RGCP probability 

maps as well as RGCP thickness maps are most critical for accurate glaucoma detection 

from full OCT reports by CNNs. This finding helps to guide improvement of deep learning 

models; a CNN ensemble designed based on these TCAV results (giving higher weight to 

OCT report sub-images with higher TCAV scores) may achieve higher accuracy than models 

trained on RNFL probability map input images alone. Evaluation of arcuate concepts for 

RNFL probability maps showed that, consistent with features used by glaucoma experts, 

arcuates are also used by CNNs to detect glaucoma from RNFL probability maps. Finally, 

corroboration of TCAV scores with human eye fixations showed similarity between concepts 

of importance to CNNs and AOIs of importance to humans. Employing TCAVs as a 

quantitative interpretability method has shown potential for establishing common decision­

making features used by humans and machines. The end-to-end deep learning models 

developed here enabled streamlined interpretability assessment while enhancing robustness 

of glaucoma detection to a new dataset. Future work could incorporate datasets from varied 

geographical regions and images from other eye diseases beyond glaucoma. Together, the 

robust models and interpretability pipeline incorporating human eye movements introduced 

in this work have the potential to be translated to any domain where AI is applied to medical 

disease diagnosis from images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The key difference between the previously-developed hybrid deep learning/machine learning 

pipeline (top diagram) is replacement of the feature extractor (pre-trained CNN) followed 

by machine learning algorithm (random forest) modules with an end-to-end deep learning 

algorithm consisting of a pre-trained CNN followed by a fine-tuned fully connected 

classifier (bottom diagram). Graphic adapted from [17].
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Fig. 2. 
Sample OCT retinal nerve fiber layer (RNFL) image of a patient’s right eye (OD) with 

glaucoma. Green-to-red color spectrum indicates increasing spatial probability of retinal 

tissue degeneration compared to age-matched and gender-matched healthy population (i.e. 

green indicates normal/healthy tissue regions, while yellow and red indicate abnormal/

potentially diseased tissue regions). White circle in image represents location of the optic 

nerve, where ganglion cell axons converge, so there is limited retinal tissue in that region.
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Fig. 3. 
Full OCT Report used by OCT expert to detect glaucoma. Red box indicates an RNFL map. 

Violet box shows an RGCP map. Orange box contains RGCP thickness map, and green 

box contains RNFL thickness map. The grayscale image at far bottom left is an en-face 

(top-down) image of the retina, and the grayscale image at top left is an OCT b-scan (depth 

image), showing a cross section of the retina; directly beneath the b-scan is a thickness plot 

(black line), indicating whether this subject’s RNFL thickness is within (green curve) or 

outside the 95% (yellow) or 99% (red) limits of healthy controls.
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Fig. 4. 
Schematic of four end-to-end deep learning models: convolutional pre-trained bases 

followed by fine-tuned transfer layers trained on OCT images (RNFL maps shown as input 

at top). Transfer layer parameters were optimized for each convolutional base (see GitHub 

[30] for code and IEEE Dataport [31] for saved models).
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Fig. 5. 
Schematic of CNN ensemble made up of three end-to-end deep learning models (each 

separately fine-tuned on RNFL maps, shown as input at top) followed by dense fine-tuned 

layers which predict if the input image is glaucomatous (G) or not glaucomatous (NG). 

Predictions were averaged to arrive at the final ensemble prediction between 0 and 1, with 

0.5 serving as threshold probability for binary classification.
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Fig. 6. 
(a): Sample Grad-CAM (at left) for true positive RNFL+VF image (at right). In the 

RNFL+VF image at right, the open circles are visual field (VF) locations, specific points 

in the field of view used to test a patient’s functional vision. Filled circles are locations 

with abnormal visual function; those circumscribed by squares are inner-retina VF locations 

recognized by clinicians as abnormal both in RNFL and VF (indicative of disease). VF 

locations circumscribed by diamonds are abnormal outer-retina RNFL+VF locations [14]. 

Note that there is overlap between highlighted (red and yellow) regions chosen by the 

CNN as indicative of glaucoma (in Grad-CAM at left) [15] and those locations chosen as 

abnormal by clinicians (diamonds and squares in RNFL+VF image at right). (b): Sample 

Grad-CAM (at left) for false negative RNFL+VF image (at right). Note that this false 

negative (missed case) is challenging, as there are very few highlighted regions chosen both 

by the CNN as indicative of glaucoma (red/yellow in image at left) and by clinicians as 

abnormal (diamonds and squares in image at right).
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Fig. 7. 
Grad-CAM overlayed on full OCT report, showing regions contributing most to CNN 

classification decision via warm (red/yellow) colors. These regions, on RNFL and RGCP 

probability maps as well as on the RGCP thickness map specifically, are also indicated with 

golden arrows for easy localization.
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Fig. 8. 
Example arcuate concept at left with its corresponding RNFL probability map at right.
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Fig. 9. 
Hybrid DL/ML models (green) and end-to-end DL models (red) are shown in the above 

scatter plot based on their accuracy on both the ‘Field’ dataset (y-axis) and the ‘Lab’ dataset 

(x-axis). Top-performing end-to-end DL models fall on the Pareto Optimal Frontier [39]: 

InceptionV3 + FC, the CNN ensemble, and VGG-16 + FC.
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Fig. 10. 
(a): TCAV plot (TCAV score vs. concepts of interest) for red and green solid and textured 

colors in full OCT reports; these scores indicate the importance of red and green textured 

colors over red and green solid colors for the CNN transfer layers (responsible for learning 

OCT image data). (b): TCAV plot showing importance of arcuates and green textured color 

for detecting glaucoma when input is only RNFL probability maps; this finding is consistent 

with the fact that clinicians also rely on arcuates to distinguish glaucomatous damage in 

RNFL maps. (c): TCAV plot for red and green textured colors, RNFL probability maps, 

and arcuates in full OCT reports; the higher scores for red and green textured colors and 

RNFL probability maps suggest that these concepts are more important than arcuates alone 

for detecting glaucoma when CNN inputs are full OCT reports. (d): TCAV plot for RNFL 

probability maps, RGCP probability maps, RNFL thickness maps, and RGCP thickness 

maps, the main sub-images of full OCT reports; these scores indicate that RNFL and RGCP 

probability maps as well as RGCP thickness maps are significant across all (shallow as well 

as deep) CNN transfer layers. Note that colors of transfer layers in histograms match colors 

of transfer layers in Fig. 4.
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Fig. 11. 
Heatmap of eye fixations for one subject (location and duration shown by transparent blue 

patches, legend at right) superimposed on full OCT report. Mean fixation duration was 

comparable across all four AOIs (bordered by red, violet, orange, and green boxes), but the 

magnitude of fixation counts in each AOI coincides closely with the magnitude of TCAV 

scores for each sub-image concept. April tags [37] shown in four corners were used to 

enable surface detection by the eye tracker.
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Fig. 12. 
Histogram showing number of fixations aggregated across 2 experts and 8 OCT full reports 

and weighted TCAV scores (from Fig. 10(d), flatten1 layer) for the four AOIs studied here. 

Fixation count is higher for AOIs (concepts) that have higher TCAV scores and is lower for 

those with lower TCAV scores.
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