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Abstract
Objective
To assess the role of biomarkers of Alzheimer disease (AD), neurodegeneration, and small
vessel disease (SVD) as mediators in the association between diabetes mellitus and cognition.

Methods
The study sample was derived from MEMENTO, a cohort of French adults recruited in
memory clinics and screened for either isolated subjective cognitive complaints or mild cog-
nitive impairment. Diabetes was defined based on blood glucose assessment, use of antidiabetic
agent, or self-report. We used structural equation modeling to assess whether latent variables of
AD pathology (PET mean amyloid uptake, Aβ42/Aβ40 ratio, and CSF phosphorylated tau),
SVD (white matter hyperintensities volume and visual grading), and neurodegeneration (mean
cortical thickness, brain parenchymal fraction, hippocampal volume, and mean fluorodeox-
yglucose uptake) mediate the association between diabetes and a latent variable of cognition (5
neuropsychological tests), adjusting for potential confounders.

Results
There were 254 (11.1%) participants with diabetes among 2,288 participants (median age 71.6
years; 61.8% women). The association between diabetes and lower cognition was significantly
mediated by higher neurodegeneration (standardized indirect effect: −0.061, 95% confidence
interval: −0.089, −0.032), but not mediated by SVD and ADmarkers. Results were similar when
considering latent variables of memory or executive functioning.

*These authors contributed equally to this work as co–senior authors.
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Conclusion
In a large clinical cohort in the elderly, diabetes is associated with lower cognition through neurodegeneration, independently of
SVD and AD biomarkers.

Type 2 diabetes is a risk factor for cognitive decline and
dementia.1,2 Several underlying mechanisms could be involved,
such as chronic hyperglycemia leading to advanced glycation
end products, atherosclerosis, and subsequent cerebrovascular
lesions.3-5 Insulin dysregulation, including insulin resistance
and insulin deficiency, may promote cerebral hypometabolism6

and amyloid and tau pathologies, hallmarks of Alzheimer dis-
ease (AD).7 Diabetes has also been associated with brain
structural modifications such as cerebral atrophy and cerebro-
vascular lesions.8-10 Moreover, whereas diabetes is associated
with cerebral hypometabolism,11,12 results are conflicting re-
garding its associationwith amyloid and tau pathology, whether
measured in the brain (PET) or in CSF.11,13,14

Previous studies have suggested a mediating role of neuro-
degeneration and small vessel disease (SVD) biomarkers on
the association between diabetes and cognition.15-17 How-
ever, the mediating role of AD-specific lesions (amyloid
plaques and neurofibrillary tangles) and the correlation be-
tween those different brain features have not been consid-
ered so far.

We estimated the mediating effect of biomarkers of AD,
neurodegeneration, and SVD in the association between di-
abetes and cognition in older adults without dementia
recruited from French memory clinics.

Methods
The MEMENTO Cohort
The MEMENTO cohort is a clinic-based study of patients
presenting with a large variety of cognitive symptoms or
subjective cognitive complaints, who were enrolled between
April 2011 and June 2014, within the French national network
of university hospital–based memory clinics.18 At inclusion,
participants presented with (1) mild cognitive impairment,
performing 1 SDworse than themean of the participant’s own
age, sex, and education-level group, in one or more cognitive
domains, this deviation being identified for the first time
through cognitive tests performed recently (less than 6
months preceding screening phase); or (2) isolated cognitive

complaints, if participants had subjective cognitive complaint
(assessed through visual analogic scale), without any objective
cognitive deficit as defined previously, while 60 years or older.
All participants had a Clinical Dementia Rating scale19 score
≤0.5. Main exclusion criteria have been described elsewhere.22

All examinations (including neuropsychological battery ad-
ministration, clinical examinations, brain MRI, CSF samples,
and fluorodeoxyglucose [FDG] and amyloid PET) followed
standardized procedures.18

Among the 2,323 participants included in the MEMENTO
cohort, 2,288 participants from 26 study centers were in-
cluded in this analysis after exclusion of participants with
missing data on diabetes status (n = 35).

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was performed in accordance with the Declaration
of Helsinki. All participants provided written informed con-
sent. The MEMENTO cohort protocol has been approved by
the local ethics committee (Comité de Protection des Per-
sonnes Sud-Ouest et Outre Mer III; approval number 2010-
A01394-35) and was registered in ClinicalTrials.gov (Identi-
fier: NCT01926249).

Diabetes Definition
Participants were classified as having diabetes at baseline visit
either in presence of fasting blood glucose ≥7 mmol/L (≥126
mg/dL) or nonfasting blood glucose ≥11.1 mmol/L (≥200
mg/dL) or antidiabetic drug intake (Anatomical Therapeutic
Chemical classification system: code A10A “insulins and an-
alogues” and code A10B “blood glucose lowering drugs, excl.
insulins”) or self-reported history of diabetes.

Neuropsychological Evaluation
A full neuropsychological test battery was administered to
participants.18 Global cognition was assessed by Mini-Mental
State Examination (MMSE),20 long-term memory was assessed
by Free and Cued Selective Reminding Test (FCSRT),21 se-
mantic verbal fluency via animal words,22 visuo-spatial abilities by
Rey-Osterrieth Complex Figure Test,23 and attention and ex-
ecutive functions by Trail Making Test (TMT) A and B.24

Glossary
Aβ42 = β-amyloid 42 peptide; AD = Alzheimer disease;CFI = Comparative Fit Index;CI = confidence interval; FCSRT = Free
and Cued Selective Reminding Test; FDG = fluorodeoxyglucose;MMSE = Mini-Mental State Examination; RMSEA = robust
root mean square error of approximation; ROI = region of interest; SRMR = standardized root mean square residual; SUVR =
standard uptake value ratio; SVD = small vessel disease; TLI = Tucker-Lewis Index; TMT = Trail Making Test;WMH = white
matter hyperintensity.
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Biomarkers Assessment

MRI
As part of the inclusion criteria, participants had to agree to
undergo brain MRI. Brain magnetic resonance images were
acquired after a standardization of the imaging processes and
coordinated by CATI (cati-neuroimaging.com), a neuro-
imaging platform dedicated to multicenter studies.25 Full
details are described elsewhere.18 Briefly, MRI machines of
1.5T and 3T were used across centers using harmonized
protocols. All MRI scans acquired were then centralized,
quality checked, and postprocessed to obtain standardized
measurements for each participant. Whole-brain, gray matter,
and white matter volumes were assessed with Statistical
Parametric Mapping 8,26 hippocampal volumes with the
SACHA software,27 and mean cortical thickness of each
hemisphere with FreeSurfer 5.3 averaged in the region of
interest (ROI) of the Desikan-Killiany atlas.28 White matter
lesion volumetry was performed using WHASA software29

complemented by a centralized visual assessment by a trained
rater using the Fazekas and Schmidt scale.30

FDG-PET
18F-FDG-PET was offered to all participants but was not
mandatory. PET images were acquired after a standardization
of the acquisition and reconstruction imaging parameters,
coordinated by CATI.31 After a centralized quality check and
postprocessing performed by CATI, the following measures
were obtained: mean FDG-PET uptake for the ROIs of the
Automated Anatomical Labeling atlas relative to the pons
reference region,32 including partial volume correction, and
mean FDG-PET uptake for a set of AD-specific ROIs inferred
from the Alzheimer’s Disease Neuroimaging Initiative data-
base,33 expressed as standard uptake value ratios (SUVRs).

PET Amyloid Imaging
PET amyloid imaging was available for 643 participants of the
analytical sample, using either 18F-florbetapir (Amyvid, Eli
Lilly) (n = 437) or 18F-flutemetamol (Vizamyl, GE Health-
care) (n = 206) radioligands. Mean brain amyloid SUVR was
computed, harmonized across the radioligands,34 and used for
the current study.

CSF Sampling
Lumbar puncture was offered to all participants but was not
mandatory, and CSF centralized measurements of β-amyloid
42 peptide (Aβ42), Aβ40, total tau, and phosphorylated tau
levels were performed using the standardized INNOTEST
sandwich ELISA (Fujirebio).

Potential Confounding Factors
Sociodemographic information recorded at baseline included
age, sex, and education (low education defined as no or pri-
mary school, intermediate education defined as secondary
school or high school, and high education defined as univer-
sity). Lifestyle factors included smoking status (never, former,
and current smoker) and current alcohol consumption (none,

≤1 drink/day, and >1 drink/day). Hypertension was defined
as antihypertensive drug intake or mean of 3 blood pressure
measurements either ≥140 mmHg for systolic blood pressure
or ≥90 mmHg for diastolic blood pressure. Dyslipidemia was
defined by plasma cholesterol >6.24 mmol/L or use of any
lipid-lowering drugs. Body mass index was categorized as <20
kg/m2, 20–25 kg/m2, 25.1–29.9 kg/m2, and ≥30 kg/m2.
History of cardiovascular disease was defined as a self-
reported history of myocardial infarction, angina pectoris,
coronary artery, or peripheral artery disease. History of stroke
was self-reported. Depression was assessed with the Neuro-
psychiatric Inventory–Clinician.35 APOE e2, e3, or e4 alleles
were determined for all participants by KBiosciences (kbio-
science.co.uk) as described elsewhere.18 APOE e4 status was
defined as presence of at least one e4 allele.

Statistical Analyses
Baseline characteristics were compared according to baseline
diabetic status for the analytical sample. We used χ2 test (or
Fisher exact test when appropriate) and Student t test (or
nonparametric Mann-Whitney-Wilcoxon test when appro-
priate) for categorical and continuous variables comparisons,
respectively.

Brain parenchymal fraction was computed as the sum of gray
matter and white matter volumes divided by total intracranial
volume. Total hippocampal volume was computed as the sum
of left and right hippocampal volumes. White matter hyper-
intensity (WMH) volume and hippocampal volume were
adjusted for total intracranial volume using the residual ap-
proach.36 Mean FDG uptake across the brain was used.

Structural equation modeling37 was used to examine a po-
tential mediating role of biomarkers respectively of AD, SVD,
and neurodegeneration in the association between diabetes
and cognition. Structural equation modeling was preferred
over standard regression modeling for its ability to directly
focus the mediation analysis on the dimensions of interest
(here cognition, SVD, AD, and neurodegeneration), and to
define each dimension from several noisy observed indicators.
The observed indicators of the 4 latent variables of interest,
namely AD pathology, SVD, neurodegeneration, and cogni-
tion, are listed in Table 1. They were determined from the
literature and validated in preliminary separated structural
equation modeling analyses. Correlated residuals were as-
sumed between left and right cortical thicknesses and between
TMT A and TMT B scores to account for a potential com-
mon source of measurement error. Mean brain amyloid
SUVR was normalized using a logarithmic transformation and
then standardized (z score) by radioligand. The relationships
between diabetes, potential confounders, and latent variables
of AD pathology, neurodegeneration, SVD, and cognition
were modeled in the structural linear regressions. For ease of
interpretation, the 4 latent variables were standardized (mean
0, variance 1) so that 1 unit corresponds to the SD of a given
dimension. The indirect effects of diabetes on cognition
through the latent dimensions were estimated with their 95%
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confidence interval (CI), using path analysis technique.37 All
linear regressions of mediators and cognition were adjusted
for the following potential confounding factors: age, sex, ed-
ucation (high education vs low and intermediate), smoking
status (current smoker vs never or former smoker), alcohol
consumption (>1 drink/day vs ≤1 drink/day), hypertension,
dyslipidemia, obesity (≥30 kg/m2), and APOE genotype (e4
carrier vs e4 noncarrier). Missing values for observed indi-
cators of latent variables and for confounding factors were
handled using a full information maximum likelihood ap-
proach, assuming missingness at random. The multicentric
nature of the data was accounted for and Huber-White robust
standard errors were reported to correct for the potential
intracenter correlation.38 The general goodness of fit was
evaluated using robust Tucker-Lewis Index (TLI), robust
Comparative Fit Index (CFI), robust root mean square error
of approximation (RMSEA) and its 90% CI, p value for test of
close fit (null hypothesis RMSEA <0.05), and standardized
root mean square residual (SRMR) with cutoffs recom-
mended in the literature.39

Several sensitivity analyses were performed. First, we used a
different definition of “diabetes” by excluding a self-reported
history of diabetes. Second, additional baseline characteristics
associated with availability of MRI, FDG-TEP, amyloid-PET,
andCSF data (living alone, Clinical Dementia Rating scale score,
prevalent dementia, depression, stroke history, cardiovascular

history, and physical activity expressed as metabolic equivalent
of task minutes per week; Table 2) were used as auxiliary
variables in the estimation process under FIML to strengthen
the missing at random assumption. Third, as the mediation
analysis framework makes the implicit assumption that medi-
ators (i.e., AD pathology, SVD, and neurodegeneration) are
anterior to the outcome (i.e., cognition), we tried to preserve
this assumption by excluding biomarkers measurements per-
formed more than 6 months after cognitive assessments.
Fourth, as CSF biomarkers are prone to variability whereas
brain biomarkers are indicators of accumulated burden of le-
sions,40 we performed a sensitivity analysis using only brain
amyloid load as indicator of the latent variable for AD pa-
thology. Finally, we also compared the results with those
obtained when considering interactions between diabetes and
each mediator in the main adjusted model, as recommended
for mediation analysis.41

We also explored the mediating pathways in the association of
diabetes with specific cognitive domains in separate models: a
latent variable for memory (indicators: total free recall score
and verbal fluency) and a latent variable for executive func-
tioning (indicators: TMT A and TMT B scores).

Analyses were conducted using SAS v9.3 (SAS Institute Inc.),
and R version 3.5.142 with the lavaan package for structural
equation modeling analysis.38

Table 1 Observed Indicators for Latent Dimensions Variables

Latent variables Observed indicators Data available, n (%)

Small vessel disease White matter hyperintensities volume 1,884 (80.6)

Fazekas scale scores for paraventricular white matter hyperintensities 2,145 (93.8)

Fazekas scale scores for deep white matter hyperintensities 2,145 (93.8)

Alzheimer disease pathology Mean brain amyloid uptake 643 (28.1)

CSF Aβ42/Aβ40 ratio 400 (17.5)

CSF phosphorylated tau 408 (17.8)

Neurodegeneration Mean right cortical thickness 2,106 (92.0)

Mean left cortical thickness 2,106 (92.0)

Brain parenchymal fraction 2,103 (91.9)

Hippocampal volume 2,061 (90.1)

Mean brain FDG uptake 1,308 (57.2)

Cognition FCSRT total free recall score 2,269 (99.2)

TMT A (seconds/correct move) 2,265 (99.0)

TMT B (seconds/correct move) 2,192 (95.8)

Rey Complex Figure Test, 3-minute copy score 2,125 (92.9)

Verbal fluency (number of animals produced) 2,245 (98.1)

Abbreviations: FCSRT = Free and Cued Selective Reminding Test; TMT = Trail Making Test.
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Table 2 Baseline Characteristics AssociatedWith the Availability ofMRI, FDG-PET, Amyloid-PET, and CSF Data:MEMENTO
Study, France (n = 2,288)

Available data

paNo Yes

MRI, n 130 2,158

Cardiovascular history 20 (15.4) 185 (8.6) 0.008

MMSE score 27.4 (2.2) 27.9 (1.9) 0.001

FCSRT total free recall score 24.3 (9.2) 26.1 (8.2) 0.01

FDG-PET, n 980 1,308

Female sex 648 (66.1) 765 (58.5) <0.001

Current alcohol consumption: 0.006

None 352 (37.1) 399 (30.8)

≤1 drink/d 412 (43.5) 604 (46.7)

>1 drink/d 184 (19.4) 291 (22.5)

Dyslipidemia 402 (55.0) 480 (46.3) <0.001

MMSE score 27.8 (2.0) 28.0 (1.9) 0.009

TMT A (seconds/correct move) 2.1 (1.0) 2.0 (0.9) 0.005

TMT B (seconds/correct move) 5.2 (3.6) 4.9 (3.2) 0.02

Rey Complex Figure Test, 3-minute copy score 14.5 (7.1) 15.6 (6.9) <0.001

Verbal fluency, animals (number of words produced) 27.7 (8.7) 28.8 (8.7) 0.006

Amyloid-PET, n 1,645 643

Current alcohol consumption <0.001

None 584 (36.4) 167 (26.2)

≤1 drink/d 713 (44.5) 303 (47.5)

>1 drink/d 307 (19.1) 168 (26.3)

Diabetes 201 (12.2) 53 (8.2) 0.007

Dyslipidemia 642 (52.8) 240 (43.6) <0.001

Depression 677 (41.2) 212 (33.0) <0.001

Clinical Dementia Rating scale <0.001

0 540 (33.0) 383 (59.8)

0.5 1,096 (67.0) 258 (40.2)

MMSE score 27.7 (2.1) 28.3 (1.5) <0.001

FCSRT total free recall score 25.0 (8.6) 28.4 (6.9) <0.001

TMT A (seconds/correct move) 2.1 (1.0) 1.9 (0.7) <0.001

TMT B (seconds/correct move) 5.3 (3.6) 4.5 (2.7) <0.001

Rey Complex Figure Test, 3-minute copy score 14.7 (7.1) 16.4 (6.6) <0.001

Verbal fluency, animals (number of words produced) 27.5 (8.8) 30.3 (8.2) <0.001

CSF, n 1,877 411

Age, y 71.3 (8.6) 68.8 (8.8) <0.001

Female sex 1,197 (63.8) 216 (52.6) <0.001

Continued
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Data Availability
Anonymized data will be shared by request from any qualified
investigator for the sole purpose of replicating procedures and
results presented in the article and as long as data transfer is in
agreement with EU legislation on the general data protection
regulation.

Results
Baseline Description
Compared to participants without diabetes at baseline, par-
ticipants with diabetes (254 [11.1%]) were more likely to be
men and to have lower education level. They were also more
likely to have hypertension, dyslipidemia, obesity, and history
of cardiovascular disease or stroke. Participants with diabetes
had on average lower performances on executive functions
and attention, memory, and semantic verbal fluency (Table 3).

At baseline, 65.3% of participants with diabetes were taking
antidiabetic medications (oral antidiabetic agents, 57.5%; in-
sulin, 13.8%). Diabetes status was solely based on self-report
in 60 (23.6%) of the diabetic participants. The median self-
reported duration of diabetes was 10.0 years (interquartile
range, 4.9–19.4 years).

Diabetes, Latent Biomarkers, and
Latent Cognition
The model fit was adequate according to the recommended
cutoffs: robust CFI = 0.951, robust TLI = 0.926, robust
RMSEA = 0.040 (90% CI 0.037, 0.042), p value for test of
close fit = 1.00, and SRMR = 0.038. Associations between
diabetes, AD pathology, SVD, neurodegeneration and

cognition are presented in the Figure. Presence of diabetes
was significantly associated with higher neurodegeneration
but was not significantly associated with AD pathology and
SVD. Higher levels of SVD, neurodegeneration, and AD pa-
thology were independently associated with lower cognition.
Once adjusted for neurodegeneration, AD pathology, and
SVD, there was no direct effect of diabetes on cognition
(standardized β = 0.023; 95% CI −0.030, 0.076; p = 0.40).
Association between diabetes and lower cognition was mainly
mediated by higher neurodegeneration (standardized β =
−0.061; 95% CI −0.089, −0.032; p < 0.001). The indirect
effect of diabetes on cognition via SVD and AD pathology was
not statistically significant (standardized β = 0.000; 95% CI
−0.004, 0.004; p = 0.98 and standardized β = −0.013; 95% CI
−0.040, 0.015; p = 0.38, respectively). In complementary
analyses considering specific cognitive functions, associations
between diabetes and lower memory or lower executive
functioning were also mainly mediated by higher neuro-
degeneration (standardized β = −0.058; 95% CI −0.088,
−0.029; p < 0.001 and standardized β = −0.034; 95% CI
−0.051, −0.016; p < 0.001, respectively) (Table 4).

Sensitivity Analyses
Results were similar when excluding self-reported history
from the definition of diabetes, when adding auxiliary vari-
ables to the estimation process, or when excluding delayed
measures of biomarkers (Table 5). When using only brain
amyloid load as indicator of the latent variable for AD pa-
thology, the indirect pathway linking diabetes to lower cog-
nition through higher neurodegeneration was of similar
magnitude (standardized β = −0.066; 95% CI −0.097, −0.034;
p < 0.001). Diabetes was significantly associated with higher
AD pathology (standardized β = 0.107; 95% CI 0.021, 0.193;

Table 2 Baseline Characteristics Associated With the Availability of MRI, FDG-PET, Amyloid-PET, and CSF Data: MEMENTO
Study, France (n = 2,288) (continued)

Available data

paNo Yes

Living alone 602 (32.4) 101 (24.6) 0.002

Physical activity, MET-h/wk 52.2 (47.2) 59.7 (52.9) 0.01

Clinical Dementia Rating scale 0.02

0 777 (41.6) 146 (35.5)

0.5 1,089 (58.4) 265 (64.5)

APOE «4 carrier 501 (28.0) 155 (38.9) <0.001

MMSE 27.9 (1.9) 27.7 (2.0) 0.001

FCSRT total free recall score 26.3 (8.2) 24.6 (8.8) <0.001

Verbal fluency, animals (number of words produced) 28.4 (8.7) 27.9 (8.9) 0.04

Abbreviations: FCSRT = Free and Cued Selective Reminding Test; MET = metabolic equivalent of task; MMSE = Mini-Mental State Examination; TMT = Trail
Making Test.
a p Values for comparison using t tests for quantitative variables and χ2 test or Fisher test for qualitative variables. Comparisons for cognitive tests were
adjusted for age, sex, and education.
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Table 3 Baseline Characteristics According to Diabetes: MEMENTO Cohort, France (n = 2,288)

Diabetes

paNo (n = 2,034) Yes (n = 254)

Age, y 70.9 (8.8) 70.8 (7.9) 0.80

Female sex 1,302 (64.0) 111 (43.7) <0.001

Education 0.02

Low 487 (23.9) 71 (28.0)

Intermediate 722 (35.5) 103 (40.6)

High 823 (40.5) 80 (31.5)

Smoking status 0.05

Never 1,191 (59.0) 137 (54.8)

Former 676 (33.5) 101 (40.4)

Current 151 (7.5) 12 (4.8)

Current alcohol consumption 0.17

No 658 (33.0) 93 (37.8)

Up to 1 drink/day 918 (46.0) 98 (39.8)

>1 drink/day 420 (21.0) 55 (22.4)

Body mass index, kg/m2 <0.001

<20 145 (7.3) 6 (2.4)

20–25 910 (45.7) 68 (27.6)

25.1–29.9 712 (35.8) 92 (37.4)

≥30 223 (11.2) 80 (32.5)

Hypertension 1,135 (59.8) 188 (77.4) <0.001

Dyslipidemia 761 (48.9) 127 (60.5) 0.002

Self-reported cardiovascular history 156 (7.7) 49 (19.3) <0.001

Self-reported stroke
history

76 (3.7) 16 (6.3) 0.05

Depression 791 (38.9) 98 (38.6) 0.92

APOE «4 carrier 596 (30.6) 60 (24.6) 0.05

Cognitive tests

MMSE score 28.0 (1.9) 27.6 (2) 0.03b

FCSRT total free recall score 26.2 (8.4) 24.2 (7.4) 0.03b

TMT A (seconds/correct move) 2.05 (0.94) 2.16 (0.88) 0.02c

TMT B (seconds/correct move) 4.97 (3.39) 5.57 (3.41) <0.001d

Rey Complex Figure Test,
3-minute copy score

15.1 (7.0) 15.5 (7.0) 0.89b

Verbal fluency (number
of animals produced)

28.5 (8.7) 26.9 (8.7) 0.04b

Abbreviations: FCSRT = Free and Cued Selective Reminding Test; MMSE = Mini-Mental State Examination; TMT = Trail Making Test.
Missing data: education, 2; smoking status, 20; alcohol consumption, 46; body mass index, 52; hypertension, 148; dyslipidemia, 521; APOE genotype, 98;
MMSE, 6; FCSRT, 19; TMT A, 23; TMT B, 96; Rey Complex Figure Test, 163; verbal fluency, 43.
a p Values for comparison using t tests for quantitative variables and χ2 test or Fisher test for qualitative variables, except when stated otherwise.
b p Values for comparison using linear regression modeling adjusted on age, sex, and education.
c p Value for comparison of log-transformed values of TMT A, adjusted on age, sex, and education.
d p Value for comparison of log-transformed values of TMT B, adjusted on age, sex, and education.
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p = 0.01), and higher AD pathology was significantly associ-
ated with lower cognition (standardized β = −0.144; 95% CI
−0.248, −0.039; p = 0.007). The indirect pathway linking
diabetes to lower cognition through AD pathology remained
non-statistically significant (standardized β = −0.015; 95% CI
−0.033, 0.002; p = 0.08). When considering interaction be-
tween diabetes and each intermediate latent variable, the in-
direct effects of diabetes on cognition via neurodegeneration
(standardized β = −0.059; 95% CI −0.089, −0.030; p < 0.001),
AD pathology (standardized β = −0.011; 95% CI −0.034,
0.012; p = 0.34), and SVD (standardized β = −0.001; 95% CI
−0.006, 0.003; p = 0.54) remained virtually the same.

Discussion
In a cross-sectional analysis of a large clinical cohort of par-
ticipants with either isolated cognitive complaints or mild
cognitive impairment, we report that the deleterious effect of
diabetes on cognitive performance is mainly mediated through
markers of neurodegeneration whereas AD pathology (amy-
loid, p-tau) or SVD pathology do not seem to play a major role.

The association between diabetes and markers of neuro-
degeneration such as brain atrophy8,12,13,43 and brain
hypometabolism11,12 has been consistently reported in cross-

sectional studies. While diabetes is a risk factor for vascular
disease and stroke, its association with subclinical cerebro-
vascular lesions (silent brain infarcts, WMH, cerebral micro-
bleeds) is uncertain.44 In the present study, diabetes was not
associated with SVD, even though participants with diabetes
had more frequent self-reported history of stroke.

The mediating role of neurodegeneration and SVD in the
association between diabetes and cognition has already been
investigated in several studies. In a sample of 4,206 older
adults of the Age, Gene/Environment Susceptibility–
Reykjavik Study (mean age 76 years, 11% with diabetes), MRI
markers of neurodegeneration (gray matter, normal white
matter, and total brain tissue volumes) and SVD (cortical
infarcts, subcortical infarcts, white matter lesions, and cerebral
microbleeds) significantly mediated the cross-sectional asso-
ciation of diabetes with lower processing speed and executive
function.15 In a longitudinal analysis on 817 participants from
the Alzheimer’s Disease Neuroimaging Initiative cohort
(mean age 75 years, 15% with diabetes), the effect of diabetes
on cognitive decline up to 60 months (mean follow-up time,
30 months) was significantly mediated by baseline cortical
thickness.17 Similarly, in a sample of 448 older adults of the
Swedish National Study on Aging and Care in Kungsholmen
(mean age at baseline, 72 years), a higher cardiovascular
burden, including diabetes as a component, was associated

Figure Structural Equation Model for the Association Between Diabetes, Small Vessel Disease, Neurodegeneration, Alz-
heimer Disease (AD) Biomarkers, and Cognition

Latent variables of interest are indicated in ovals and observed variables in rectangles. Directed arrows represent linear regressions. Bidirectional arrows
represent correlations. Standardized regression coefficient estimates are presented with their 95% confidence interval. Solid lines indicate statistically
significant associations and correlations at the 5% level. Dotted lines indicate non–statistically significant associations and correlations at the 5% level.
Adjustment covariates and their directed arrows to small vessel disease, neurodegeneration, AD biomarkers, and cognition are represented in gray. For
readiness, the observed indicators defining each latent variable (listed in Table 1) and residual variances for all variables were omitted. *p < 0.001.
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with a faster MMSE decline over 9 years, this effect being
largely mediated by brain MRI markers of atrophy (volumes
of total gray matter, ventricles, and hippocampus) and SVD
(volume of WMHs).16 Nevertheless, none of those studies
accounted for AD biomarkers, unlike the present study.

Insulin resistance and associated insulin signaling impairment
promote Aβ accumulation and tau phosphorylation.7 How-
ever, no association between diabetes and amyloid and tau
biomarkers was reported in previous studies.11,13,45 In the
present study, diabetes was associated with higher brain am-
yloid load measured on PET imaging, but diabetes was not
associated with the latent variable of AD pathology, which
included CSF biomarkers of amyloid and tau. This discrep-
ancy between brain and CSF biomarkers can partly be

explained by the variability of CSF biomarkers, whereas brain
biomarkers are indicators of accumulated lesions.

Although it needs to be replicated in longitudinal studies, our
finding that neurodegeneration mediates the association be-
tween diabetes and cognitive performance, independently of
biomarkers of AD and SVD, supports the hypothesis of a direct
role of diabetes-related insulin resistance in the development of
cognitive impairment in older adults with diabetes. Indeed,
insulin also plays an important role in neuronal synaptic plas-
ticity and facilitates learning and memory in humans4 and,
therefore, impaired insulin signaling could directly contribute
to neuronal dysfunction and degeneration. As impaired insulin
signaling has also been linked to promotion of amyloid-β ac-
cumulation and tau hyperphosphorylation,7 brain insulin

Table 4 Association Between Diabetes, Biomarkers of Small Vessel Disease (SVD), Neurodegeneration and Alzheimer
Disease (AD), and Specific Cognitive Domains: Structural Equation Model

Latent variable of memory Latent variable of executive functioning

Standardized (95% CI) p Value Standardized (95% CI) p Value

Direct effect of diabetes on:

SVD 0.001 (−0.035; 0.037) 0.95 0.001 (−0.034; 0.037) 0.94

AD pathology 0.047 (−0.059; 0.153) 0.38 0.053 (−0.049; 0.155) 0.31

Neurodegeneration 0.108 (0.071; 0.145) <0.001 0.110 (0.074; 0.146) <0.001

Direct effect of:

Diabetes on cognition 0.016 (−0.037; 0.069) 0.55 −0.017 (−0.070; 0.036) 0.53

SVD on cognition −0.104 (−0.169; −0.040) 0.001 −0.094 (−0.163; −0.024) 0.008

Neurodegeneration on cognition −0.542 (−0.737; −0.346) <0.001 −0.306 (−0.441; −0.171) <0.001

AD pathology on cognition −0.282 (−0.421; −0.144) <0.001 −0.169 (−0.269; −0.068) 0.001

Correlation between:

SVD and AD pathology 0.159 (0.064; 0.253) <0.001 0.151 (0.057; 0.245) 0.001

SVD and neurodegeneration 0.038 (−0.056; 0.133) 0.42 0.023 (−0.077; 0.123) 0.65

AD and neurodegeneration 0.257 (0.116; 0.398) <0.001 0.256 (0.128; 0.384) <0.001

Indirect effect of diabetes on cognition:

Through SVD 0.000 (−0.004; 0.004) 0.95 0.000 (−0.003; 0.003) 0.94

Through AD pathology −0.013 (−0.042; 0.015) 0.36 −0.009 (−0.027; 0.010) 0.34

Through neurodegeneration −0.058 (−0.088; −0.029) <0.001 −0.034 (−0.051; −0.016) <0.001

Model fit indices

Robust CFI 0.963 0.974

Robust TLI 0.937 0.956

Robust RSMEA (90% CI) 0.038 (0.035; 0.041) 0.032 (0.029; 0.035)

p Value for test of close fit 1.00 1.00

SRMR 0.035 0.035

Abbreviations: CI = confidence interval; CFI = comparative fit index; RSMEA = root mean square error of approximation; SRMR = standardized root mean
square residual; TLI = Tucker-Lewis Index.
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Table 5 Association Between Diabetes, Biomarkers, and Global Cognition: Sensitivity Analyses

Excluding self-reported history of
diabetes Adding auxiliary variables

Excluding delayed biomarker measurements (>6
months) Using only brain biomarkers as indicators

Standardized estimate (95% CI) p Value Standardized estimate (95% CI) p Value Standardized estimate (95% CI) p Value Standardized estimate (95% CI) p Value

Direct effect of diabetes on:

SVD −0.006 (−0.045; 0.033) 0.77 0.002 (−0.035; 0.038) 0.92 0.006 (−0.031; 0.043) 0.75 0.001 (−0.035; 0.036) 0.97

AD pathology 0.049 (−0.046; 0.143) 0.31 0.044 (−0.067; 0.155) 0.44 −0.007 (−0.172; 0.159) 0.94 0.107 (0.021; 0.193) 0.01

Neurodegeneration 0.084 (0.049; 0.121) <0.001 0.109 (0.072; 0.146) <0.001 0.106 (0.068; 0.144) <0.001 0.108 (0.071; 0.144) <0.001

Direct effect on cognition of:

Diabetes 0.030 (−0.017; 0.076) 0.21 0.023 (−0.030; 0.077) 0.39 0.012 (−0.047; 0.072) 0.69 0.030 (−0.020; 0.080) 0.23

SVD −0.114 (−0.185; −0.044) <0.001 −0.113 (−0.183; −0.043) 0.001 −0.108 (−0.187; −0.029) 0.007 −0.131 (−0.201; −0.061) <0.001

Neurodegeneration −0.576 (−0.743; −0.408) 0.001 −0.565 (−0.731; −0.399) <0.001 −0.601 (−0.765; −0.436) <0.001 −0.609 (−0.777; −0.442) <0.001

AD pathology −0.273 (−0.391; −0.154) <0.001 −0.275 (−0.403; −0.147) <0.001 −0.285 (−0.459; −0.111) 0.001 −0.144 (−0.248; −0.039) 0.007

Correlation between:

SVD and AD pathology 0.157 (0.060; 0.254) 0.002 0.163 (0.066; 0.260) <0.001 0.161 (0.025; 0.298) 0.02 0.156 (0.054; 0.257) 0.003

SVD and neurodegeneration 0.040 (−0.053; 0.134) 0.39 0.038 (−0.133; 0.057) 0.43 0.039 (−0.056; 0.134) 0.42 0.039 (−0.056; 0.133) 0.42

AD and neurodegeneration 0.269 (0.130; 0.409) <0.001 0.259 (0.127; 0.390) <0.001 0.160 (0.004; 0.316) 0.04 0.236 (0.096; 0.376) 0.001

Indirect effect of diabetes on cognition:

Through SVD 0.001 (−0.004; 0.005) 0.77 0.000 (−0.004; 0.004) 0.92 −0.001 (−0.005; 0.003) 0.75 0.000 (−0.005; 0.005) 0.97

Through AD pathology −0.013 (−0.037; 0.011) 0.28 −0.012 (−0.042; 0.018) 0.42 0.002 (−0.046; 0.049) 0.93 −0.015 (−0.033; 0.002) 0.08

Through neurodegeneration −0.048 (−0.075; −0.021) <0.001 −0.061 (−0.091; −0.032) <0.001 −0.064 (−0.093; −0.035) <0.001 −0.066 (−0.097; −0.034) <0.001

Model fit indices

Robust CFI 0.951 0.951 0.948 0.953

Robust TLI 0.926 0.926 0.921 0.924

Robust RSMEA (90% CI) 0.040 (0.037; 0.042) 0.040 (0.037; 0.042) 0.040 (0.038; 0.043) 0.043 (0.040; 0.046)

p Value for test of close fit 1.00 1.00 1.00 1.00

SRMR 0.038 0.032 0.042 0.033

Abbreviations: AD =Alzheimer disease; CFI = comparative fit index; CI = confidence interval; RSMEA = rootmean square error of approximation; SRMR= standardized rootmean square residual; SVD = small vessel disease; TLI =
Tucker-Lewis Index.
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resistance could be a therapeutic target in AD and related de-
mentias. Several exploratory clinical trials have reported a
beneficial effect on cognition of intranasal insulin for healthy
participants and participants with diabetes, mild cognitive im-
pairment, or AD,46 and longer-term trials are ongoing.

The MEMENTO study has several strengths to answer the cur-
rent objectives. First, a wide range of biomarkers was acquired in a
highly standardized setting on more than 2,000 participants
allowing a multidimensional assessment of brain aging and pa-
thology biomarkers. Indeed, we were able to include simulta-
neously brainMRI, brain FDG-PET, amyloid-PET, andCSF data
in a mediation analysis of the diabetes–cognition association, of-
fering a unique insight on underlying mechanisms. Second, we
were able to model brain biomarkers as latent variables in a
structural equation modeling framework, accounting for mea-
surement error of the indicators, and we were able to estimate
direct and indirect effects of diabetes on several domains of cog-
nition. Third, results were robust to several sensitivity analyses.
There are also some limitations. First, the temporal relationship
between diabetes, biomarkers, and cognition is not ensured by the
cross-sectional design, and causality cannot be claimed. Never-
theless, we can hypothesize that diabetes preceded biomarkers
measures in most participants with diabetes (duration was 4.9
years or more in 75% of participants with diabetes). We also
modeled correlations between neurodegeneration, AD pathology,
and SVD instead of directed relationships because the causal in-
terpretation of their interrelations requires longitudinal data.
Second, no tau-PET data were available to assess tau pathology,
and we had to use CSF phosphorylated tau as a proxy for cerebral
tau accumulation, assuming a strong correlation between both, as
suggested by existing evidence.40 Third, the analytical strategy
relies on the assumption that data are missing at random. This
assumption may be strong for CSF and PET-amyloid data, for
which 70%–80% of data were missing. However, we used a broad
range of baseline characteristics associated with availability of CSF
and PET-amyloid data as auxiliary variables in the estimation
process, thus making the missing-at-random assumption more
plausible. We must also acknowledge the unavailability of data
regarding past and current glucose control that prevented us from
exploring whether diabetes control modified the explored rela-
tionships. Finally, the observed findings may not fully translate in
the general older population, as participants in the MEMENTO
study are adults with either isolated cognitive complaints or mild
cognitive impairment who were seeking care in memory clinics.

The current results suggest that the detrimental effect of di-
abetes on cognition is mediated by neurodegeneration, in-
dependently of AD and SVD pathologies, in a population of
older adults at risk for dementia. Longitudinal studies are
needed to reinforce and confirm these findings.
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Hôpital Saint-Louis AP-HP,
Paris, France

Drafting/revision of the
manuscript for content,
including medical
writing for content;
major role in the
acquisition of data

David Wallon,
MD, PhD

Univ. Normandie,
UNIROUEN, INSERM U1245,
Departement de Neurologie,
CNR-MAJ, CHU de Rouen,
France

Drafting/revision of the
manuscript for content,
including medical
writing for content;
major role in the
acquisition of data

Appendix (continued)

Name Location Contribution

Mathilde
Sauvee, MD,
PhD

CMRR Grenoble Arc Alpin,
CHU Grenoble, France

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

Emilie
Beaufils, MD,
PhD

CMRR, University Hospital
Tours, France

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

Isabelle
Bourdel-
Marchasson,
MD, PhD

Centre de Résonance
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