
The ISME Journal (2021) 15:2738–2747
https://doi.org/10.1038/s41396-021-00959-1

ARTICLE

The temperature sensitivity of soil: microbial biodiversity, growth,
and carbon mineralization

Chao Wang 1,2
● Ember M. Morrissey 1

● Rebecca L. Mau3,4
● Michaela Hayer3 ● Juan Piñeiro1

● Michelle C. Mack3 ●

Jane C. Marks3,5 ● Sheryl L. Bell 6
● Samantha N. Miller3,5 ● Egbert Schwartz3,5 ● Paul Dijkstra3,5 ●

Benjamin J. Koch3,5
● Bram W. Stone3 ● Alicia M. Purcell3 ● Steven J. Blazewicz6 ● Kirsten S. Hofmockel 7,8

●

Jennifer Pett-Ridge 6
● Bruce A. Hungate 3,5

Received: 7 December 2020 / Revised: 19 February 2021 / Accepted: 4 March 2021 / Published online: 29 March 2021
© The Author(s), under exclusive licence to International Society for Microbial Ecology 2021

Abstract
Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to
climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain
differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we
show phylogenetic and taxonomic variation in the Q10 of growth (5–35 °C) among soil bacteria from four sites, one from
each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic
composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil
respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable
enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.

Introduction

Soil is the largest terrestrial reservoir of carbon (C), yet this
C pool is not well constrained in global climate models due
to uncertainty regarding microbial feedbacks to climatic
change [1–3]. Soil organic carbon (SOC) is mineralized by
microorganisms and returns to the atmosphere as CO2.
Changes in this soil C flux, therefore, could substantially
influence the direction and magnitude of future climate
changes [4]. Since the decomposition of SOC is tempera-
ture-dependent, most C cycling models and studies predict
that increasing temperature will lead to decreasing soil C
storage due to warming-induced increases in microbial
activity and soil respiration [5, 6]. Yet, experimental studies
show conflicting effects of warming on soil C storage [7]
and suggest our understanding of microbial feedbacks to
temperature is incomplete. Understanding the variation in
microbial community traits and their responses to tem-
perature under climate warming could elucidate the con-
tradictory effects of temperature on soil C cycling and
improve our ability to make accurate predictions.

Soil microbial respiration is sensitive to temperature
[8, 9], reflecting the temperature sensitivities of microbial
growth and metabolism, such as enzyme activities and C
use efficiency [10, 11]. The considerable variation observed
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in temperature sensitivity of microbial processes at the
community level may reflect dependencies on community
membership [12]. Classical culture-based approaches pro-
vide clear evidence that microbial species differ in their
minimum, optimum, and maximum growth temperatures
[13–16]. Consequently, differences in community compo-
sition, and the temperature sensitivities of individual taxa,
could explain differences in temperature sensitivity of soil
respiration. Indeed, consistent shifts in relative abundance
have been reported for ubiquitous soil bacteria and archaea
in response to warming [17]. But the knowledge of
microbial community composition alone offers weak pre-
dictive power for microbial process rates [18, 19]. Direct
measurements of growth and temperature sensitivity of
individual microbial taxa could illuminate and help to pre-
dict their impact on ecosystem functioning.

We applied quantitative stable isotope probing (qSIP)
[20, 21], a technique that tracks the incorporation of 18O-
water into newly synthesized DNA, to quantify the growth
of individual soil microbial taxa and their temperature
sensitivities in four ecosystems, representing Arctic, boreal,
temperate, and tropical biomes (Supplementary Fig. 1).
These biomes include an Arctic tundra in Alaska, a boreal
forest in northern Minnesota, a temperate mixed conifer
forest in northern Arizona and a tropical forest in Puerto
Rico and encompass a large range in mean annual tem-
perature (MAT) from −7 to 24 °C (Supplementary Table 1).
Each soil was incubated under four temperatures (5, 15, 25,
and 35 °C) for 5 days. The temperature sensitivity (Q10) of
whole community respiration or growth of individual taxa
was calculated as Q10= Rtemp+ 10/Rtemp, where R is the
microbial respiration (μg C g−1 soil) or growth (day−1) at
the lower temperature (temp) and higher temperature
(temp+ 10) [22]. We hypothesized that when the tem-
perature sensitivities of individual taxa were aggregated, the
community level microbial growth Q10 would correlate with
the soil respiration Q10. We also predicted that the microbial
growth Q10 would be phylogenetically clustered because the
temperature sensitivities of organisms are likely to be
dependent upon central gene systems encoding metabolic
enzymes that evolve slowly and are rarely transferred
between organisms [23, 24].

Method

Sample collection and incubation

In August 2017, soil samples were collected from four
ecosystems, with one site in each of the Arctic, boreal,
temperate, and tropical biomes (Supplementary Fig. 1). The
Arctic samples were from the Arctic LTER site at Toolik
Lake Field Station. The boreal samples were from the

SPRUCE experimental site (Spruce and Peatland Responses
Under Changing Environments) in northern Minnesota. The
temperate samples were collected from a mixed conifer
forest site, located at the Hart Prairie Nature Reserve in
northern Arizona, and the tropical samples were from the
Sabana Field Research Station in the Luquillo Experimental
Forest in Puerto Rico. The sites represent common eco-
system types within each climactic zone and have relevant
data available from past studies [25, 26] but are merely
samples from each biome. We acknowledge that our sites
do not encompass the diversity of ecosystems within the
Artic, boreal, temperate and tropical climatic zones, and
advise caution when generalizing our results. We selected
these sites as a first attempt to compare microbial growth
and respiration responses to temperature at a broad scale.
Detailed information of sampling sites can be found in
Supplementary Table 1. Five independent replicate samples
were collected from each site at 0–10-cm depth and stored
at either room temperature (temperate and tropical soils) or
4 °C (boreal and Arctic) until they arrived in the lab.

Respiration measurements

For the respiration measurements, the homogenized soils,
ranging from 1.2 to 12.5-g dry weight due to the different
amount of soil we had for different sites, were weighed into
specimen cups and placed into mason jars with a septum in
the lid for headspace gas sampling (n= 5 for each tem-
perature and biome). Soil moisture was adjusted to 60%
water holding capacity (WHC) and the samples were
incubated 5 days at 5, 15, 25, and 35 °C, respectively. To
measure CO2 concentrations, a t0 gas sample was taken
~15 min after the jar was closed. Headspace gas samples
were then taken every ~24 h from the 25 and 35 °C tem-
peratures, and every ~48 h from the 5 and 15 °C tempera-
tures. The headspace gas samples removed from the jars
with 15-mL syringes were analyzed with a LI-Cor 6262 (LI-
Cor Biosciences Inc. Lincoln, Nebraska, USA). The
cumulative CO2–C was calculated as the difference in
CO2–C from t0 to t24–48 h. Following gas sampling at 24 or
48 h, jars were opened for ~15–30 min to release accumu-
lated CO2 and equilibrate to atmospheric CO2 concentra-
tions before being closed again and measurements were
repeated over the 5-day incubation period.

Microbial biomass C measurements

Microbial biomass C was measured after 5-day incubation
following a revised protocol based on the chloroform-
fumigation extraction methods described by Witt et al. [27].
Soils were weighed into Nalgene bottles and extracted in
replicate pairs (fumigated and non-fumigated) using a
1:5 soil: extractant ratio with 0.5-M K2SO4. The fumigated
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replicate had EtOH-free chloroform added directly. All
samples were shaken at low speed (~150 rpm) for 4 h before
being vacuum-filtered through a Whatman GF/A filter. All
fumigated samples containing chloroform were sparged
with compressed air for 1 h in a Falcon tube, allowing the
chloroform to pool at the bottom and be bubbled out. Fil-
tered and sparged samples were frozen until further analy-
sis. Thawed samples were analyzed within 48 h for total
organic carbon (TOC) on a Shimadzu TOC-L analyzer with
an ASI-L autosampler (Shimadzu Corporation, Kyoto,
Japan). The average blank values were subtracted from
TOC to correct for any C present in the extractant solution.
Microbial biomass C was calculated as the difference
between the fumigated and non-fumigated replicates.

Quantitative stable isotope probing (qSIP)

For qSIP, 1–2-g dry mass soil from each biome was
weighed into Falcon tubes. Samples were preincubated at 5,
15, 25, and 35 °C for 12 h. After 12 h, samples (n= 5) were
adjusted to 60% WHC by adding 18O-enriched water (98
atom%) and were incubated at their respective temperatures
for an additional 5 days. This resulted in 80 18O-enriched t5
samples (five replicates soil samples from four biomes at
four different temperatures). An additional 25 t0 samples
were analyzed for one or two of the temperatures for each
replicate from each biome (15 °C for Arctic, 15 °C boreal, 5
and 15 °C for temperate, and 25 °C for tropical). The
samples stored at −80 °C immediately following natural
abundance water addition (t0) or after the incubation (t5).
Total DNA was extracted from 0.5 g of soil using a MoBio
PowerSoil Kit (Carlsbad, CA, USA) following the manu-
facturer’s instructions. To separate DNA by density, 1 μg of
DNA was added to 3.6 mL of a saturated cesium chloride
solution (1.9 g mL−1), ~1.1 mL of gradient buffer (200-mM
trisaminomethane) (Tris), pH 8, 200-mM potassium chlor-
ide, 2-mM ethylenediaminetetraacetic acid in an OptiSeal
ultracentrifuge tube (Beckman Coulter, Brea, CA). The
tubes were spun at 127,000 × g at 18 °C for 72 h using a
Beckman TLN-100 rotor in an Optima MAX ultracentrifuge
(Beckman Coulter, Brea, CA).

After spinning, ~3.5 mL of the cesium chloride gradient
was separated into twenty-two 150-μL fractions. The den-
sity of each fraction was measured using a Reichert AR 200
handheld digital refractometer (Reichert Technologies,
Buffalo, NY). Following, DNA in each fraction was pur-
ified using an isopropanol precipitation method and quan-
tified by PicoGreen fluorescence on a BioTek Synergy HT
plate reader (Winooski, VT, USA). The 16S rRNA gene
was quantified and sequenced in each fraction within the
density range 1.64–1.73 g/mL (~17 fractions). Standard
curves were generated using tenfold serial dilutions of
genomic Escherichia coli DNA.

For qPCR, triplicate 10-μL reactions contained 0.25 μM
of each primer (Eub 338 5′-ACT CCT ACG GGA GGC
AGC AG-3′/Eub 518 5′-ATT ACC GCG GCT GCT GG-3′),
1X Forget-Me-Not EvaGreen qPCR Master Mix, and 1.5-
mM MgCl2. The assay was performed on a CFX 384 (Bio-
Rad, Hercules, USA), using a program of 95 °C for 2 min
followed by 40 cycles of 95 °C for 10 s, 62 °C for 10 s, and
72 °C for 10 s. Bacterial gene copy numbers were calculated
using a regression equation for each assay relating the cycle
threshold (Ct) value to the known number of copies in the
standards.

For sequencing, two PCR steps were used [28]. Each
sample was first amplified using primers 515F (5′-GTGY
CAGCMGCCGCGGTA-3′) and 806R (5′-GGACTACNV
GGGTWTCTAAT-3′) [29, 30]. This was done in triplicate
10-µL PCR reactions containing 1 mM of each primer,
0.01-U/µL Phusion HotStart II Polymerase (Thermo Fisher
Scientific, Waltham MA, USA), 1X Phusion HF buffer
(Thermo Fisher Scientific, Waltham MA, USA), 3.0-mM
MgCl2, 6% glycerol, and 200-µM dNTPs. PCR conditions
were 95 °C for 2 min; 15 cycles of 95 °C for 30 s, 55 °C for
30 s, and 60 °C for 30 s. Initial PCR reaction products were
pooled, checked on a 1% agarose gel, tenfold diluted, and
used as template in the subsequent tailing PCR reaction
with region-specific primers that included the Illumina flow
cell adapter sequences and a 12 nucleotide Golay barcode
(15 cycles identical to initial amplification conditions).
Products of the tailing reaction were purified with car-
boxylated SeraMag Speed Beads (Sigma-Aldrich, St. Louis,
USA) at a 1:1 v/v ratio as described in Rohland and Reich
[31], and quantified by Picogreen fluorescence (Thermo
Fisher, USA). Equal concentrations of the reaction products
were then pooled; the library was bead-purified once again
(1:1 ratio), quantified by qPCR using the Library Quanti-
fication Kit for Illumina (Kapa Biosciences, Woburn, MA),
and loaded at 11 pM (including a 30% PhiX control) onto
an Illumina MiSeq instrument (San Diego, CA, USA) using
2 × 150 paired-end read chemistry.

Sequence data processing and analysis

Sequencing data were analyzed for each biome separately.
The paired-end reads were joined [32] and analyzed with the
QIIME software package (version 1.8, available at
http://www.qiime.org) [33]. The most abundant sequence for
each operational taxonomic unit (OTU) was aligned [34],
and taxonomy was assigned with UCLUST [35] using the
SILVA 16S rRNA gene database (version 128, available at
https://www.arb-silva.de/documentation/release-128) [36] at
97% identity. Any OTUs that accounted for <0.05% of the
total sequences were discarded [37]. In addition, samples
with <3500 sequences were excluded from the analysis.
Isotopic composition of individual taxa after exposure to
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H2
18O was calculated as described by Hungate et al. [20].

Briefly, the density for each bacterial taxon was computed as
a weighted average, summing the densities across all frac-
tions multiplied by the total number of 16S rRNA gene
copies in that fraction expressed as a proportion of the total
16S rRNA gene copies. The increase in weighted density
relative to the weighted density of the unlabeled treatments
was calculated. We determined the GC content of the DNA
for each taxon, based on its density, using the relationship of
GC content and density based on a pure culture study. The
GC content was then used to calculate the molecular weights
and the corresponding values of 18O isotope composition for
each taxon. Bootstrap resampling (with replacement, 1000
iterations) of replicates within each treatment was used to
estimate taxon-specific 90% confidence intervals for the
change in density and the corresponding value of 18O excess
atom fraction (EAF) isotope composition. Preliminary data
analysis revealed an effect of ultracentrifuge tube on esti-
mation of weighted average density of a taxon, probably a
consequence of slight differences in CsCl density gradients
between tubes. This technical error was corrected as pre-
viously described [38]. We then corrected for the differences
in pore water enrichment by dividing the EAF of a taxon in a
sample by the proportion of 18O–H2O in that sample. The
relative growth rate (day−1) was estimated as a function of
the increase of 18O–EAF of microbial DNA, which assumed
that 33% of oxygen in microbial DNA was derived from
water and that the community is at steady state: growth=
18O–EAF/(0.33 × 5 days) [20, 39]. The production of new
microbial biomass (μg C g−1 soil) at different temperatures
was estimated, which considered the increase in community-
weighted 18O–EAF of DNA as the proportion of new bio-
mass produced in total microbial biomass. Code associated
with qSIP calculations is publicly available at https://
bitbucket.org/QuantitativeSIP/qsip_repo. All sequences in
this study are available in Sequence Read Achieve database
of NCBI under accession numbers PRJNA649787,
PRJNA649546, PRJNA649571, and PRJNA649802.

Null model approach

The null model approach has widely been applied to study
the community assembly processes [40–42]. Appropriate
null models randomize the characteristics of the observed
data that are involved in the null hypothesis, while main-
taining structures in the dataset unrelated to the null
hypothesis [41, 43]. Here, we tested if the relationship
between community-traits-based growth Q10 and respiration
Q10 could be observed in randomly assembled microbial
communities. We randomized species abundances within
samples, which maintained the observed species richness
within communities. This procedure limited any bias in null
predictions due to differences in the number of species

observed in the communities, as this feature of microbial
communities is a key driver of multiple ecosystem functions
[44]. We ran 10,000 null model randomizations for each
temperature range using species abundance matrices that
included all study sites within a given temperature range
(Supplementary Fig. 2). For each of the 10,000 randomi-
zations, we calculated the community-traits-based growth
Q10 using mean trait values for each species at each tem-
perature range. This analysis was conducted using “Picante”
package in R 3.1.1 [45].

Using the null distribution of Q10 values, we calculated
standardized effect sizes as the difference between the
randomized community-traits-based growth Q10 of a given
community and its observed value, divided by the standard
deviation. We then calculated p value as the number of
randomizations with modeled growth Q10 ≤ observed Q10

divided by the total number of randomizations [46]. Further,
we calculated the 10,000 randomly generated relationships
between respiration Q10 and growth Q10 and extracted the
slope, the y-intercept and the adjusted R2 of the 10,000
random relationships. We compared coefficients from the
randomized dataset with observed parameters for the null
models. The p values associated with regression coefficients
were calculated as described previously.

Statistical analyses

Temperature sensitivity (Q10) at each of three temperature
ranges (5–15 °C, 15–25 °C and 25–35 °C) was estimated as
Q10= Rtemp+ 10/Rtemp, where R is the growth or respiration
rate at the higher temperature (temp+ 10) and lower tem-
perature (temp) [22]. A microbial community-weighted
mean (CWM) growth Q10 was calculated following [47]:

CWM� Q10 ¼
Xn

i¼1
pi � Q10�i

where pi is the relative abundance of microbial species to
abundance of community, n is the number of species, and
Q10_i is the Q10 value of species i. While we acknowledge
that Q10 is an imperfect measure of temperature sensitivity,
newer approaches such as the macromolecular rate theory
require a large number of independent measurements to
produce robust model estimates [48]. Given the constraints
of our experiment, Q10 was selected because it could be
applied to individual replicates of both growth and
respiration allowing a robust statistical analysis of the
relationship between these variables. Two-way ANOVA
was applied to test for the differences in respiration, growth,
and Q10 with incubation temperature, biome, and their
interaction. The ordinary least square method was
applied for all regressions in this study. To determine
how the temperature sensitivity of growth varied among
microbial species and phylogenetic groups, we assessed
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phylogenetic clustering using Blomberg’s K and Pagel’s λ
phylogenetic signal tests [38]. The phylogenetic analysis
was conducted using the “phytools” and “phylobase”
packages in R 3.5.5 [45]. The growth Q10 of individual
taxa were categorized based on their maximum growth Q10

among 5–15, 15–25, and 25–35 °C as “cold,” “moderate,”
or “warm” responders. The phylogenetic tree was visualized
using the online tool, Interactive Tree Of Life (version 5.7,
https://itol.embl.de) [49].

Results and discussions

Q10 of soil respiration

Cumulative soil respiration increased with temperature
(Fig. 1A) and was generally higher in soil from the cold
biomes (Arctic and boreal) relative to soil from the warm

biomes (temperate and tropical) (Supplementary Table 2).
In general, the Q10 values of respiration were high at the low
temperature range (5–15 °C) and declined as temperature
increased (Fig. 1B). This trend held for all biomes, although
the differences were not significant in soil from the Arctic
(Supplementary Table 3). This negative relationship
between Q10 and temperature is consistent with numerous
empirical studies [9, 22, 50].

Q10 of microbial growth

In order to relate soil respiration to microbial activity, we
used qSIP with 18O–H2O to measure the relative growth rate
(day−1) of each individual taxon and aggregated these
values to produce relative abundance weighted, community
level measures of growth rate [20, 21]. Microbial growth
generally increased with increasing incubation temperature
for all biomes except for the temperate biome, which

Fig. 1 Soil respiration, microbial growth, and their temperature
sensitivity. Cumulative soil respiration (A) and microbial growth rate
(C) for soils from four biomes over a 5-day incubation at four tem-
peratures (5–35 °C). Soil respiration temperature sensitivity (Q10, B)

and microbial growth rate temperature sensitivity (Q10, D) were cal-
culated for each soil between incubation temperatures (mean ± stan-
dard error). Statistical analysis of the differences for each variable
among temperatures can be found in Supplementary Tables 2 and 3.
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showed a maximum growth rate at 15 °C (Fig. 1C). The
magnitude of temperature effects was dependent upon the
biome from which the soil was collected (Supplementary
Table 2). These differences likely result from biotic and
abiotic differences between these ecosystems such as var-
iation in microbial community composition (discussed
below) and SOC content, which can influence microbial
growth rate [51]. We also estimated new microbial biomass
production (μg C g−1 soil); as expected, more soil microbial
biomass was produced at high temperatures. Biomass pro-
duction was strongly correlated with soil respiration rate for
each biome (Supplementary Fig. 3) and across all biomes
(Fig. 2, R2= 0.68, p < 0.01). These results suggest that
microbial growth dynamics are responsible for changes in
soil respiration rate with temperature [12]. When comparing
across biomes, the slope of relationship between biomass
production and respiration covaried with biome MAT.
Higher slope values were observed at the sites with high
MAT (Supplementary Fig. 4), which suggests that microbes
have higher C use efficiency in the soil with low MAT
under increasing temperature. Alternatively, the accumula-
tion of SOC in the colder boreal and Arctic ecosystems may
facilitate high microbial carbon use efficiency (CUE) in
these systems, as past work has shown microbial CUE to be
positively correlated with SOC content at a regional
scale [52].

Using the same principle as for soil respiration [9, 22],
we determined the Q10 of microbial growth for individual
taxa and aggregated to determine CWM values [53, 54].
The mean Q10 of microbial growth for the whole commu-
nity (weighted by microbial relative abundance) declined
with increasing incubation temperature and varied across

biomes (Fig. 1D and Supplementary Table 3). Consistent
with our first hypothesis, community level microbial growth
Q10 correlated strongly with the Q10 of soil respiration for
each biome (Supplementary Fig. 5) and across all biomes
(Fig. 3, R2= 0.62, p < 0.01). Our findings are consistent
with vegetation-based studies, which find CWM traits to be
strong predictors of ecosystem properties aboveground
[55, 56] and demonstrate a similar approach may be applied
with microorganisms belowground. Moreover, our results
suggest the temperature dependency of microbial growth
and respiration are coupled across a wide range of biomes
with different soil properties (e.g., SOC, pH, etc.) and cli-
mates. This suggest warming-induced changes in microbial
physiological parameters, such as growth rate, may be
important factors in regulating the sensitivity of organic C
decomposition to temperature in soil [57]. Consequently,
understanding the temperature sensitivity of microbial
growth and including this information in climate change
models may better predict soil C dynamics under global
warming.

Significance of microbial community composition

Variation in the temperature sensitivity of microbial growth
across biomes could be due to differences in soil commu-
nity composition. To determine the significance of com-
munity membership for microbial growth Q10, we tested our
observed data against a null model of random community
assembly (Supplementary Fig. 2). Approximately 40% of
community-level measures of microbial growth Q10 had a
low probability of occurrence (p < 0.05) when the presence
and relative abundance of taxa were randomized
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(Supplementary Fig. 6). Similarly, the null model was
unable to reproduce the strong relationship observed
between the temperature sensitivities of microbial growth
and soil respiration (Supplementary Fig. 6). Taken together
these results suggest that presence, relative abundance, and
trait (i.e., Q10) values of individual microbial taxa drive the
community level temperature sensitivity in microbial
growth, which in turn influences the temperature sensitivity
of soil respiration. This finding highlights the importance of
considering biodiversity and taxon-specific functional traits
to understand ecosystem processes [40, 55] including those
performed by microorganisms.

Phylogeny of Q10 of microbial growth

The temperature sensitivity of growth varied among
microbial species and phylogenetic groups, exhibiting
phylogenetic clustering according to Blomberg’s K and
Pagel’s λ phylogenetic signal tests [38]. The Q10 of
microbial growth rates were non-randomly distributed in
boreal, temperate, and tropical biomes across all tempera-
ture ranges (Supplementary Table 4), with weaker (and
generally nonsignificant) phylogenetic signals in the Arctic
soil. Taken together, these patterns support our second
hypothesis and show a nonrandom phylogenetic distribution
for temperature sensitivity for microbial taxa: the growth
rates of closely related organisms exhibited similar tem-
perature sensitivities, indicating that temperature sensitivity

is evolutionarily conserved. Other microbial traits also tend
to be distributed in phylogenetic clusters, including oxy-
genic photosynthesis [23], nitrogen fixation [23], nitrogen
assimilation [58], C decomposition [38], and oxygen con-
sumption [59], all traits that govern element transformations
in nature. Such phylogenetic organization could help build a
framework for how microbial diversity underpins the
functioning of ecosystems. While our analysis focused on
the diversity and community composition of soil bacteria,
future studies should aim to encompass all soil organisms
including fungi and protozoa, which contribute soil
respiration [60] and likely influence soil C responses to
temperature.

To visualize phylogenetic patterns within and across
biomes, we grouped taxa into three categories based on the
temperature at which maximum growth Q10 was observed:
“cold” (5–15 °C), “moderate” (15–25 °C), and “warm”

(25–35 °C) responders. Then, the proportion of taxa in each
category was summarized at the class level for each biome
(Supplementary Fig. 7) and across four biomes (Fig. 4). The
observed maximum growth Q10 of microorganisms within
our soils is likely to depend upon both direct effects of
temperature on microbial physiology [10, 15] and indirect
effects, as microbes respond to temperature-induced chan-
ges in their physiochemical environment (e.g., changes in
dissolved resource availability [61]). Despite likely
temperature–environment interactions [17], the maximum
growth Q10 of growth for some taxonomic groups was

Phyla

Acidobacteria

Actinobacteria

Armatimonadetes

Bacteroidetes

Chloroflexi

Firmicutes

Gemmatimonadetes

Nitrospirae

Planctomycetes

Proteobacteria

Verrucomicrobia

other

Cold response
Moderate response
Warm response

Q10 category

Bacilli
Chloroflexi 

Planctomycetacia

OPB35

Spartobacteria

Subgroup 6

Solibacteres

Subgroup 2

Acidobacteria

SphingobacteriiaAlphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Gemmatimonadetes

Thermoleophilia

Acidimicrobiia  

Actinobacteria
Nitrospira

Arctic

Tropical

Temperate

Boreal
All biomes

A B

Arctic 

Temper. 
Tropical 

Boreal 

Deltaproteobacteria

Fig. 4 Temperature sensitivity of microbial growth in relation to
bacterial phylogeny. A Each phylotype was categorized based on its
maximum Q10 among 5–15, 15–25, and 25–35 °C as “cold,” “mod-
erate,” or “warm” responders. The pie charts represent proportion of
growth Q10 values in each response category at class level (with

exception for Chloroflexi phyla) using data from all four sites. B Total
proportion of growth Q10 response for each biome and across all
biomes. Phylogenetic statistical analysis for growth Q10 was provided
in Supplementary Table 4.
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consistent across the biomes. For instance, 67% of the taxa
in Planctomycetacia as well as most Sphingobacteriia (83%)
and Betaproteobacteria (68%) were most sensitive at lower
temperatures (5–15 °C) across biomes. Many Nitrospira
(58%) and the Subgroup 2 (36%) of Acidobacteria were
most sensitive at higher temperatures (25–35 °C). A
majority of Acidimicrobiia (55%), Spartobacteria (54%),
Deltaproteobacteria (51%), and many Thermoleophilia
(48%) were more sensitive at a moderate temperature range
(15–25 °C). Consistency in the maximum growth Q10 of
taxa within these groups in soils from distinct biomes
suggests that these temperature responses may be robust to
environmental variation. In addition, the majority of taxa
were cold responders in the Arctic (58%) and temperate
(53%) biomes, while moderate temperature responders were
most common in boreal (45%) and tropical (46%) biomes.
Therefore, these results indicate that assuming all soil
microbes exhibit identical temperature sensitivities at large
scale could result in substantial uncertainty of microbial
respiration rate [62].

Conclusions

In summary, growth and its temperature sensitivity varied
among microbial taxa within natural soil communities
across a broad range of temperatures and biomes, and the
variation was phylogenetically constrained. When taxon-
specific measures were aggregated to CWMs, the tem-
perature sensitivities of microbial growth were strongly
and positively related to total soil respiration. This rela-
tionship could not be reproduced by random community
assembly, indicating that biodiversity shapes microbial
growth aggregated at the community level, in turn reg-
ulating soil C mineralization in response to warming.
This work demonstrates how the traits of individual
microbial taxa can be aggregated to predict community
level processes such as changes in soil respiration due
to temperature. The strong relationships we observed
between microbial and biogeochemical parameters
(Figs. 2 and 3) suggest that incorporation of microbial
data, perhaps via the development of trait-based models
that consider biodiversity, may reduce model uncertainties
and allow us to better understand the future of our
warming world.

Data availability

Soil respiration, microbial biomass, and figure data are
available in the Supplementary materials. Raw sequence data
for this study are available in Sequence Read Achieve (SRA)
database of NCBI under accession numbers PRJNA649787,
PRJNA649546, PRJNA649571, and PRJNA649802.

Code availability

Code associated with qSIP calculations is publicly available
at https://bitbucket.org/QuantitativeSIP/qsip_repo.
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