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Copy number signatures predict chromothripsis
and clinical outcomes in newly diagnosed multiple
myeloma
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Chromothripsis is detectable in 20-30% of newly diagnosed multiple myeloma (NDMM)
patients and is emerging as a new independent adverse prognostic factor. In this study we
interrogate 752 NDMM patients using whole genome sequencing (WGS) to investigate the
relationship of copy number (CN) signatures to chromothripsis and show they are highly
associated. CN signatures are highly predictive of the presence of chromothripsis (AUC =
0.90) and can be used identify its adverse prognostic impact. The ability of CN signatures to
predict the presence of chromothripsis is confirmed in a validation series of WGS comprised
of 235 hematological cancers (AUC =0.97) and an independent series of 34 NDMM
(AUC =0.87). We show that CN signatures can also be derived from whole exome data
(WES) and using 677 cases from the same series of NDMM, we are able to predict both the
presence of chromothripsis (AUC = 0.82) and its adverse prognostic impact. CN signatures
constitute a flexible tool to identify the presence of chromothripsis and is applicable to WES
and WGS data.
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ARTICLE

hromothripsis, a catastrophic chromosomal shattering

event associated with random rejoining, is emerging as

strong and independent prognostic factor across multiple
malignancies!~7. Reliable detection of chromothripsis requires
whole-genome sequencing (WGS) and the integration of both
structural variants (SVs) and copy number (CN) data, with
manual inspection remaining the gold standard approach!%43,

Recently, we reported a comprehensive study of structural
variation (SV) in a series of 752 newly diagnosed multiple mye-
loma (NDMM) from the CoMMpass trial for which long-insert
low-coverage WGS was available (NCT01454297)°. Using the
latest criteria for chromothripsis!~> and manual inspection, we
reported a 24% prevalence of chromothripsis, making multiple
myeloma (MM) the hematological cancer with the highest
documented prevalence of chromothripsis’>1%11. MM patients
with chromothripsis events were characterized by poor clinical
outcomes, with chromothripsis being associated with multiple
unfavorable clinical and genomic prognostic factors including
translocations involving MAF, MAFB, and MMSET, increased
APOBEC mutational activity, del17p13 and TP53 mutations®.

Chromothripsis can be detected in myeloma precursor condi-
tions (monoclonal gammopathy of undetermined significance,
MGUS and smoldering myeloma, SMM) years before progres-
sion, representing an early genomic MM-defining event which is
highly predictive for later progressive disease!?!3. In MM, the
molecular time of major gains induced by chromothripsis sug-
gests a significant fraction of these complex events are acquired
decades before diagnosis'*. As further confirmation of early
acquisition and its driver role, the structure of chromothripsis
tends to be stable during spontaneous progression from precursor
conditions to MM, and equally is conserved at post-therapy
relapse! 1415 (Supplementary Fig. 1). In contrast, chromothripsis
in solid cancer is often noted to be a late event, arising in
metastatic disease or post-therapy samples, with a structure that
can be unstable over timel:16:17,

In MM and in other hematological malignancies, the structural
complexity of each chromothripsis event is typically more simple
than that seen in solid cancers!*° (Supplementary Fig. 2). Spe-
cifically, the total focal CN gains within the regions of chromo-
thripsis is often lower than in solid organ cancer, there are fewer
breakpoints attributable to chromothripsis, and in MM there is a
lack of enrichment for double-minutes and other more cata-
strophic events such as typhonas!8,

SV and CN signatures have been reported in ovarian cancer as
potential BRCAness surrogates'®19. This important marker,
denoting both prognosis and treatment-responsiveness, is
detectable only by combining multiple WGS features!®19. Of
note, CN signatures alone are an independent predictor of clinical
outcomes from ovarian cancer WGS!8. Given the genome-wide
distribution and lower complexity of chromothripsis in MM, we
hypothesized that a comprehensive signature analysis approach
using SV and CN may provide an accurate estimation of
chromothripsis in MM.

Here we demonstrate, by using the NDMM CoMMpass trial
low-coverage long-insert WGS (n = 752), that the combination of
CN with SV signatures is equivalent to a previously described
chromothripsis-calling algorithm (i.e., ShatterSeek)!. Interest-
ingly, CN signatures alone remain highly predictive of chromo-
thripsis, without requiring specific SV assessment, demonstrated
in the CoMMpass data as well as an additional validation set of
WGS from NDMM (n=34) and other hematological malig-
nancies (n=235). Furthermore, in the CoMMpass dataset, we
show that CN signatures independently associate with shorter
progression-free (PFS) and overall survival (OS). Leveraging the
ability of CN signatures to predict chromothripsis without SV
data, we extend the analysis to whole-exome sequencing (WES),

where we confirm the ability of CN signatures to predict the
presence of chromothripsis and demonstrate that WES-based CN
signatures retain the association with adverse clinical outcomes.
Utilizing comprehensive signature assessment in WES data
potentially accelerates the clinical translation of testing for
chromothripsis where WGS data is not available.

Results

Experimental data and design. Genome-wide somatic CN pro-
files were generated from 752 NDMM patients with low-coverage
long-insert WGS (median 4-8x) from the CoMMpass study
(NCT01454297; 1A13; Supplementary Table 1)2%-21. The final SV
catalog was generated by combining the two SV calling algo-
rithms, DELLY22, and Manta23 with CN data, followed by a series
of quality filters (see “Methods”)®. According to the most recently
published criterial=>, at least one chromothripsis event was
observed in 24% of the entire series®.

De novo CN signature extraction in multiple myeloma. CN
signature analysis takes the genome-wide CN gains and losses
(Fig. 1a), and measures 6 fundamental CN features: (i) number of
breakpoints per 10 Mb, (ii) absolute CN of segments, (iii) dif-
ference in CN between adjacent segments, (iv) number of
breakpoints per chromosome arm, (v) lengths of oscillating CN
segment chains, and (vi) the size of segments (Fig. 1b)!8. The
optimal number of categories in each CN feature was established
using a mixed effect model with the mclust R package (Fig. 1c, d).
The consequence of taking this approach is that different
malignancies and types of sequencing data may result in varying
numbers of CN categories and thresholds defining these cate-
gories (see “Methods”)!8.

To take account of the biology of MM, we introduced a few
modifications to the original CN features described by
Macintyre et. al:!8 (i) given the known poor quality mapping
and copy number complexity related to class switch recombina-
tion and VD] rearrangements, the immunoglobulin regions
corresponding to IgH, IgL, and IgK were removed; (ii)
considering both the low-coverage long-insert WGS limitation
for calling subclonal copy number events and the less complex
MM karyotype compared to solid cancers, fixed criteria for copy
number status were introduced (see “Methods”, and Supplemen-
tary Data 1 for full analytical R code).

Analyzing the CoMMpass long-insert low-coverage WGS; 28
CN categories were defined (Fig. 1d; Supplementary Table 2). In
comparison to the CN features described in ovarian cancer by
shallow WGS!8, in MM we observe lower total CN (median; 2,
maximum; 9, compared with total CN exceeding 30 in a
proportion of ovarian cancer). These findings are supported by
the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset,
where within each patient harboring chromothripsis, those with
ovarian cancer had a higher number of chromosomal breakpoints
[median 62, interquartile range [interquartile range (IQR)
33-112] compared with median 24 (IQR 12-35) for full coverage
MM, and median 25 (IQR 15-43) for low coverage MM, each
p <0.0001, Supplementary Fig. 2]. We also note shorter lengths of
oscillating CN, and a low contribution from very large aberrant
segments (in comparison to the dominant contribution from
segments >30 Mb in ovarian CN signature #1)18. Overall, these
differences are in line with the lower genomic complexity of MM
compared to ovarian cancer and the majority of solid organ
cancers (Supplementary Fig. 2).

Running the hierarchical Dirichlet process (hdp), 5 CN
signatures were extracted in MM (Fig. 2; Supplementary Table 3).
CN-SIG1, CN-SIG2, and CN-SIG3 have high contributions from
CN categories representing low numbers of breakpoints per
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Fig. 1 A schema demonstrating the definition of copy-number (CN) features from multiple myeloma whole-genome sequencing data. a Input genome-
wide copy number gain (red) and loss (blue) data from 752 newly diagnosed multiple myeloma whole genomes. b Measure copy number as classified by 6
key features. ¢ Define the optimum number of categories for each copy number feature by a mixed-effects model (mclust). d Tally the number of CN

variation for each of 28 CN categories to produce a matrix of key CN features. This comprises the input matrix for the hierarchical Dirichlet process (hdp)

for de novo extraction of CN signatures.
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Fig. 2 De novo extraction from whole-genome sequencing data produces 5 copy-number (CN) signatures in 752 newly diagnosed multiple myeloma.
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and CN-SIG5. (CN-SIG: copy-number signature, n =752 samples, data are presented as median values + SD).
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Fig. 3 Clinical data demonstrates the correlation of copy number (CN) signatures with high-risk multiple myeloma prognostic features and complex
genomic change. a A heatmap of MM mutational and structural features demonstrates that contribution from CN-SIG4 and CN-SIG5 cluster with features
of high-risk MM. Presence of biallelic TP53 inactivation and chromosome 1g21 amplification (i.e., >3 copies) are annotated in dark red; presence of
chromothripsis in purple; all the other genomic features are in bright red when present. b-g There is a significantly higher median contribution from CN-
SIG4 and/or CN-SIG5 on the samples having translocations involving b MAF/MAFB (p = 0.0005), ¢ increased APOBEC mutational activity (p = 9.9e=5), d
biallelic TP53 inactivation (p =1.3e~©), e gain/amplification of chromosome 1921 (p =1.3e~8), f chromoplexy (p =1.7e~7) and g chromothripsis (p = 2.2e
=16). Boxplots show median and interquartile range (IQR), with whiskers extending to 1.5 * IQR, n = 752, p-values indicate significance by a 2-sided
Wilcoxon rank-sum test. (CN-SIG: copy number signature, neg: lacking the feature, pos: containing the feature, WT: wild type).

10 Mb and breakpoints per chromosome arm. These signatures
have small absolute differences between adjacent CN segments
and short lengths of oscillating copy number. Each signature
varies in the distribution of segment size and in the relative
contribution of each CN category; CN-SIG1 has minimal jumps
between adjacent segments and a higher contribution from larger
segment sizes, mostly single chromosomal gains and trisomies.
CN-SIG2 has higher total CN (i.e., multiple chromosomal gains
and tetrasomies) and a higher contribution from small segments
without jumps between adjacent segments; and CN-SIG3 is
enriched for low absolute CN (i.e., deletions) with usually isolated
events (rare oscillating events or multiple events on the same
arm/chromosome) (Fig. 2). In contrast, CN-SIG4 and CN-SIG5
were characterized by higher numbers of breakpoints per 10 Mb
and per chromosome arm, longer lengths of oscillating CN, and a
higher contribution from small segments of CN change. While,
CN-SIG4 has contribution from each of the 3 categories reflecting
longer oscillation lengths, CN-SIG5 was characterized by a higher
contribution from jumps in CN between adjacent segments, and
by a higher contribution from high absolute CN (Fig. 2).

CN signatures across multiple myeloma defining genomic
events. Given the complex CN features noted in CN-SIG4 and
CN-SIG5 (Fig. 2), we examined the association of these signatures
with known MM genomic features (i.e, MM defining genomic
events)»12:1420.24-26 Both signatures were correlated with features
of high-risk MM (Fig. 3a), including translocations involving
MAF/MAFB (p=0.0005), APOBEC mutational activity (ie.,

mutational signatures; p<0.0001), biallelic TP53 inactivation
(p <0.0001), and gain/amplification of 1q21 (p < 0.0001; Fig. 3b-e).
There was a negative association with t(11;14)(CCDNLIGH)
(p<0.0001; Supplementary Fig. 3a), consistent with the low
genomic complexity known to be associated with a large pro-
portion of this molecular subgroup of MM!420, We show that
CN-SIG4 and CN-SIGS5 are highly correlated with the presence of
complex structural chromosomal rearrangements (Fig. 3a),
including the subgroup of chromoplexy (p < 0.0001; Fig. 3f), and
rearrangements defined as “complex- not otherwise specified”
(complex-NOS; p <0.0001; Supplementary Fig. 3b; “Methods”).
Interestingly, the largest significant difference was noted with
chromothripsis; with a median contribution of CN-SIG4/5 of 0.33
being seen in those cases with chromothripsis (IQR 0.20-0.48)
compared with 0.05 in those without (IQR 0.02-0.13) (p < 0.0001;
Fig. 3g). These data suggest that CN signature analysis has the
potential to accurately predict the presence of chromothripsis
from WGS data derived from MM patients.

CN signatures are strongly predictive of chromothripsis in
multiple myeloma. Considering that previously described chro-
mothripsis detection methods utilize both CN and SV from WGS,
we tested the accuracy of prediction by CN signatures combined
with SV signatures, previously described in solid organ cancer®!?
and MM?’. Running hdp, 10 SV signatures were extracted in MM
(“Methods”, Supplementary Data 2, Supplementary Table 4), with
3 comprising clustered events consistent with chromothripsis
(SV-SIG1-3) and 7 comprising non-clustered events (Fig. 4).
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variant signature).

SV-SIG1-3 correlate with the presence of complex structural
chromosomal rearrangements, and cluster together with CN-
SIG4 and CN-SIG5 (Supplementary Fig. 4). Evaluation of pre-
diction accuracy of CN and SV signatures by receiver operating
curve (ROC) analysis with 10-fold cross validation shows that
genomic signatures are highly predictive of chromothripsis;
producing an average area-under-the-curve (AUC) of 0.96
(Fig. 5a; for the full analytical R code, see Supplementary Data 3).
This prediction is as accurate as that obtained using ShatterSeek
(AUC = 0.93, Fig. 5b) and with SV signatures alone (AUC = 0.94,
Fig. 5¢). Importantly, we demonstrate that CN signatures alone
retains a highly accurate prediction (AUC = 0.90, Fig. 5d, Sup-
plementary Table 5), statistically non-inferior to ShatterSeek
(AUC difference =0.03, standard deviation[SD]=0.016, p=
0.54, based on bootstrap analysis), without the requirement for
specific SV evaluation, potentially allowing the detection of
chromothripsis on non-WGS. Given the higher proportional
contribution of CN-SIG4, the prediction of chromothripsis is
driven by this signature, however, CN-SIG5 contribution adds to
the prediction of chromothripsis, with the AUC from CN-SIG4
alone being 0.88 (AUC difference =0.03, standard devia-
tion[SD] = 0.01, p = 0.009, based on bootstrap analysis).

Due to the association of CN-SIG4/5 with chromoplexy and
other complex SV (Fig. 3), we tested the accuracy of predicting
these events by CN signatures, confirming that the prediction was

more specific for chromothripsis (AUC=0.74 for each of
chromoplexy and complex SV, Supplementary Fig. 5). To confirm
that CN-SIG4/5 predict chromothripsis events and not general
patterns of genomic complexity, we observed that the both the
CN and SV profiles outside of chromothripsis were highly
analogous with samples lacking chromothripsis, (cosine similarity
for corresponding matrix columns; CN 0.98, SV 0.96, Supple-
mentary Figs. 6-7), suggesting the absence of a complex and
unstable background genome. This is in line with the notation
that chromothripsis in NDMM often represents the most
complex event occurring, rarely associated with the hallmarks
of genomic instability observed in solid cancer?$-2%.

Next, we examined discrepant cases, defined as “false positive”
when chromothripsis was absent on manual curation but predicted
by CN signatures, or “false negative” when chromothripsis was
present but not predicted by CN signatures. Here we found that the
structural complexity of chromothripsis contributed to its detection
by CN signatures (Supplementary Fig. 6). In the false positive cases,
17/23 (74%) contained complex SV (not otherwise classified), some
of which represent chromothripsis-like events occurring without the
minimum of 10 SV required for classification®>. In contrast,
restricting analysis to chromothripsis cases having more chromo-
somal breakpoints increases the AUC of prediction [AUC = 0.93
with >30 breakpoints (71/752), AUC = 0.96 with >50 breakpoints
(37/752)]. Taken all together, these data suggest that the prediction

NATURE COMMUNICATIONS | (2021)12:5172 | https://doi.org/10.1038/s41467-021-25469-8 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Chromothripsis prediction with
SV and CN signatures

Chromothripsis prediction with
ShatterSeek features

Chromothripsis prediction with
SV signatures

e e ‘ o
- - .7 s s o -
il o | = © |
o o
1) [} o
Z o | 2 o | 2 o |
‘w o g o g o
c < - -
R ERl S s
= = =
o N o
o o . o
i AUC= 0.96 o | AUC= 0.93 o AUC=0.94
T T T T T T © T T T T T T S T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
False Positive False Positive False Positive
Chromothripsis prediction with Chromothripsis prediction with Chromothripsis prediction with
CN signatures CN signatures CN signatures
(non-MM validation WGS, n=235) (NDMM validation WGS, n=34)
o e e ]
© | © | J [\T il
IS IS} i
-.%) © | :‘2: © | ;GZ-J © |
g o g o T o
[n o o
o ¥ 4 o ¥ o T |
> © E o E o
= = =
B o N
o o
o |l AUC=0.90 | AUC=0.97 | AUC=0.87
© T T T T T T S T T T T T T e T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

False Positive

False positive

False positive

Fig. 5 Copy number (CN) signatures in newly diagnosed multiple myeloma are strongly predictive of chromothripsis. Receiver operating curve (ROC)
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individual ROC, AUC: mean area-under-the-curve.

of chromothripsis by CN signatures is most accurate in cases with
higher complexity.

CN signatures are strongly predictive of chromothripsis in
hematological malignancies. Given the low documented pre-
valence and low complexity of chromothripsis in hematological
cancers1%!1, we validated our prediction model using an exten-
ded dataset of 269 full coverage WGS from previously published
hematological cancer samples, including data from the PCAWG
study (n=269)>2%30. This included 34 NDMM, 92 chronic
lymphocytic leukemia, 29 chronic myeloid leukemia, 104 B-cell
lymphoma and 10 acute myeloid leukemia (7 de novo, 3 therapy-
related) (Supplementary Table 6; “Methods”). Overall, the number
of categories extracted in this series of WGS was smaller compared
to the CoMMpass cohort (26 vs 28), likely reflecting the less
impaired cytogenetic profile of most non-MM hematological
cancers*. Following the same computational approach reported in
Supplementary Data 1 and 2, de novo extraction on the entire
validation cohort identified 4 CN-signatures that were highly
similar to those described in the CoMMpass WGS (Supplemen-
tary Fig. 8; Supplementary Tables 7-8). Across the cohort of non-
MM hematological malignancies, (n=235), the resultant ROC
analysis had an AUC of 0.97 for predicting chromothripsis
(Fig. 5e, using 5-fold cross validation due to the smaller sample
size), while an AUC of 0.87 was observed when testing only in
NDMM (n = 34) (Fig. 5f). These data demonstrate the reprodu-
cibility of chromothripsis prediction from CN signatures, in both a
separate set of hematological cancer WGS, and an independent set
of NDMM samples.

CN signatures are strongly predictive of clinical outcomes in
multiple myeloma. Survival analysis on the CoMMpass data
demonstrates that the presence of chromothripsis is one of the
strongest predictors of a shorter PFS and OS;® median PFS of
32.2 months (95% confidence interval [CI] 25.2-48.3 m) in those
harboring chromothripsis compared with 41.1m (95% CI
37.8-47.2m) in those without (p=0.00011; Supplementary
Fig. 9a), and median OS of 53.3 m with chromothripsis but not
reached [NR] in those without (p<0.0001; Supplementary
Fig. 9b). Survival probability according to the CN-signature
predictive model mirrored survival according to chromothripsis.
Those with a high CN_pred score, defined as a predicted chro-
mothripsis probability 20.6 (see “Methods”), had a median PFS of
29.7m (95% CI 252m-NR) compared with 41.8m (95% CI
38.0-48.1 m) in those with a low score (p=0.0017; Fig. 6a;
Supplementary Table 5). Median OS in those with high CN_pred
score was also significantly shorter at 53.1 m compared with NR
in those with a low score (p <0.0001; Fig. 6b).

To select the most important features from highly correlated
genomic risk factors (Fig. 3a) we performed a backwards stepwise
Cox regression including ISS, age, ECOG status, biallelic TP53
inactivation, t(4;14)(FGFR3;IGH), gain/amplification1q21,
increased APOBEC mutational activity and MAF/MAFB translo-
cations. Based on this approach the final model contained ISS,
age, ECOG, APOBEC mutational activity, gain/amplification1q21
and the CN_pred score. The model is consistent with previously
published data indicating that APOBEC mutational activity is one
of the strongest adverse prognostic factors in MM?2426:31 and that
gain/amplification1q21 is associated with early relapse32. The
CN_pred score showed a significant association with shorter PFS
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are presented as median values £ 95% confidence interval.

and OS after controlling for other variables in the model,
producing a hazard ratio (HR) of 1.61 (95% CI 1.13-2.29,
p=0.0083, Fig. 6¢), and 2.22 (95% CI 1.50-3.30, p<0.001,
Fig. 6d), respectively. Importantly, the association of the CN_pred
score with poor clinical outcome was independent of treatment
received (Supplementary Fig. 10).

When examining false positive and false negative cases,
multivariate analysis including the same risk factors as Fig. 6
demonstrated no significant effect on survival in discrepant cases
compared with negative cases (Supplementary Fig. 11). In
comparison, cases in which chromothripsis was present and
had been predicted with CN signatures showed significantly
shorter survival, (PFS HR 1.73, 95% CI 1.16-2.58, p = 0.0068; OS
HR 2.38, 95% CI 1.54-3.67, p<0.001). Taken together this
suggests that the poor prognosis associated with chromothripsis is
mostly driven by highly complex events.

CN signatures compared with other CN-based tools. We next
compared the prediction of the presence of chromothripsis by CN
signatures with other CN-based algorithms recently used in MM
to identify high-risk disease: a loss-of-heterozygosity index
(LOH_index)?® and the genomic scar score (GSS)3133 (see
“Methods”). Results from each of these CN assessment approa-
ches showed a right-skewed distribution of CN features,
[LOH_index; median 2, (range 0-27), Supplementary Fig. 12a,
and GSS; median 7, (range 0-39), Supplementary Fig. 12b], with
the GSS distribution closely resembling that of previously pub-
lished data in NDMM31,

Each of these approaches demonstrated a lower average AUC
for predicting the presence of chromothripsis in MM WGS (0.69
and 0.78 respectively, Supplementary Fig. 12¢c, d). The difference

in chromothripsis prediction between CN signatures and the
LOH_index is quantitated as a statistically significant difference
of 021 in AUC (based on bootstrap analysis, SD = 0.006,
p<0.0001, Supplementary Fig. 12e) while the difference in
prediction between CN signatures and the GSS is quantitated as a
statistically significant difference of 0.13 in AUC (based on
bootstrap analysis, SD = 0.005, p < 0.0001, Supplementary Fig. 12f,
Supplementary Data 4).

In order to compare the effect on PFS and OS in multivariate
analysis, the CN-signature prediction data was used as a linear
variable, which after correction for the previously included risk
factors (see Fig. 6¢c, d) was associated with shorter PFS
(HR =1.87,95% CI 1.16-3.01, p = 0.012, Supplementary Fig. 13a)
and OS (HR=3.1, 95% CI 1.84-5.4, p<0.001, Supplementary
Fig. 13d). Performing multivariate analysis for PFS with
correction for the same risk factors showed that neither the
LOH_index (PFS HR=1.03, 95% CI 0.99-1.08, p=0.19;
Supplementary Fig. 13b) nor the GSS (PFS HR = 1.02, 95% CI
1.0-1.04, p = 0.12; Supplementary Fig. 13c) retain a significant
association. Each model has a slightly increased HR for OS in
multivariate analysis; (LOH_index HR=1.1, 95% CI 1.02-1.1,
p=0.008, Supplementary Fig. 13e; GSS HR=1.0, 95% CI
1.02-1.1, p=0.001, Supplementary Fig. 13f). Overall, CN-
signatures perform significantly better at predicting poor out-
comes in comparison with either the LOH_index or the GSS,
suggesting that a more accurate prediction of chromothripsis is a
better tool for identifying prognosis using CN-based information.

CN signatures predict chromothripsis and clinical outcomes in
whole-exome sequencing data. Any prognostic assessment for
MM would ideally be applicable in non-WGS assays, as WGS is
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Fig. 7 Extracted copy number (CN) feature profiles from whole-genome
sequencing (WGS) and whole-exome sequencing (WES) are highly
analogous. a An example of chromothripsis from the CoMMpass dataset
(MMRF_1646_1_BM; chr: chromosome). The horizontal black line indicates
total copy number; the dashed orange line minor copy number. Vertical
lines represent structural variant breakpoints for deletion (red), inversion
(blue), tandem-duplication (green), and translocations (black), involving
chromosomes 6 and 9. The extracted CN category profile from the same
example patient (MMRF_1646_1_BM) from b WGS and ¢ WES.

currently both expensive and computationally intensive, making
its clinical application outside of a research setting difficult. We
performed de novo signature extraction using WES data from 677
NDMM CoMMpass samples, all of which also had WGS. The
presence of these data enabled us to compare results in WES with
the gold-standard method for chromothripsis-detection on WGS.
The CN feature profile extracted from WES data was highly
analogous to that obtained from WGS data (cosine similarity =
0.99 for corresponding matrix columns), with a smaller con-
tribution from the oscillation CN categories due to the lower data
resolution overall, and in particular of focal and small lesions
(Fig. 7, Supplementary Fig. 14a). De novo extraction using hdp
produced 5 exome-based CN signatures (eCN), similar in their
CN feature distribution to the signatures defined in WGS (Sup-
plementary Figs. 14b, ¢; Supplementary Tables 8-9). ROC ana-
lysis based on 10-fold validation produced an average AUC of
0.82 for predicting chromothripsis (Supplementary Fig. 15;
Supplementary Table 5).

The exome CN signature-based chromothripsis prediction
score (eCN_pred) was associated with a significantly shorter PFS;
median 26.0m (95% CI 18.0-48.3m) in those with a high
eCN_pred score compared with 41.1 m (95% CI 36.7-50.0 m) in

those with a low score, (p=0.0031; Fig. 8a). OS was also
significantly shorter; median 52.3 m with a high eCN_pred score
but NR in those with a low score, (p <0.0001; Fig. 8b).

In the WES data, backwards stepwise regression demonstrated
that the best model for predicting survival was that comprising
age, ISS, APOBEC-activity, and the eCN_pred score. Multivariate
analysis again produced a significant and independent association
of eCN-pred with a shorter PFS (HR = 1.66, 95% CI 1.16-2.37,
p=0.0055; Fig. 8c), and shorter OS (HR=2.19, 95% CI
1.46-3.29, p<0.001; Fig. 8d) recapitulating both the results
obtained from WGS CN signature-based chromothripsis predic-
tion (Fig. 6), and those obtained by manual data curation®.

Discussion

We recently carried out a comprehensive analysis of the land-
scape of SVs in MM, showing their critical role in disease
pathogenesis and confirming the importance of WGS for deci-
phering the genomic complexity of these events®1434 We
demonstrated a high prevalence of complex structural events such
as chromothripsis in MM (24%). In contrast to solid cancers
having a similar or higher prevalence, in MM chromothripsis
represents an early driver event detectable years before the
diagnosis, which remains relatively stable over time. Importantly,
chromothripsis is emerging as one of the strongest features able to
predict both the progression of myeloma precursor condition to
MM and shorter PFS and OS with NDMM, independent of other
known prognostic variables”>12. Given these relevant transla-
tional and clinical data in MM and other malignancies”->3>3, it
follows that the integration of complex SV data has the potential
to improve the current prognostic scoring systems.

Current approaches for identifying chromothripsis require
expense and time commitment because of the need for either the
manual curation of WGS data or the use of computational tools
requiring both CN and SV datal:$37. Genomic signatures pro-
vide a comprehensive assessment of multi-dimensional data to
predict the presence of complex SV. A signature approach has
already been applied to breast and ovarian cancer, where BRCA
deficiency can be predicted by distinct SV and CN features!819-38,

We investigated using a genomic signature approach for pre-
dicting the presence of chromothripsis in NDMM, demonstrating
that SV and CN signatures accurately predict chromothripsis,
with a performance analogous to ShatterSeek. CN signature
analysis alone provides a highly accurate chromothripsis predic-
tion, independent from SV signatures and outperforming other
CN assessment algorithms3!. In comparison to solid cancers, in
MM the genomic background on which chromothripsis occurs is
not complex or unstable. This is expected considering the relative
absence of patterns of genomic instability and the early driver role
of chromothripsis in MM, while the acquisition of other known
features responsible for genomic complexity such as TP53-inac-
tivation and APOBEC- mutational activity occur later?®3°. The
survival probability identified using a CN signature-based pre-
diction of chromothripsis closely mimics PFS and OS curves
observed with the presence/absence of chromothripsis®. Using a
validation set of WGS containing multiple hematological malig-
nancies, we provide proof-of-principle that CN signature analysis
can predict for chromothripsis across different hematological
cancer types and can, therefore, be used as surrogate for these
variants to further address the role of chromothripsis in these
blood cancers.

The primary objective was to test whether WGS-based CN
signatures can reliably predict chromothripsis and its poor
impact on clinical outcomes, independently from other WGS
data. Another critical aspect of this study was to expand our
investigations using non-WGS (i.e., exome-based) data. In WES
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Fig. 8 Copy number (CN) signatures extracted from whole-exome sequencing (WES) in newly diagnosed multiple myeloma are highly predictive of
clinical outcomes. a Progression-free survival (PFS) probability in the CoMMpass dataset according to high (blue) or low (red) exome CN-prediction score
(eCN_pred) for chromothripsis. b Overall survival (OS) probability in the CoMMpass dataset according to high (blue) or low (red) eCN_pred. ¢
Multivariate analysis of the effect of eCN_pred on PFS after correction for International Staging Score (ISS), age and APOBEC mutational activity. d
Multivariate analysis of the effect of eCN_pred on OS after correction for the same factors. All p-values for Kaplan-Meier curves were generated according
to a 2-sided log-rank test. Multivariate analysis was performed by the Cox proportional hazards model with p-values according to a 2-sided Wald test. Data

are presented as median values £ 95% confidence interval.

data, multivariate analysis revealed a significant association
between CN signatures and shorter PFS and OS. Indeed, the
clinical impact of CN signatures was similar in WGS and WES
data. This is important from a translational perspective because
it provides an easier pathway towards clinical application in the
standard of care setting of NDMM patients. Additional valida-
tion would be required to demonstrate in other cancer types the
applicability of CN signatures to detect chromothripsis in
WES data.

In conclusion, CN signature analysis can accelerate our
ongoing quest to accurately define high-risk MM, and to translate
WGS-based prognostication into the clinic.

Methods

Samples. All the raw data used in this study are publicly available. Somatic CN
profiles for the definition of CN signatures in MM were generated from 752
NDMM patients with low-coverage long-insert WGS (median 4-8x) from the
CoMMpass study. The CoMMpass study is a prospective observational clinical trial
(NCT01454297) with comprehensive genomic and transcriptomic characterization
of NDMM patients, funded and managed by the Multiple Myeloma Research
Foundation (MMRF), The study is ongoing, with data released regularly for
research use via the MMRF research gateway. In this study, we used Interim
Analysis (IA) 13.

The validation dataset of hematological cancer WGS was compiled from several
sources. Data from the PCAWG study>2%30 was accessed via the data portal http://
dcc.icge.org/pcawg/, comprising 92 chronic lymphocytic leukemia, 29 chronic
myeloid leukemia, 104 B-cell lymphoma and 7 acute myeloid leukemia. An
additional 3 therapy-related AML were included, with the WGS data available from
European Genome-phenome (EGA) under the accession code EGAD00001005028.
Together, these samples formed the non-MM validation WGS set (n = 235,
Supplementary Table 6). The MM validation dataset (n = 34) comprised 28
NDMM, 4 monoclonal gammopathy of undetermined significance (MGUS),

2 smoldering MM (SMM) and 1 plasma cell leukemia (PCL). It was compiled from
3 studies that can be accessed from EGA and the database of Genotypes and
Phenotypes (dbGAP) with accession codes EGAD00001003309,
EGAS00001004467 and phs000348.v2.p1142941,

WES from 677 NDMM patients were accessed from the CoMMpass study as
above, with each patient having concurrent WGS available for comparison. As
previously published data, ethics committees or institutional review boards at each
of the CoMMpass study sites approved the original study, which was conducted in
accordance with the Declaration of Helsinki. All patients provided written
informed consent.

CNV signature analysis. Genome-wide somatic copy number (CN) profiles were
generated from 752 NDMM patients with long-insert low-coverage WGS available
from the CoMMpass study. Paired-end reads were aligned to the human reference
genome (HRCh37) using the Burrows Wheeler Aligner, BWA (v0.7.8). CN var-
iation and loss-of-heterozygosity events were identified using tCoNuT; a TGen
developed tool, with MMRF CoMMpass specific optimizations (https://
github.com/tgen/tCoNuT)%20, with verification performing using controlFREEC
(standard settings for GC content, read size, segmentation, and windows)?!,
demonstrating >90% agreement between the two approaches’. We minimized the
inclusion of artefacts by removing all CN changes smaller than 50kB and excluding
the regions corresponding to IgH, IgL, and IgK, as well as the X chromosome from
analysis.

The optimal number of categories in each of the 6 CN features detailed in Fig. 1
were established using a mixed effect model with the mclust R package, producing a
CN category matrix with defined limits for each feature (Supplementary Table 2).
Given the lower complexity of MM CN changes compared to the original CN
signature definition in ovarian cancer!8, fixed criteria for copy number status were
introduced (#1 = bi-allelic deletion; #2 = monoallelic deletion; #3 = diploid;

#4 = single gain; 5# = two or more gains, Supplementary Data 1, Supplementary
Table 2). De novo CN signature extraction was performed from this matrix via the
hierarchical Dirichlet process (hdp, https://github.com/nicolaroberts/hdp). The
extracted CN signatures were then correlated with publicly available clinical data
and manually curated SV data as detailed below to allow the calculation of
prediction metrics. The accuracy of chromothripsis prediction from CN signatures
was assessed by the area-under-the-curve (AUC) from receiver operating
characteristic (ROC) curves via 10-fold cross validation, using all extracted CN
signatures as input. The sensitivity and specificity of chromothripsis prediction
from varying levels of probability (i.e., AUC) were compared, (Supplementary
Table 5), with a prediction level 20.6 defining a high CN_pred (WGS) and
eCN_pred (WES) score. This score provided the highest Ievel of sensitivity for
chromothripsis prediction while still keeping the specificity level at / above 95% for
both WGS- and WES-based prediction.
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Somatic variant calling was performed using DELLY (v0.7.6)2? and Manta
(v.1.5.0)23. The final catalog of high-confidence SVs was obtained by integrating
DELLY and Manta calls with copy number data and applying a series of quality
filters. Briefly, all SVs called and passed by both callers were included and SVs
called by a single caller were only included in specific circumstances: (i) SVs
supporting copy-number junctions, (ii) reciprocal translocations, and (iii)
translocations involving an immunoglobulin locus (i.e., IGH, IGK, or IGL).

Single and complex SV events were defined according to the most recent
criterial=>. Chromothripsis was defined by more than 10 interconnected SV
breakpoint pairs associated with oscillating CN across one or more chromosomes;
definition included (i) clustering of breakpoints, (ii) randomness of DNA fragment
joins, and (iii) randomness of DNA fragment order across one or more
chromosomes. Chromoplexy was defined by interconnected SV breakpoints across
>2 chromosomes associated with CN loss. Templated insertions were defined as
translocations associated with focal CN gain; if >2 chromosomes were involved
templated insertions were classified as complex. Patterns of 3 or more
interconnected breakpoint pairs that did not fall into the above categories were
classified as “complex”, not otherwise specified®.

The majority of the clinical association data was obtained directly from the
CoMMpass data portal (https://research.themmrf.org). The definition of high
APOBEC activity was obtained from single-base substitution (SBS) signature
analysis; a mutational signature fitting approach using the R package mmisig,
(https://github.com/evenrus/mmsig) was applied to single nucleotide variant calls
from WES data2®30:42, High APOBEC mutational activity was defined by an
absolute contribution of APOBEC-associated signatures (SBS2 and SBS13) in the
top decile, among patients with evidence of APOBEC activity®3(.

CN variation data from the validation dataset of hematological cancers was
utilized for de novo CN signature extraction (hCN-SIG, Supplementary Table 7)
without reference to the CoMMpass WGS-derived CN signatures. Fixed criteria for
copy number status were introduced as detailed above. The presence of
chromothripsis was confirmed for every event by manual inspection and curation
of SV and CN data. The accuracy of chromothripsis prediction from was assessed
by AUC from ROC curves using all extracted hCN signatures as input. 5-fold cross
validation was used for the non-MM cohort prediction, which was then used as the
training model for testing the prediction from the MM validation cohort.

CN variation and loss-of-heterozygosity events from the CoMMpass WES
sequencing data was assessed using FACETS (Fraction and Allele specific Copy
number Estimate from Tumor/normal Sequencing, https://github.com/mskcc/
facets)*3. Fixed criteria for copy number status were introduced as detailed above,
then de novo CN signature extraction, and clinical / genomic correlation were all
performed without reference to the WGS-derived CN signatures.

SV signature analysis. WGS SV data were assessed for clustering, then annotated
by SV type and size as per previously described standard criteria (SV type; deletion,
tandem duplication, inversion, translocation and size; 1-10 kb, 10-100 kb,
100-1000 kb, 1-10 Mb, >10 Mb)°. The resulting matrix of 32 SV features was used
for de novo signature extraction by hdp, producing 10 SV signatures (Supple-
mentary Data 2, Supplementary Table 4). The accuracy of chromothripsis pre-
diction from the combination of SV and CN signatures, and from SV signatures
alone was assessed by AUC from ROC curves via 10-fold cross validation, using all
extracted signatures as input (Supplementary Data 3).

Comparison of CN signatures with alternate CN assessment approaches. The
LOH_index and the GSS were calculated from allele-specific CN files, with the
methods being applicable to either WGS or WES data. The LOH_index was cal-
culated using the R package signature.tools.lib3344 (https:/github.com/Nik-Zainal-
Group/signature.tools.lib), while the GSS was calculated using the R package
scarHRD?? (https://github.com/sztup/scarHRD). The scarHRD output is 3 separate
CN features (loss-of-heterozygosity, telomeric allelic imbalance, and number of
large-scale transitions) which are summed to produce a final score.

To compare chromothripsis-prediction from CN signatures with each of the
LOH_index and the GSS, we first calculated with difference in average AUC
between two methods estimated from 10-fold cross-validation. Then, standard
deviation of the difference in AUCs was estimated by performing a bootstrap
resampling. On each new bootstrap sample, we estimated difference in the average
AUC between two methods using 10-fold cross-validation. This procedure was
repeated 1000 times (Supplementary Data 4).

Data analysis and statistics. Analysis was carried out in R version 3.6.1. Key
software tools noted throughout the workflow (including mclust, hdp, survminer,
PROC, mmsig, signature.tools.lib, and scarHRD) are publicly available. Unless
otherwise specified, we used the Wilcoxon rank-sum test to test for differences in
continuous variables between two groups and Fisher’s exact test for 2 x 2 tables of
categorical variables. Associations between clinical, molecular characteristics, and
survival were evaluated by fitting Cox proportional hazard models, with the
p-values reported based on the Wald test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All sequencing BAM files are available at the EGA and dbGaP archives under accession
codes as listed below. The CoMMpass dataset, while publicly available, requires that
access is requested via https://research.themmrf.org/ rather than raw data being
published directly. All other data are available under restricted access, with access
obtained by contacting the public depository listed. WES and low coverage/long insert
WGS sequencing data from 752 NDMM patients (CoMMpass trial; IA 13) under
phs000748.v1.pl. WGS from 24 NDMM and 1 high risk SMM patient under
EGADO00001003309 and phs000348.v2.p1. WGS data from 3 MM, 1 SMM, 1 PCL, and 4
MGUS patients under EGAS00001004467. WGS data from 3 therapy related AML
patients under EGAD00001005028. Data from the PCAWG study was accessed via the
data portal: https://dcc.icgc.org/. Source data are provided with this paper.

Code availability

The analytical workflow in R for the de novo extraction of CN signatures is provided in
Supplementary Data 1 and of SV signatures is in Supplementary Data 2. The code for
predicting chromothripsis from genomic signatures is detailed in Supplementary Data 3
and the approach to comparing 2 methods for predicting chromothripsis is presented in
Supplementary Data 4. All code is also available on Zenodo (https://zenodo.org/record/
5095351#.Y02s2i9h04c, https://doi.org/10.5281/zenodo.5095351).
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