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ABSTRACT: State-of-the-art oxides and sulfides with high Li-
ion conductivity and good electrochemical stability are among
the most promising candidates for solid-state electrolytes in
secondary batteries. Yet emerging halides offer promising
alternatives because of their intrinsic low Li+ migration energy
barriers, high electrochemical oxidative stability, and beneficial
mechanical properties. Mechanochemical synthesis has enabled
the characterization of LiAlX4 compounds to be extended and
the iodide, LiAlI4, to be synthesized for the first time
(monoclinic P21/c, Z = 4; a = 8.0846(1) Å; b = 7.4369(1) Å;
c = 14.8890(2) Å; β = 93.0457(8)°). Of the tetrahaloaluminates,
LiAlBr4 exhibited the highest ionic conductivity at room
temperature (0.033 mS cm−1), while LiAlCl4 showed a
conductivity of 0.17 mS cm−1 at 333 K, coupled with the highest thermal and oxidative stability. Modeling of the diffusion
pathways suggests that the Li-ion transport mechanism in each tetrahaloaluminate is closely related and mediated by both
halide polarizability and concerted complex anion motions.

Replacing flammable liquid electrolytes in conventional
Li-ion batteries (LIBs) with solid-state alternatives
could lead to a breakthrough in battery safety and

longevity. Moreover, otherwise inaccessible high energy
density cells (using Li-metal anodes and high-voltage
cathodes) could become a reality by employing thermody-
namically stable solid-state electrolytes (SSEs) in all-solid-state
batteries (SSBs).1 Inorganic SSEs with sufficiently high ionic
conductivity and chemical/electrochemical stability are almost
within reach. Among them, oxide- and sulfide-based materials
have been the main focus of research because of the
remarkable ionic conductivity that can be achieved at room
temperature. However, oxides lack mechanical strength and
require high processing temperatures, whereas both the narrow
electrochemical windows and limited stability of sulfides have
proved challenging to their adoption as SSEs.2,3 Among
alternatives, the complex halides, Li3M

IIIX6 (M
III = Sc, Y, In,

La, Ho, Er; X = halogen) and Li3−xM1−xZrxCl6 (M
III = Y, Er),

are raising interest with appreciable ionic conductivity at room
temperature, low activation energies for Li+ migration and wide
electrochemical windows.4−11 As originally discovered in the

1990s, the synthesis of Li3M
IIIX6 requires several steps

including high temperature annealing.12 By comparison,
ternary lithium-light element halides, including LiAlCl4, have
become well-known over the past four decades on account of
remarkable ionic conductivity in the solution and molten
states. With liquid LiAlCl4·6SO4 showing Li+ ionic con-
ductivity of >0.10 S cm−1 at room temperature,13 such halides
have attracted renewed scrutiny recently,14,15 while in solution,
LiAlX4 (X = Cl, Br) can surpass the Li-ion conductivity of the
ubiquitous electrolyte, LiPF6.

16 By contrast, the structure and
conductivity of lithium tetrahaloaluminates in the solid state
have scarcely been studied and only very recently has solid
LiAlCl4 been identified as one of several promising halides for
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electrolytes in SSBs.17 In fact, the ionic conductivity of
monoclinic LiAlCl4 was first reported by Weppner and
Huggins using DC polarization measurements in 1977.18 At
298 K, single crystals of LiAlCl4 were reported with a
conductivity of 1.2 × 10−6 S cm−1, increasing to 1.4 × 10−4

S cm−1 at 413 K (just below the melting temperature). The
feasibility of using LiAlCl4 as a SSE was first demonstrated 15
years later by deploying it in a LixTiS2(s)/LiAlCl4(s)/
Li1−xCoO2(s) solid-state cell (0 < x < 0.45) at 373 K.19 The
cell exhibited an open-circuit potential of 2.1 V in the charged
state. Moreover, it showed excellent discharge characteristics at
current densities up to 0.1 mA cm−2 with minimal capacity loss
over 100 charge−discharge cycles. Despite this promising
result, there has been a lack of studies since. The
corresponding bromide is uncharacterized, while the iodide
has never been isolated. Consequently, the conductivity of
either is unknown in the solid state.
Inspired by the recent performance of halides in the solid

state and by the historically promising properties of halide
salts, we were motivated to investigate the structures, stabilities
and electrochemical properties of the solid lithium tetrahaloa-
luminates, LiAlX4, (X = Cl, Br, I) systematically. Here, we
demonstrate how mechanochemistry can be employed to
synthesize the tetrahaloaluminates in one step, without heating.
This is critical for synthesizing powders of the low melting
point iodide, which we could not isolate thermally. The high
purity, bulk samples so-obtained have enabled us to determine
the structures of the halides and to make evaluations of their
Li+ conductivity. Both thermal and electrochemical oxidative
stability have also been determined. Some preliminary
hypotheses for cation conductivity mechanisms in the lithium
tetrahaloaluminates can be proposed on the basis of the data.
High-purity LiAlX4 (X = Cl, Br, I) powders were synthesized

by milling the respective component binary halides in an inert
atmosphere (Tables S1 and S2 and Figures S1−S8). Although
lab-based powder X-ray diffraction (PXD) provided basic
crystal structure models of the halides (Figures S9−11), we
undertook synchrotron PXD (SPXD) and time-of-flight (ToF)
powder neutron diffraction (PND) experiments to locate the
Li positions accurately and to determine anisotropic thermal
displacement parameters, allowing full characterization of the
underlying structural chemistry of the LiAlX4 materials. Figure
1 shows the profile fits for LiAlI4, from structure refinement
against PND and SPXD data, respectively. The respective plots

for the chloride and bromide analogues can be found in the
Supporting Information (Figures S12, S13, and S15).
Crystallographic data from these refinements are collated in

Tables S3−S18. Our room temperature diffraction data
confirmed that LiAlBr4 and LiAlI4 are isostructural to the
chloride analogue (monoclinic, space group P21/c). The
structural models for the bromide and iodide were further
assessed by means of the Global Instability Index (GII),20,21

which corroborated their plausibility with low values of 0.10
and 0.07, respectively. The crystal structure of the
haloaluminates can be described as a slightly distorted hcp
X− sublattice within which Li+ and Al3+ occupy octahedral and
tetrahedral interstices, respectively. The extended structure can
be considered to be constructed from distorted LiX6 octahedra
and AlX4 tetrahedra. Two LiX6 octahedra link across a
common edge to form “Li2X10 dimers”. Each Li−X dimer is
connected to four others by 2 axial and 2 equatorial vertices in
a “trans” confirmation that creates stepped or buckled layers
that propagate in all three dimensions. Meanwhile, each AlX4
tetrahedron is connected to one Li−X dimer via two edges and
two other dimers by one vertex each (Figure 2a and b).

Alternatively, considering only complex [AlX4]
− anions and Li+

cations, then the latter can be seen to occupy space within
“pseudo-layers” between the isolated haloaluminate tetrahedra
(Figure 2c).
The unit cell expands linearly in all three dimensions as Cl−

(167 pm) is replaced by Br− (182 pm) and I− (206 pm),24 and
there is a concomitant increase in both the average Li−X and
Al−X bond lengths. The monoclinic distortion of the cell
decreases very slightly with increasing halide radius (Figure
S16). Other than these expected differences in cell volume, our
refinements hinted at differences between the structural

Figure 1. Room-temperature profile fits from Rietveld refinement
of the structure of LiAlI4 against: (a) ToF PND data (⟨2θ =
92.59°⟩ detector bank; Polaris, ISIS),22,23 and (b) SPXD data (λ =
0.56466 Å; X04SA, PSI). Experimental (black), calculated (red),
and difference profiles (blue) are shown; vertical markers indicate
Bragg reflection positions for LiAlI4 (green) and LiI (purple),
respectively.

Figure 2. Crystal structure of mechanochemically synthesized
LiAlI4 (P21/c) projected along the b-axis as visualized with
VESTA26 (a) showing a polyhedral representation of the extended
structure and the linking of Li−X “dimers”, (b) showing the
linkage between an LiX6 octahedron and neighboring AlX4
tetrahedra, and (c) highlighting the positions of the Li+ cations
with respect to the isolated haloaluminate anions: Li (4e, green
spheres), Al (4e, light blue spheres), and I (4e, purple).
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models of the mechanochemically synthesized lithium
tetrahaloaluminates and the previously reported structures of
(thermally synthesized) LiAlCl4 and LiAlBr4 (although the
latter structure was previously determined only from single
crystal data at 100 K).16 First, attempts were made to refine the
occupancy of the Li site in each halide, and although for X =
Br, this did not vary from 100%, for X = Cl and I, respectively,
values of 91(4)% and 94(2)% were obtained with slight
reductions in R-factors. More interestingly, if the Li occupancy
of the normally vacant i2 interstitial position (0.236, 0.014,
0.792) identified by SoftBV in the conduction mechanism (see
Table S20) was simultaneously refined, then occupancies of
0.84(3) and 0.16(3) were obtained for the normal and
interstitial Li sites in LiAlCl4 when the respective thermal
parameters were fixed. By contrast, no evidence for antisite
mixing (Li−Al disorder) was obtained for any of the halides.
Although these results are not conclusive, they do tend to
support observations from solid-state NMR spectroscopy of a
partially occupied interstitial site in LiAlCl4

25 and provide a
rationale for the Li+ diffusion mechanism elucidated by BVSE
and MD analyses for the haloaluminates (see below). It will be
interesting to see whether local structural approaches, such as
pair distribution function (PDF) analysis can provide further
information regarding the links between defect structure and
Li-ion motion.
The thermal stabilities of LiAlX4 were studied by

simultaneous thermogravimetric-differential thermal analysis
(TG-DTA). For all samples, the TG profiles are typical of
thermal decomposition with volatile decomposition products
(Figures S17−19). The decomposition is preceded by melting
in each case (the melting points, as determined by the
respective DTA peak onsets, are summarized in Table 1). The
melting points of the tetrahaloaluminates increase from X = Cl
through Br to I, with the new iodide, LiAlI4, melting at ∼509 K
(and decomposing from ∼593 K). TG-DTA also confirmed
the absence of unreacted AlX3 in the synthesized LiAlX4
materials with no AlX3 melting transitions visible in the DTA
data (e.g., AlI3 melts at 461.43 K).27

The ionic transport properties of mechanochemically
synthesized LiAlX4 were analyzed by variable temperature
electrochemical impedance spectroscopy (EIS) with blocking
Au electrodes. Figure 3a shows the room temperature Nyquist
plots. For LiAlCl4, the spectrum was fitted with an equivalent
circuit consisting of one parallel constant phase element
(CPE)/resistor in series with a CPE representing the behavior
of the electrolyte and blocking electrodes, respectively. The
capacitance of the CPE/resistor is 2.5 × 10−11 F cm−2 with an
α-value of 0.99, which together indicate a predominant bulk
contribution to the impedance response.28 Conversely, the
LiAlBr4 and LiAlI4 spectra were fitted with an equivalent circuit
consisting of two parallel constant phase elements (CPE)/
resistors in series with a further CPE. The capacitances of the
high-frequency CPE/resistor elements are 2.4 × 10−11

(LiAlBr4) and 1.7 × 10−11 F cm−2 (LiAlI4) with α-values of
0.96 and 0.91, respectively, which represent the ideality of the
CPE and confirm a bulk-process.

At lower frequencies, impedance contributions are observed
with capacitances of 2.5 × 10−9 (X = Br) and 8.1 × 10−7 F
cm−2 (X = I). This can be attributed to a surface layer, which
may be formed on thermal decomposition during gold coating,
for example.6,28

Arrhenius behavior was noted for all samples in the LiAlX4
series across a temperature range of 233−333 K (Figure 3b).
Room-temperature total ionic conductivities (σRT) and the
parameters extracted from linear fits of the Arrhenius plots (σ0,
Ea) are summarized in Table 1. We found that the room
temperature Li+ conductivity first increases but then
subsequently decreases when switching from X = Cl through
Br to I. The results corroborate the premise that both the
exponential prefactor, σ0, and the activation energy for Li+

diffusion decrease with increasing anion polarizability, although
the differences in the Ea values for LiAlBr4 and LiAlI4 are not
statistically significant.29,30 In this regard, it should be noted
that a reduction in Ea does not always lead to improved ionic
conductivity, since Ea and σ0 are correlated in line with the
Meyer−Neldel rule.31,32 By considering both parameters in
Table 1, it can be appreciated why LiAlI4 might have the
lowest ionic conductivity within the haloaluminate series. It
should be noted that the ionic conductivity for LiAlCl4
measured here is 1 order of magnitude higher than that
reported by Weppner and Huggins.18 Although our
mechanochemical syntheses are quicker and less energy-
intensive to that recently reported for LiAlCl4 by Tanibata et
al., the EIS data do further support the premise that ball milling
positively influences the ionic conductivity in the lithium
halides (likely facilitating defect formation compared to
thermal synthesis methods, which are evidently not viable for
X = I).25 Indeed, EIS measurements performed on a pellet of
the LiAlCl4 sample that was subsequently annealed at 373 K
for 14 h yielded a lower room temperature conductivity (of
1.2(2) × 10−5 S cm−1) than that of the cold-pressed
mechanochemically synthesized chloride.
The comprehensive structural models obtained from

neutron and synchrotron diffraction allowed the probable Li+

diffusion pathways in the haloaluminates to be established via
bond-valence site energy (BVSE) analysis.21 In this class of

Table 1. Thermal Properties and Transport Data of Mechanochemically Synthesized Lithium Tetrahaloaluminates

Material Melting point (K) Decomposition onset temperature (K) σRT × 105 (S cm−1) σ0 × 10−5 (K S cm−1) Ea (eV)

LiAlCl4 420.0 [419,18 42216] ∼643 2.9(2) [2.125] 8.6(7) 0.473(2) [0.47,18 0.50(6)25]
LiAlBr4 464.9 [46616] ∼593 3.3(2) 2.5(4) 0.437(4)
LiAlI4 509.0 ∼593 1.2(1) 0.61(7) 0.429(3)

Figure 3. (a) Room-temperature Nyquist plots of LiAlX4 (X = Cl,
Br, I) normalized to the thickness of the pellets, showing the
impedance responses (open circles) and fits (solid lines). (b)
Arrhenius plots of conductivity values obtained from temperature-
dependent impedance spectroscopy.
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materials, our analysis shows that the ionic conductivity is
governed by the presence of intrinsic tetrahedral and
octahedral interstitial sites. The BVSE map of LiAlI4 is
presented as an example in Figure 4a, and shows that a

bottleneck for 2D conduction involves Li+ hopping from its
normal octahedral 4e lattice position to an adjacent tetrahedral
4e site (“i7” in the BVSE map notation in Figure 4b).
Alternatively, 3D conduction requires hops from/to interstitial
octahedral 4e lattice sites (“i3” → “i2”). Qualitatively, the
BVSE models of the migration barriers in the LiAlX4 series
depict very similar energy landscapes (while noting that the
overall activation energies for LiAlBr4 and LiAlI4 are higher
than the experimental values due to the level of accuracy of
SoftBV, Figures 4b, S20, and S21). These energy profiles
indicate that the conduction pathways do not change
significantly with the halide and that the observed differences
in ionic conductivity cannot be rationalized only via a static,
crystal chemistry treatment.
Empirical molecular dynamics simulations for a 768 atom 4

× 4 × 2 supercell of LiAlCl4 over the temperature range 250−
400 K over 1500−18000 ps harmonize to the experimentally
observed conductivity (Figure S22). A more detailed analysis
shows that the 2D Li+ motion in the y−z plane is coupled to
dynamic anion disorder (librations) that in the experimental
study may be facilitated by the mechanochemical synthesis.
Details are given in the Supporting Information (Figures S23
and S24). Given the role of polyanion motions in other cation
conductors, the combination of experimental and computa-
tional data encourages further investigations of the role of

defects and dynamic anion effects in LiAlX4 materials and how
such effects might be tuned.
In view of the promising ionic transport behavior,

preliminary linear sweep voltammetry (LSV) experiments
were conducted to determine the oxidative stability of LiAlX4.
InLi and a carbon + SSE composite were employed as the
counter and working electrodes, respectively. The oxidative
stability limits were defined by the onset potentials (Eonset) and
calculated via linear fitting of the nonfaradaic and faradaic
region.33 The room temperature voltammograms are shown in
Figure 5.

We determined that oxidation of LiAlX4 materials starts at
3.8 (4.4), 2.8 (3.4), and 2.0 (2.6) V versus In/InLi (vs Li+/Li)
for X = Cl, Br, and I, respectively. Density functional theory
(DFT) calculations predicted the electrochemical windows of
LiAlX4 to be either 1.7−4.5 V35 or 1.54−4.45 V7 for X = Cl
and 1.8−3.9 V35 (vs Li+/Li), for X = Br. Above the oxidation
limits, LiAlX4 are predicted to produce AlX3 and X2, while
below the reduction limits, LiAlX4 are predicted to form Al and
LiX, indicating that lithium tetrachloro- and tetrabromoalumi-
nates are not stable against Li metal, as is true for the liquid
electrolyte, LiAlCl4·3SO2.

36 These results indicate the
feasibility of combining LiAlCl4 with high voltage cathode
materials, while the bromide and iodide analogues would be
better suited to use with lower potential electrodes, such as
sulfide-based cathodes, for potential cell applications. Equally,
use of LiAlBr4 and LiAlI4 with high voltage cathodes might be
enabled with an appropriate coating of the positive electrode to
prevent SSE decomposition.37,38 Further investigations into
various half- and full-cell architectures and their performance
are currently underway and will be reported elsewhere.
In summary, we have shown that high purity lithium

tetrahaloaluminate powders can be easily synthesized by
mechanochemical methods. This approach is extremely
effective in preparing bulk quantities of LiAlX4 including the
new iodide, LiAlI4, which could not be synthesized by thermal

Figure 4. (a) BVSE map showing Li+ migration pathways in a
(100) projection of the LiAlI4 structure, as visualized with
VESTA.26 The highest isosurface level of 0.64 eV over the global
minimum is shown in yellow. Red dots indicate octahedral Li+

lattice sites and yellow spheres indicate tetrahedral/octahedral
interstitial sites. (b) BVSE model of migration barriers for LiAlI4
derived from Rietveld refinements against SPXD and PND data.
The relative site energy is zero for Li+ lattice sites.

Figure 5. Room temperature linear sweep voltammogram (0.1 mV
s−1) of InLi|LiAlX4|LiAlX4 + C cells. Dashed lines indicate linear
fits of the faradaic region. The bottom x-axis shows the values of
the voltage versus In/InLi, the top x-axis shows the corresponding
values of voltage versus Li+/Li.34
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methods. Synchrotron and neutron diffraction have shown not
only that the bromide and iodide are isostructural to the
chloride analogue but that Li vacancies and interstitials are
likely prevailing features of mechanically synthesized tetraha-
loaluminates. Each material exhibits appreciable Li-ionic
conductivity, good thermal stability and reasonable stability
to oxidation, such that the chloride, especially, might be
employed with high voltage cathodes. Moreover, Li+

conductivity and stability can likely be improved still further
by tuning the microstructure, composition and defect
chemistry of the haloaluminates through doping, substitution
and compositing. The LiAlX4 family suggests these and other
polyanion halides offer considerable promise as new classes of
cation conductor and as candidates for testing systematically as
SSEs.
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