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Kinematic evaluation via portable sensor system has been increasingly applied in neurological sciences and clinical practice.
However, conventional kinematic evaluation rarely extends the context beyond the motor impairment level. In addition, ki-
nematic tasks with numerous items could be complex and time consuming that pose a burden to test applications and data
processing. -e study aimed to explore the correlation of finger-to-nose task (FNT) kinematics via Inertial Measurement Unit
with upper limb motor function in subacute stroke. In this study, six FNT kinematic variables were used to measure movement
time, smoothness, and velocity in 37 participants with subacute stroke. Upper limb motor function was evaluated with the Fugl-
Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and modified Barthel Index (MBI). As a
result, mean velocity, peak velocity, and the number of movement units were associated with the clinical assessments. -e
multivariable linear regression models could estimate 55%, 51%, and 32% of variance in FMA-UE, ARAT, and MBI, respectively.
In addition, age, gender, type of stroke, and paretic side had no significant effects on these associations. Results show that FNT
kinematic variables measured via Inertial Measurement Unit are associated with upper extremity motor function in individuals
with subacute stroke. -e objective kinematic evaluation may be suitable for predicting clinical measures of motor impairment
and capacity to understand upper extremity motor recovery and clinical decision making after stroke. -is trial is registered
with ChiCTR1900026656.

1. Introduction

Upper extremity (UE) motor function is impaired in ap-
proximately 50–80% of individuals with acute stroke [1] and
40–50% with chronic stroke [2, 3]. Motor impairment re-
sults in poor movement control and has a major impact on
functional capacity and activities of daily living (ADL) of
stroke survivors [4]. To optimize UE recovery after stroke, it
is crucial to select multilevel outcome measures for the
interpretation of motor recovery and clinical decision
making [5]. Although there have been extensive validated
UE scales or tests to assess body structure, function, and

activity in clinical practice [6], these assessments often rely
on subjectively rated ordinal scales with ceiling effects that
may lead to examiner bias or lack sensitivity to detect po-
tentially impactful changes of upper limb motor recovery
[7].

Kinematic evaluation facilitates interpreting the mech-
anisms of motor restoration, which has been increasingly
applied in neurological sciences and clinical practice [8–10].
Such technology is capable of providing detailed informa-
tion regarding upper extremity function evaluation and
delivering personalized interventions. According to the
previous literature, kinematic assessment is usually
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performed using arm-supported robots or optical-camera
systems, based on fixed laboratory environments or ex-
pensive equipment that leads to several disadvantages
[11–13]. From the technical perspective, robotic instruments
are unable to capture the entire spectrum of UE motor
impairment due to their mechanical structure [14]. More-
over, most robotic devices could not extend the value of
kinematic scenarios beyond the impairment level according
to the International Classification of Functioning, Disability
and Health (ICF) framework [11, 15]. Optical camera sys-
tems raise privacy concerns inevitably and constrain par-
ticipants into a laboratory environment with much setup
time and cost [16].

Portable sensor systems, a novel approach of kinematic
evaluation, can provide upper limb spatiotemporal mea-
surements against gravity in a natural three-dimensional
environment [17]. Inertial Measurement Units (IMU) are
portable sensor devices combining the three-dimensional
accelerometers, gyroscopes, and magnetometers to detect
kinematic parameters. Kinematic analysis of motor im-
pairment via Inertial Measurement Unit has been shown to
be objective, sensitive, and quantitative. However, kinematic
tasks with numerous items could be complex and time
consuming that pose burden on test application, compliance
issues, and data processing in previous studies [18, 19].
Moreover, its relationship with the multilevel UE clinical
measures regarding ICF framework has not been fully in-
vestigated [14, 20].

In clinical practice, the finger-to-nose test (FNT) is
commonly applied to evaluate upper limb coordination in
patients with stroke and cerebellar ataxia [12, 21]. Compared
with multi-item clinical scales that require trained personnel
and as long as 30 minutes to complete, FNT could reduce
task burden when estimating individual’s UE performance
[22]. Previous studies have shown that FNTcould add value
to measure UE coordination with construct, convergent, and
discriminant validity [12, 23] as well as ADL-related dex-
terity [24, 25]. However, it remains unclear how FNT cor-
relates with motor impairment, capacity, and ADL
performance in individuals with subacute stroke from a
kinematic perspective. -erefore, the purpose of this study
was to explore the associations between FNT kinematic
variables obtained via Inertial Measurement Unit and
multilevel upper extremity motor function in subacute
stroke survivors. Furthermore, we aimed to compare the
amount of variance in clinical scales that could be explained
by FNT kinematic variables. Hypothetically, kinematic
metrics reflecting the UE movement strategy, smoothness,
and velocity could be considered to measure more aspects of
motor impairment (FMA-UE) than activity assessments
(ARAT and MBI).

2. Materials and Methods

2.1. Study Design. -is cross-sectional study followed the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) checklist. -e study was per-
formed in accordance with the principles of the Declaration
of Helsinki. -e study protocol was approved by the Clinical

Trials Ethics Committee of Huazhong University of Science
and Technology on 24 October 2018. -e study was regis-
tered in the Chinese Clinical Trial Registry (no.
ChiCTR1900026656) on 17 October 2019.

2.2. Participants. -irty-seven individuals with subacute
stroke were recruited from the Department of Rehabilitation
Medicine from December 2019 to January 2021 (Figure 1).
-e inclusion criteria were as follows: (a) clinical diagnosis
of unilateral, first-ever subacute stroke verified by MRI or
CT; (b) aged 18–80 years; (c) showing upper limb motor
impairment (Fugl-Meyer Assessment of Upper Extremity
<66); (d) able to complete the kinematic protocol; (e) no
complicating medical history, such as visual, cardiac, or
pulmonary disorders. -ose who had other musculoskeletal
or neurological conditions that affected arm function were
excluded from the study [23]. All the participants were right
handed [26] and have provided written informed consent
prior to study entrance.

2.3. Clinical Assessments. Clinical assessments of the par-
ticipants included the Fugl-Meyer Assessment of Upper
Extremity (FMA-UE), Action Research Arm Test (ARAT),
and modified Barthel Index (MBI). -e FMA-UE is a val-
idated and reliable assessment of poststroke upper limb
motor impairment. FMA-UE is composed of 33 items that
comprise four subscales (arm, wrist, hand, and coordina-
tion) regarding motor domains, and higher scores indicate
less motor impairment of upper extremity [27]. -e ARAT
was used to evaluate UE functional capacity, including grasp,
grip, pinch, and gross movement. ARATconsists of 19 four-
point ordinal items, and higher scores indicate greater arm
functional capacity [28]. -e independence level in basic
activities of living was assessed with the MBI, which consists
of 10 items and higher scores indicate greater ADL inde-
pendence [29].

2.4. Kinematic Assessment. Kinematic assessment was
implemented with an Inertial Measurement Unit system
(IMU, Noraxon USA Inc.). Each IMU sensor contains a
coordinate system to assess accelerations and three-di-
mensional orientations at a 100Hz sampling frequency. -e
IMU system had shown excellent reliability, accuracy, and
precision in quantifying kinematic test [17]. Four sensors
were placed on body segments, including head, upper arm,
forearm, and hand, to detect UE kinematic information.
Participants were required to sit in a height-adjustable chair
with their hips and knees flexed to 90°. Upper extremity
maintained in the neutral position, with elbow extension and
palm downward initially. Standardized procedure for the
finger-to-nose test was first presented by the same re-
searcher, and then, it was imitated by the participants for
three times before testing. -e tests were recorded for five
times, and a mean of the variable was used in statistical
calculations [30].

Data were extracted through a semiautomated code in
MATLAB software (-e MathWorks, Natick,
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Massachusetts, USA) according to the anatomical coordi-
nate system and joint rotation recommended by the In-
ternational Society Biomechanical (ISB) [31]. Onsets and
ends of FNT movements were defined with a velocity
threshold of 50mm/s [30]. In this cross-sectional study, six
FNT kinematic variables were calculated: movement time
(MT), mean velocity (VM), peak velocity (VP), percentage of
time to peak velocity (TVP%), number of movement units
(NMU), and normalized integrated jerk (NIJ) [30, 32]. MT
was an objective quantitative variable defined as the time
spent during the test to reflect movement performance. -e
maximum tangential velocity of index finger was calculated
during each movement segment to get VP; VM was defined
as the average tangential velocity. TVP% was the proportion
of time taken from the onset of the movement to the peak
velocity. -e number of velocity peaks exceeding 10% of VP
was characterized as NMU. NIJ was utilized to assess
movement smoothness, which was calculated using jerk,
M,T and length of the task according to the following
formula:

NIJ �

��������������������

MT5

2 × length2
× 􏽘 jerk(t)

2

􏽶
􏽴

, (1)

where jerk represented the third derivate of end point
displacement, and length represented the shortest distance
between initial and terminal positions of index finger.

2.5. Statistical Analysis. Statistical analysis was performed
on IBM Statistical Package for Social Science (SPSS) version
22.0. Chi-squared test was used to examine categorical
variables, and one-way ANOVA was used to examine
quantitative variables. Shapiro–Wilk test or Q-Q plot was
used to evaluate whether the quantitative data were normally
distributed. Pearson’s correlation coefficients (r) were
conducted between kinematic and clinical assessments. -e
limit for multicollinearity among independent variables was
set at 0.7 for correlation coefficients. After controlling the
influencing factors (including age, gender, type of stroke,

and paretic side), the kinematic metrics were included as
independent variables into the multivariable linear regres-
sion to investigate the associations with clinical assessments.
Probability for entry in backward regression was set at 0.05
and removal at 0.10. Adjusted R2 values with P value, un-
standardized coefficient (β), and unique partial correlation
coefficients were used to estimate the contribution of each
metrics to the models. A two-sided P< 0.05 was set as
statistical significance.

3. Results

3.1. Demographics and Clinical Characteristics.
Demographics and clinical characteristics of the participants
are presented in Table 1. -irty-seven individuals (28 male,
aged 49.78± 10.26 years) with subacute stroke were
recruited in this study from December 2019 to January 2021
(Figure 1). -ey had moderate-to-severe UE motor im-
pairment (mean FMA-UE scores, 36.22± 17.69) and ca-
pacity (mean ARAT scores, 23.97± 17.38). Of the 37
participants, 26 (70.3%) had ischemic stroke and 11 (29.7%)
had hemorrhagic stroke; 22 (59.5%) had left-sided hemi-
plegia and 15 (40.5%) had right-sided hemiplegia (Table 1).

3.2. Correlations between Clinical and Kinematic Measures.
Correlations between clinical and kinematic measures are
shown in Table 2. Mean velocity strongly correlated with the
FMA-UE (r� 0.85, P< 0.01) and ARAT (r� 0.80, P< 0.01)
and moderately correlated with MBI positively (r� 0.58,
P< 0.01). Besides, all the clinical assessments correlated
significantly with VP positively (r� 0.55 to 0.81, P< 0.01)
and NMUnegatively (r� −0.45 to −0.65, P< 0.05). However,
MT, TVP%, and NIJ were not significantly associated with
the clinical assessments (Table 2). As shown in Table 2,
multicollinearities were observed between MT and NIJ, as
well as among VM, VP, and NMU. For that reason, only the
VM and NIJ/MTduring the FNT task were inputted into the
multivariable linear regression models to estimate variation
in clinical assessments.

-e results of multivariable regression analysis of the
kinematic metrics against the clinical assessments are pre-
sented in Table 3. Backward multiple regression revealed
that kinematic variables could explain the largest amount of
variance in the assessment of UE motor impairment as
measured by FMA-UE. -e only significant predictor was
the VM, which explained 55% of the FMA-UE variance
(F� 20.72, P< 0.01). Moreover, the VM alone showed a
significant contribution to the models, accounting for 51% of
the ARAT variance (F� 39.10, P< 0.01) and 32% of the MBI
variance (F� 8.93, P< 0.01) (Table 3). Moreover, demo-
graphics, including age, gender, type of stroke, and paretic
side, showed no significant influence in any regression
model.

4. Discussion

-e cross-sectional study investigated the associations be-
tween FNT kinematic variables obtained via Inertial Mea-
surement Unit and upper extremity motor function in

A total of 536 hospitalized
patients in the Department of

Rehabilitation Medicine

158 patients with stroke
were consecutively screened
according to eligible criteria

37 patients with stroke were
included in the study

378 patients were excluded
316 not stroke patients
62 untimely hospital
discharge

(i)
(ii)

121 patients were excluded
76 not unilateral, first-
ever subacute stroke
29 unable to complete
the kinematic test
10 musculoskeletal or
neurological conditions
affecting arm function
6 declined to participate

(i)

(ii)

(iii)

(iv)

Figure 1: Flowchart of the study.
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Table 1: Demographics and clinical characteristics (n� 37).

Characteristics (n� 37)
Age (years) 49.78± 10.26
Gender (M/F) 28/9
Days between onset and enrollment 106.30± 65.46
Type of stroke (ischemic/hemorrhagic) 26/11
Paretic side (left/right) 22/15
FMA-UE (range 0–66) 36.22± 17.69
ARAT (range 0–57) 23.97± 17.38
MBI (range 0–100) 72.30± 22.20
Body mass index (kg/m2) 24.43± 2.60
MT (s) 1.09± 0.31
VP (m/s) 1.61± 0.92
VM (m/s) 0.78± 0.44
TVP% (%) 42.23± 11.30
NMU 2.56± 1.25
NIJ 2.86± 1.98
FMA-UE, Fugl-Meyer assessment for upper extremity; ARAT, action research arm test; MBI, Modified Barthel index; MT: movement time; VP: peak velocity;
VM: mean velocity; TVP%: percentage of time to peak velocity; NMU: Number of movement units; NIJ: Normalized integrated jerk.

Table 2: Correlations between clinical assessments and kinematic metrics (n� 37).

FMA ARAT MBI MT VP VM TVP% NMU
Clinical assessment
FMA
ARAT 0.94∗∗
MBI 0.62∗∗ 0.64∗∗

Kinematic metrics
MT 0.11 0.07 0.15
VP 0.81∗∗ 0.76∗∗ 0.55∗∗ −0.03
VM 0.85∗∗ 0.80∗∗ 0.58∗∗ −0.11 0.96∗∗
TVP% −0.11 −0.17 −0.14 −0.49∗ −0.17 −0.11
NMU −0.65∗∗ −0.59∗∗ −0.45∗ 0.10 −0.70∗∗ −0.74∗∗ 0.22
NIJ −0.24 −0.27 −0.10 0.71∗∗ −0.27 −0.40∗∗ −0.20 0.47∗

FMA-UE, Fugl-Meyer Assessment for Upper xtremity; ARAT, Action Research Arm Test; MBI, Modified Barthel Index; MT: movement time; VP: peak
velocity; VM: mean velocity; TVP%: percentage of time to peak velocity; NMU: Number of movement units; NIJ: Normalized integrated jerk. ∗: P< 0.05.
∗∗: P< 0.01.

Table 3: Multivariable regression analysis of the kinematic metrics against the clinical assessments (n� 37).

Independent variables Unstandardized coefficient
β

Standard
error

Partial unique
correlations

P value of the
variable

Adjusted R2

(model P value)
FMA-UE as dependent
variable 0.55 (<0.01∗)

Constant 11.91 2.59 — <0.01∗
VM 17.81 2.90 0.74 <0.01∗
NIJ 1.05 0.68 0.25 0.13
ARATas dependent variable 0.51 (<0.01∗)
Constant 1.50 4.11 — 0.72
VM 28.84 4.61 0.73 <0.01∗

MBI as dependent variable 0.32 (0.01∗)
Constant 32.57 12.23 — 0.19
VM 28.93 7.09 0.57 <0.01∗
MT 15.70 10.05 0.26 0.13
FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, action research arm test; MBI, Modified Barthel Index; MT: movement time; VM: mean
velocity; NIJ: normalized integrated jerk. ∗: P< 0.05.
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subacute stroke survivors according to the ICF framework.
-e results indicated that the mean velocity (r� 0.58 to 0.85),
peak velocity (r� 0.55 to 0.81), and number of movement
units (r� −0.45 to −0.65) were associated with all of the
clinical assessments. Mean velocity was entered into the
multivariable linear regression models and could estimate
55%, 51%, and 32% of variance in FMA-UE, ARAT, andMBI
during the FNT task. Additionally, age, gender, type of
stroke, and paretic side had no significant effects on these
associations.

-e previous kinematic literature mainly focused on
predicting upper limb motor impairment. Our results ex-
tended the value of kinematic scenarios beyond the im-
pairment level according to the ICF framework and
suggested that FNT kinematics was more strongly associated
with FMA-UE and ARAT than MBI. Lee et al. proposed an
automated FMA system and showed high scoring accuracy
in 79% of FMA test in nine stroke patients [33]. -eir al-
gorithms were shown appropriate for clinical use but lacked
clinical interpretability in kinematic results because esti-
mating clinical scale was not the only goal of portable
sensors [14, 16, 34]. In addition, little was known about the
associations between clinical activity–related scales and IMU
sensors [35]. Our models established predictable correla-
tions between FNTmean velocity via Inertial Measurement
Unit and upper extremity motor function after stroke [36].

Due to multicollinearity among VM, VP, and NMU,
only VM was entered into the multivariable models. Speed
variables reflect how efficiently a person controls interaction
torques of the agonist/antagonist muscles [32]. Analogous to
our results, two studies using robotic device showed sig-
nificant correlations between movement speed and FMA-
UE in individuals with subacute [37] and chronic [38]
stroke, respectively. Furthermore, movement smoothness is
an important indicator of upper limb motor recovery after
stroke [30]. Smoothness parameters evaluate the temporal
organization or UE multijoint coordination [39]. In a study
early after stroke, smoothness measured by NMUwas able to
predict upper limb motor recovery over time [40].
According to our results, NIJ was not significantly associated
with the clinical assessments. However, smoothness should
be interpreted with cautions because a single smoothness
parameter may not completely reflect motor recovery of
upper extremity [41].

Interestingly, the FNT kinematic metrics measured
comparable aspects of motor impairment by FMA-UE
(R2 � 0.55) and functional capacity by ARAT (R2 � 0.51).
-is was analogous with a prior work by Adans-Dester et al.,
which used eight motor tasks of Wolf Motor Function Test
(WMFT) and found satisfactory results to estimate upper
limb impairment and activity scales [42]. Although this was
in line with our second hypothesis, the difference was small
and needed to be further studied [19]. One possible ex-
planation might be that participants had moderate-to-severe
upper extremity motor impairment, leading to poor scores
on manual dexterity of ARAT items. Future studies should
therefore include much kinematic variables and compre-
hensive tasks at different UE segments to explore the cor-
relations between the assessments. -e low variance

explained by IMU kinematic variables in MBI could be that
the FNT task did not measure distal dexterity of the upper
extremity. As a result, variables in the models may not fully
capture kinematic information in individuals with stroke
[43]. Moreover, MBI is a questionnaire for ADL in a real
environment and not an observational measure of UEmotor
function in an experimental setting.-us, participants could
use compensatory behaviors or actually the less affected UE
to improve MBI scores, which may be difficult to explain
with the current kinematic task.

Several limitations of this study should be acknowledged.
First, the sample size restricted the number of kinematic
variables entered into the multivariable linear regression
models. -erefore, future studies could implement other
statistical models, such as machine-learning approaches, to
investigate the associations between FNT kinematic vari-
ables and upper extremity motor function in individuals
with stroke [42, 44]. Second, this was a cross-sectional study
and unable to investigate the longitudinal associations be-
tween kinematics and clinical measurements. Finally, the
models did not include other kinematic tests and variables
concerning trunk and interjoint movements, whichmay lead
to task-related bias and loss of information [45, 46].

5. Conclusions

-is study indicates that kinematic variables measured via
Inertial Measurement Unit during the finger-to-nose task
are associated with upper extremity motor function in in-
dividuals with subacute stroke according to the ICF
framework. Furthermore, the objective kinematic evaluation
may be suitable for predicting clinical measures of motor
impairment and capacity to understand upper extremity
motor recovery and clinical decision making after stroke.
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