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Stable representation of a naturalistic movie
emerges from episodic activity with gain variability

Ji Xia® 1%, Tyler D. Marks 2 Michael J. Goard® 2345 & Ralf Wessel®

Visual cortical responses are known to be highly variable across trials within an experimental
session. However, the long-term stability of visual cortical responses is poorly understood.
Here using chronic imaging of V1 in mice we show that neural responses to repeated natural
movie clips are unstable across weeks. Individual neuronal responses consist of sparse
episodic activity which are stable in time but unstable in gain across weeks. Further, we find
that the individual episode, instead of neuron, serves as the basic unit of the week-to-week
fluctuation. To investigate how population activity encodes the stimulus, we extract a stable
one-dimensional representation of the time in the natural movie, using an unsupervised
method. Most week-to-week fluctuation is perpendicular to the stimulus encoding direction,
thus leaving the stimulus representation largely unaffected. We propose that precise episodic
activity with coordinated gain changes are keys to maintain a stable stimulus
representation in V1.
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timulus-driven activity is highly variable across repeated

trials within a recording session!~>. Furthermore, in chronic

recordings covering multiple stimulus sessions, session-to-
session fluctuation tends to be qualitatively different from trial-
to-trial variability within sessions®=°. Even without learning, the
same neuron population responds unstably under the same
environmental and behavioral conditions across days!0-14,
However, not all the brain areas share the same instability®. For
example, neural activity from posterior parietal cortex!],
hippocampus!4, and primary olfactory cortex!® exhibit large
changes across days, while HVC (proper name) neural activity
remains stable in long-term recordings!®.

How does stimulus-driven activity in V1 change across days
under a nominally constant condition? Recently, several studies
shed light on how V1 stimulus-driven activity changes in the long
term in responses to drifting gratings!”-1°. Even though day-to-
day variations were larger than trial-to-trial variations!®, stable
tuning over weeks was found in most tuned neurons!”18. Yet few
reported on the long-term stability of neural responses to natural
movies!?20. Natural movie responses are sparser and more precise
than neural responses to artificial stimuli such as drifting
gratings?122, Moreover, responses to natural stimuli cannot be
predicted from responses to drifting gratings?>>%. Thus, the long-
term stability of neural responses to natural movies is not neces-
sarily the same as that to drifting gratings. Indeed, data from our
group showed that single neural responses to natural movies were
significantly more unstable than drifting grating responses?>.

This session-to-session fluctuation raises an important ques-
tion: Is there a stable representation of natural stimuli hidden in
the unstable neural activity in V1? Stable stimulus representation
is possible when neural fluctuations reside in a space orthogonal
to the stimulus encoding dimensions2°. Intuitively, if one neu-
ron’s session-to-session fluctuation affected the encoding of sti-
mulus, then the other neurons’ fluctuation could compensate for
its influence. Moreover, the stimulus could be encoded in a low-
dimensional subspace of the high-dimensional population
activity?-28. In that case, the random fluctuation in the high-
dimensional neural space would likely be perpendicular to the
low-dimensional subspace of stimulus encoding, often referred to
as the stimulus encoding dimension. Clarification of these pos-
sibilities requires long-term recordings in response to repeated
stimulation, identification of the stimulus encoding dimensions,
and quantification of neural fluctuation within the high-
dimensional population activity.

To address the question of stable stimulus representation in
unstable neural activity, we analyzed a dataset from longitudinal
two-photon calcium imaging of excitatory neurons in the primary
visual cortex of awake, head-fixed mice during visual stimulation
with repeated identical natural movie clips across weeks. We
found that single neural responses consisted of episodic activity
that was precise in time during the natural movie across weeks.
However, firing rates during those spiking episodes were unstable
across weeks. Moreover, within the same neuron, firing rates of
different spiking episodes varied in distinct temporal patterns
across weeks. By fitting a linear model, we found that episodic
activity was the basic unit of the week-to-week fluctuation.
Importantly, despite the unstable episodic activity, we extracted a
low-dimensional stable representation of time in the natural
movie from neuronal population activity across weeks. We pro-
pose that precise episodic activity with coordinated gain changes
are keys to maintain a stable stimulus representation in V1.

Results
Single neuron responses to natural movies are unstable across
weeks. To investigate the long-term variability of cortical

responses, we used a dataset that consisted of chronic GCaMP6s
imaging of excitatory neurons in V1 L2/3 of awake, head-fixed
mice (9 mice; 10 imaging fields) during visual stimulation with
repeated natural movies (30 trials per session; one session per
7 + 1 days; over 5-7 weeks) (Fig. 1a)?>. Single neuron responses
varied in a largely stochastic manner across trials within a
recording session (week) as described before!=3, and, importantly,
varied in a qualitatively different manner across weeks (Fig. 1b).
We quantified this response variation across weeks in terms of the
“similarity”, defined as the correlation coefficient between trial-
averaged neural responses (within a week) for a given neuron
between pairs of weeks and averaged across all neurons. Similarity
largely decreased over time using the first week of recording as
the reference (Fig. 1c). Specifically, the similarities of the fifth
week were significantly lower than the similarities of the second
week (one-sided Wilcoxon signed-rank test, p=0.0035, ten
imaging fields). In a complementary analysis, to compare how
single neuronal activity varied across weeks, we computed the
difference of trial-averaged activity across weeks (Supplementary
Fig. 1a). The change of trial-averaged AF/F across weeks was
significantly higher than baseline variability within a week
(Supplementary Fig. 1b; two-sided Mann—Whitney U test,
p =0.0029, ten imaging fields). In conclusion, consistent with an
earlier study?°, but using complementary analyses, we showed
that single neuron responses to natural movies are unstable across
weeks.

Single neuron responses consist of episodic activity with dis-
tinct episode-specific rate variations across weeks. The episodic
nature of cortical neuron responses to naturalistic visual stimuli
(Fig. 1b)21:29-31 provides the unique opportunity to study neural
variability with respect to episodic spiking. Neurons in the visual
cortex are known to respond to naturalistic movies sparsely with
temporally precise, but stochastic, spiking within a few well-timed
“spiking episodes™?1:22:32, s the change in single neuron spiking
across weeks (Fig. 1c and Supplementary Fig. 1) dominated by
changes in spike timing or by changes in spike counts? To address
this question, we inferred spiking activity>> and defined spiking
episodes (Fig. 2a; see “Methods”) based on peaks in the smoothed
peristimulus time histogram (PSTH). Note that the inferred
spiking activity might correspond to bursts of spikes instead of a
single spike due to limitations of calcium imaging®*. A neuron
usually possessed multiple spiking episodes and episodes from
different neurons overlapped (Fig. 2b). To quantify the precision
of spiking episodes across weeks, we computed the durations of
spiking episodes (Fig. 2c). The right-skewed distribution of
durations showed that most of the spiking episodes had short
durations (median duration: 0.66 +0.17 s, ten imaging fields).
Furthermore, compared with spiking episodes defined based on
PSTH within weeks, the median of durations of spiking episodes
defined based on PSTH across weeks only increased by at most 2
time steps (0.2s) for each imaging field (Fig. 2c, the median
duration of spiking episodes based on PSTH within weeks:
0.59 +0.074 s, ten imaging fields). The short durations of spiking
episodes and a small increase compared with data within weeks
indicated that episodic activity had rather precise and stable
timing across weeks. In contrast, the inferred spike rates during
those spiking episodes changed more from trial-to-trial across
weeks than that within each week (Fig. 2d). Importantly, inferred
spike rates during each episode for a given neuron varied in
different patterns from week to week (Fig. 2e). The diverse
inferred spike rate variation for different spiking episodes raised
the question whether inferred spike rates during spiking episodes
within the same neuron change independently across weeks. We
quantified the similarity between inferred spike rate variability
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Fig. 1 Single neuron responses to natural movies are unstable across weeks. a Experimental setup. We performed chronic calcium imaging of excitatory
neurons in the primary visual cortex of awake, head-fixed mice during visual stimulation with repeated natural movies. The visual cortex (contralateral to
visual stimulus delivery) is retinotopically mapped in Emx1-Cre:TITL-GCaMP6s mice. V1 fields are chosen from the region selective for the center of the
presentation screen. Widefield scale bar =1 mm; two-photon scale bar =100 pm. The average activity of four example well-tracked neurons across weeks
are shown in the bottom panel. b AF/F responses of one example neuron during the same natural movie clip for 30 trials per experimental session for
6 weeks (movie starts at 5s and lasts for 30 s duration). We recorded one experimental session per week. ¢ Similarity (correlation coefficient between
trial-averaged AF/F) averaged over neurons during week 1 and that during other weeks are plotted for all the recorded imaging fields. Different imaging
fields are denoted by different colors. The black curve with the error bar denotes the mean and standard deviation of similarity over imaging fields. Ten
imaging fields have recordings for weeks 1—5. Only a subset of imaging fields has recordings on week 6 (seven fields) and week 7 (five fields). Specifically,
the similarities of the fifth week were significantly lower than the similarities of the second week (one-sided Wilcoxon signed-rank test, p = 0.0035, ten

imaging fields).

during different spiking episodes as the mean correlation coeffi-
cient between mean inferred spike rate across weeks (Fig. 2e). For
most neurons, the similarity of inferred spike rate changing
patterns across spiking episodes was low, although significantly
higher than the chance level (Fig. 2f, one-sided Mann—Whitney
U test, p =2.45 x 10742, 1404 neurons with more than 1 spiking
episodes). This means that different spiking episodes within the
same neuron have different, but not completely independent,
inferred spike rate variations across weeks. Moreover, the simi-
larity between inferred spike rate changing patterns was sig-
nificantly lower than that expected from i.i.d. Poisson statistics
(Fig. 2f, one-sided Mann—Whitney U test, p=1.03 x 10143,
1404 neurons with more than 1 spiking episodes). Consequently,
assuming spike trains of all the trials were independent Poisson
spike trains, the inferred spike rates of distinct spiking episodes
within the same neuron followed significantly different variations
across weeks. The difference in inferred spike rate changing
patterns of spiking episodes within the same neuron suggests that
the basic unit of the week-to-week fluctuation is the spiking
episode instead of neuron.

Latent factors resembling episodic activity with gain changes
capture the across-week fluctuations. To identify the basic unit
of the week-to-week fluctuation in an unbiased fashion, we
switched from single-neuron analysis (Figs. 1, 2) to population
analysis (Fig. 3 and Supplementary Figs. 2, 3), thus including the
potential impact of coordinated activity. We decomposed popu-
lation activity into latent factors that can have independent gain
changes across trials. For this purpose, we chose the recently
introduced tensor component analysis (TCA)33>, which provides
an unsupervised way to identify latent factors of the recorded
population activity. Specifically, we organized neuronal responses

into a three-dimensional tensor (neuron x time x trials) and
decomposed this tensor into R components, each consisting of a
neuron factor, a temporal factor, and a trial factor (Fig. 3a). Thus,
TCA achieves a simultaneous, interlocked dimensionality reduc-
tion across neurons, time, and trials. For each component, (i) the
neuron factor indicates how the component is shared across
neurons, (ii) the temporal factor reflects the component’s tem-
poral profile on every trial, and (iii) the trial factor enumerates
how the component’s gain changes across trials. Within this
framework, a neuronal response can be approximated by the
reconstructed response, which is a linear combination of these
TCA components (Fig. 3b). As TCA components mainly capture
correlated activity across neurons or trials®, the reconstructed
responses from TCA components can be viewed as denoised
responses, i.e., the responses from which independent noise has
been removed.

Within this unsupervised TCA dimensionality reduction
method (Fig. 3c), the pronounced peaks in the temporal factors
(Fig. 3c, center) revealed shared episodic activity across neurons
(Fig. 2a, b). Importantly, the distribution of the temporal factors
across all 40 TCA components (Fig. 3c, center) revealed the
scattering of the episodic activity across the duration of a trial
(Fig. 2b). For a given TCA component (of the chosen R=40
components), the neurons with a high neuron factor value
(Fig. 3c, left) had episodic activity timed near the peak in the
temporal factor (Fig. 3c, center). Any given neuron tended to
display high neuron factor values in multiple components (Fig. 3c,
left), thus reflecting the occurrence of multiple activity episodes
for any one neuron (Fig. 2a). The co-activation of neurons within
a given component (ie., multiple neurons with a high neuron
factor; Fig. 3c, left) revealed the temporal overlap between
episodic activity from different neurons (Fig. 2b). Further, the
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diverse variation of the trial factor values (Fig. 3c, right) reflected
the diverse gain variability of episodic activity (Fig. 2d), even for
any given neuron (Fig. 2e, f).

In summary, the TCA dimensionality reduction confirmed in
an unsupervised manner the episodic activity of single neurons
(Fig. 2a), the temporal overlap of episodic activity from different
neurons (Fig. 2b), and the diversity of week-to-week fluctuations
of episodic activity within a given neuron (Fig. 2d-f). In
conclusion, the results from the TCA analysis (Fig. 3c) support
the hypothesis that cortical coordination resides at the level of
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episodic activity, rather than at the level of neurons, as is
commonly assumed3®.

Visual inspection of the trial factors across weeks indicated
vastly diverse dynamics across weeks for different components.
To illustrate this diversity of dynamics, we sorted the components
by their trial factors using K-means clustering, choosing 5 or 6
clusters (Fig. 3c and Supplementary Fig. 3). Within each thus
determined cluster, we further ordered the components by the
time to peak in their temporal factors. This reorganization of the
TCA analysis display revealed two important insights. First, trial
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Fig. 2 Single neuron responses consist of episodic activity with distinct episode-specific rate variations across weeks. a Top: inferred spiking activity of
the same neuron shown in Fig. 1b. Bottom: peristimulus time histogram (PSTH) (black) and smoothed PSTH (blue) of the same neuron. Shaded areas
(yellow) denote spiking episodes for this neuron. b Top: spiking episodes for all the neurons in the example imaging field. Neurons are ordered by the
latency of their spiking episodes with the highest spiking rates. Bottom: number of neurons with overlapped spiking episodes. ¢ Top: distributions of
durations of spiking episodes from all imaging fields. Different colors denote different imaging fields. Bottom: distribution of durations of spiking episodes
defined from PSTH of trials across weeks (yellow) plotted against the distribution of durations from PSTH of trials within weeks (orange). d Top: averaged
inferred spike rates over trials of all the spiking episodes in one example imaging field are plotted for different weeks and for even and odd trials in week 1.
spiking episodes are ordered by their averaged inferred spike rates during week 1. Bottom left: correlation coefficients (CC) between averaged inferred
spike rates of week pairs (dots) and even/odd trials within the week (lines) are shown for the example imaging field across weeks. Bottom right: CC within
each week averaged across weeks is plotted against CC across weeks averaged across all the week pairs (one-sided Wilcoxon signed-rank test,

p = 0.0025, ten imaging fields). Different colors denote different imaging fields. Colormap maximum value is set to 4 Hz. @ Mean inferred spike rate during
each spiking episode in the example neuron varies across weeks. f Histogram of mean CC between mean inferred spike rates during spiking episodes
within the same neuron. Different colors denote different imaging fields. The black solid line is a Gaussian curve fitted to the distribution of mean CC from
all the imaging fields (mean 0.13, s.t.d. 0.30). The black dash-dotted line is a Gaussian curve fitted to the distribution of mean CC between simulated
independent and identically distributed Poisson spike trains with the firing rates of a randomly selected spiking episode for a given neuron (mean 0.46,
s.t.d. 0.31). The black dashed line indicates the chance level, which is a Gaussian curve fitted to the distribution of mean CC between spiking episodes with

independently shuffled weeks (mean 0.0036, s.t.d. 0.23). Only neurons with more than one spiking episode were included in this analysis.

factors changed in a distinctly different manner across weeks for
different clusters of components. For instance, while the trial
factors for the first cluster of components were largely
homogeneous across weeks, the trial factors for the second
cluster largely faded away after the second week. Of functional
significance, with such vanishing trial factors, the second cluster
of components would contribute little to a stimulus representa-
tion in week 4 and beyond. We observed such diverse dynamics
of trial factors across weeks for all imaging fields studied (Fig. 3d,
e and Supplementary Fig. 3). Second, within each cluster of
components, the pronounced peaks in the temporal factors were
largely evenly distributed across the duration of the trial.
Assuming that the peaks in the temporal factors (or equivalently
the spiking episodes; see Fig. 2) contribute to cortical stimulus
representation, the even distribution of these peaks suggests that
every moment in the movie was evenly represented, however by
different groups of neurons at different weeks. In conclusion, the
diverse dynamics of trial factors across weeks for different
components indicates a fluid long-term stimulus representation
in visual cortex. Importantly, the fluid stimulus representation
was structured at the level of episodic activity rather than the
neuron.

Stable manifolds exist in unstable population activity. As
expected from the interconnected nature of cortical circuits®’, we
observed population-wide correlated neural fluctuations sum-
marized by TCA components in the previous section (Fig. 3).
Does a stable representation emerge from unstable population
responses? To answer this question, we searched for a stable
neural manifold using dimensionality reduction.

We mapped the high-dimensional denoised neuronal popula-
tion responses (reconstructed responses; Fig. 3b) of episodic
activity onto a low-dimensional space (manifold) and investigated
the stability of the activity on this manifold (Fig. 4). For N
recorded neurons, the denoised instantaneous population
response AF/F is a point in an N-dimensional state space. In an
attempt to preserve the manifold topology of neuronal population
responses (Fig. 2a, b), we chose a mapping such that nearby
points in the high-dimensional state space would also be adjacent
in the resulting low-dimensional space. Since the structure of the
presumed intrinsic manifold was not known a priori, we adopted
the unsupervised algorithmic approach, Isomap, for the mapping
(see “Methods”; ref. 38).

For visualization purposes, we plotted the mapped population
responses in the first 3 Isomap dimensions (i.e., three eigenvectors
with the largest eigenvalues of the geodesic distance matrix;

Fig. 4a). Each dot is a nonlinear projection of the instantaneous
population activity into this three-dimensional space. Interest-
ingly, most of the dots resided on a ring-shaped low-dimensional
manifold, forming well-aligned trajectories of neural activity
across trials (Fig. 4a and Supplementary Fig. 4a). Note that the
ring structure of the manifold arose from the looped trial structure
of the visual stimulus. If the stimulus were repeated but not looped
in time, i.e., interleaved with different stimuli between trials, we
would expect to see a line structure for the manifold.

To quantify the stability of these trajectories across trials, we
projected all trajectories against a given Isomap dimension and
compared projected trajectories across all trials (Fig. 4b). From
the visual inspection of the projected trajectories in the first three
Isomap dimensions, we obtained a sense of the stability of these
trajectories across trials and sessions. For further quantification,
we used the average correlation coefficient of these projected
trajectories from all pairs of projected trajectories as a measure of
stability across trials (Fig. 4c). Stability was high for the first few
Isomap dimensions but beyond those decreased with increasing
Isomap dimension.

In conclusion, this unsupervised analysis showed that stable
low-dimensional latent variables exist in population activity
consisting of unstable single neuronal responses (Fig. 1) that are
sparse and temporally structured into episodic activity (Figs. 2, 3).
This finding is likely to be of functional significance. Even though
the high-dimensional population vector contains considerable
variability, there exists a stable low-dimensional subspace for
potentially stable representation of visual stimuli. The discovery of
a stable manifold set the stage for stable stimulus representation.

The manifold mediates a stable representation of the time
within the movie clip. To extract the stimulus representation
potentially encoded in the stable neural manifold, we applied
spline parameterization for unsupervised decoding (SPUD)> to
population activity embedded in the first few Isomap dimensions.
Here we only showed results for the first two Isomap dimensions
for visualization, but the following results also hold for up to the
first five dimensions (Supplementary Fig. 5a). The decoding pro-
cess consisted of the following steps (Fig. 5a). First, we randomly
split the two-dimensional neural manifold into a training set
(80%) and a test set (20%). Second, we fit a one-dimensional
spline to the training set, and then assigned coordinates to the
fitted spline. Third, we assigned each dot in the test set a value
according to the coordinate of its nearest point on the spline. Last,
we circularly shifted or flipped the coordinates on the spline such
that we achieved the best decoding performance (circular least
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mean squared error) for time in the movie of the test set. We did
this because when we assigned coordinates to the spline, the origin
and direction of the coordinates were arbitrarily determined. To
match the assigned coordinates with the actual time, we need to
determine the origin and direction of coordinates using the test
set. The decoded time o closely traced the actual time ¢ in the
movie for population activity across weeks (Fig. 5b). We sum-
marized the decoding error (circular absolute difference between ¢
and «) from all the recorded imaging fields (Fig. 5¢). As a com-
parison, the decoding error of SPUD was significantly lower than
the decoding error from that of linear decoders (Supplementary
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Fig. 5b). In general, the decoding performance improved with an
increasing number of recorded neurons in the imaging field
(Fig. 5¢). To further investigate the stability of neural repre-
sentation of time in the trial, we also trained SPUD on neural data
from odd trials in week 1 and tested its performance on neural
data from even trials in week 1 and trials from other weeks. The
decoding errors pooled from later weeks were not significantly
different from the decoding errors for week 1 across imaging fields
(p=0.11, two-sided Mann—Whitney U test; Supplementary
Fig. 5¢, d). This additional analysis showed that week-to-week
variability does not affect the coding of time in the movie.
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Fig. 3 Latent factors resembling episodic activity with gain changes capture the across-week fluctuations. a Schematic of tensor component analysis
(TCA). Neural activity (AF/F) is organized into a third-order tensor with dimensions N x T x K. TCA approximates the data as a sum of outer products of
three vectors from R components: neuron factors describe the weights of each neuron to that component, temporal factors describe the temporal dynamics
of each component, and trial factors describe the modulation of the component across trials. b Normalized AF/F responses and reconstructed AF/F from
40 TCA components of two example neurons from the example imaging field. Reliability was defined as averaged correlation-coefficient between pairs of
single-trial responses3. ¢ Neuron, temporal, and trial factors of nonnegative TCA with 40 components for the example imaging field. Colormap maximum
values are set to 2 for neuron factors and trial factors. We ordered components according to the K-means clustering on their trial factors. Within each thus
determined cluster, we further ordered the components by the time to peak in their temporal factors. We ordered neurons in the neuron factors by their
dominant components. d Correlation coefficient (CC) between trial factors shown in (). e CC between trial factors averaged across trial pairs within week
plotted against CC between trial factors averaged across trial pairs across weeks. Different colors denote different imaging fields. The week-to-week
variability of trial factors was significantly larger than the corresponding trial-to-trial variability within each week (for avg CC, one-sided Wilcoxon signed-
rank test, p=0.0025, ten imaging fields).
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Fig. 4 Stable manifolds exist in unstable population activity. a Three-dimensional neural trajectories extracted from reconstructed (denoised) AF/F

populational activity across weeks from the example imaging field using Isomap. Each dot represents instantaneous population activity. The color of the dot
indicates the corresponding time in the trial. b Upper panels: neural trajectories along the first three Isomap dimensions were plotted separately. Lower
panels: the same data as shown in the upper panels were displayed as heatmaps to show the trial-to-trial variability clearly. ¢ Correlation coefficients (CC)
between transformed reconstructed AF/F (neural trajectories) across trials along each Isomap dimension are plotted for all ten imaging fields. Different

colors denote different imaging fields.

One of the key reasons for the high decoding performance of
population activity as analyzed by SPUD resides in the isometric
representation®. Time in the movie was evenly represented along
the fitted spline direction. In other words, equal amounts of
population activity variations along the spline direction con-
tributed to equal amounts of change across time in the trial. This
isometric representation was related to the evenly distributed
episodic activity across time in the trial, as shown by TCA
components (Fig. 3¢c). If we removed episodic activity during a
certain time window in the trial from the population activity, then
the corresponding section in the manifold ring would collapse
into the hyperplane perpendicular to the spline direction
(Supplementary Fig 6).

Due to the high trial-to-trial variability in population activity,
the ring-shaped neural manifold had many outlier dots. The
outlier dots in the center of the ring corresponded to low
amplitude of population activity, while outlier dots on the outside
of the ring corresponded to high amplitude of population activity
(Supplementary Fig. 4b). The decoder failed at a few outlier dots.
However, most of the neural variability seemed to be perpendi-
cular to the direction of the fitted spline, thus, harmless to
decoding. This observation gave us a hint about the mechanism
that maintains stable neural correlates in the face of dynamical
population activity.

Both week-to-week fluctuation and trial-to-trial variation
within the week is restricted to non-coding directions. In order
to quantify to what extent neural variability influences the

stimulus coding, we calculated the variance of instantaneous
population activity on the manifold along the direction parallel or
perpendicular to the fitted spline. Specifically, we computed the
parallel and perpendicular component of the instantaneous
population activity variance employing the following steps. First,
we reconstructed AF/F population activity based on 40 TCA
components (Fig. 6a). Second, we used Isomap to project the
population activity of all trials into a two-dimensional space.
Third, as illustrated in Fig. 5, we separated the projected
instantaneous population activity into a training set and a test set.
Fourth, we calculated the fitted spline to the training set. Fifth, we
computed the coordinates on the spline, based on the test set data
(Fig. 6b, left panel). Sixth, for each time point in the movie, we
calculated the variance of instantaneous population activity in the
test set along the direction parallel or perpendicular to the spline
(Fig. 6b, right panel). Finally, we summarized the variance for all
the time points in the movie (Fig. 6¢). The variance of population
activity along the spline direction was significantly smaller than
that perpendicular to the spline direction. This observation held
for eight out of ten imaging fields (Fig. 6d). In this computational
framework, the spline direction signifies the stimulus coding
direction. In conclusion, the comparatively small contribution of
neural variability to stimulus encoding direction directly explains
why the high neural variability we observed in spiking episodes
(Fig. 2) did not harm the decoding performance of SPUD (Fig. 5).

The neural variability we measured here consisted of two
portions: week-to-week fluctuations and trial-to-trial variability
within each week. Are they both restricted to the non-coding

NATURE COMMUNICATIONS | (2021)12:5170 | https://doi.org/10.1038/s41467-021-25437-2 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25437-2

a Training set

2-dim manifold

Test set

w
o

Decoding error (sec)

0

Decoded time a (sec)

o o
Sy
o

n=49 n=63
Actual time t (sec)

Assign coordinates
to fitted spline

n=84 n=88

Spline fitted to training set

2

35

—
0 5

Time (sec)

Actual time t

Assign decoded time a
to each point

lch;

n=140  n=150
Imaging fields

n=166 n=185 n=293 n=353

Fig. 5 The manifold mediates a stable representation of the time within the movie clip. a lllustration of the unsupervised method with data from the
example imaging field (n =140): first, we projected reconstructed DF/F responses into the first two Isomap dimensions, each dot denotes instantaneous
population activity; second, we randomly pick 80% of the instantaneous population activity as training set and rest of them as test set; third, we fitted a
spline to the neural manifold of the training set and assigned coordinates with randomly picked origin to the fitted spline; finally, we shifted and flipped the
coordinates on the fitted spline to match with the actual time and assigned decoded time to each point in the test set by its nearest coordinate on the
spline. b Decoded time from the neural manifold plotted against actual time in the movie for the example imaging field (n =140, 12,600 timepoints). ¢
Violin plots showed decoding error (absolute circular difference between decoded time and actual time) for all the imaging fields (14,700 timepoints for
imaging field n =63, 84, 185, 293, and 353; 12,600 timepoints for imaging field n =140, 166; 10,500 timepoints for imaging field n =49, 88, and 150).
Inner boxplots show median: center white point; interquartile range: box; and data range (maximum 1.5 interquartile range): whiskers. Imaging fields were

ordered by the number of recorded neurons.

direction? To answer this question, we quantified week-to-week
variability and trial-to-trial variability within each week sepa-
rately. For week-to-week fluctuations, first, we calculated the trial-
averaged projected population activity in the two-dimensional
space for each week (Fig. 6e). Second, we calculated the variance
of those trial-averaged instantaneous population activity across
weeks along the direction parallel or perpendicular to the spline.
Finally, we summarized the variance for all the time points in the
movie (Fig. 6f, left panel). The significantly larger week-to-week
variance along the direction perpendicular to the spline compared
with that of parallel direction suggested that the week-to-week
fluctuation was also constrained to the non-coding direction. For
trial-to-trial variability within each week, first, we calculated the
variance of single-trial population activity for each week
separately. Second, we summarized the variance for all the weeks
and all the time points in the movie (Fig. 6f, right panel). The
trial-to-trial variability within each week was larger along the
direction perpendicular to the spline compared with that of
parallel direction. Furthermore, the same observation held for
most imaging fields (Fig. 6g). In conclusion, both week-to-week
fluctuations and trial-to-trial variability within each week were
restricted to the non-coding direction.

The precisely timed episodic activity constrains neural varia-
bility to non-coding directions. How is neural variability largely
constrained to the direction perpendicular to stimulus coding
direction? Is it caused by the reproducible timing of episodic

activity, by the coordination between different episodes, or by the
combination thereof? To answer these questions, we applied the
previous analyses to shuffled reconstructed AF/F population
activity.

First, we checked whether the neural manifold was an artifact
of the method by applying Isomap to shuffled data. To remove
both the reproducible timing of episodic activity and the
coordination of episodic activity across neurons in the shuffled
data, we circularly time-shifted reconstructed AF/F responses by a
random amount for every trial of each neuron independently
(Fig. 7a). In other words, only the temporal statistics of AF/F
responses were kept. As expected, neural trajectories from
different trials were not aligned (Fig. 7b). However, trajectories
were continuous instead of being a noisy point cloud. Such
continuous trajectories arise from the smooth nature of shuffled
reconstructed AF/F responses. This sanity check showed that the
ring structure of the neural manifold (Fig. 6b) arose from the
timing and coordination of the population activity and was not an
artifact of the method.

Second, we checked whether the reproducible timing of
episodic activity was sufficient to constrain the neural variability
by applying Isomap to shuffled data with preserved trial structure.
To merely remove the coordination between different episodes,
but to maintain the amplitude of the covariance of neural activity,
we chose to shuffle TCA factors instead of shuffling reconstructed
population activity. In contrast, shuffling reconstructed popula-
tion activity would decrease the covariance between neural
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Fig. 6 Both week-to-week fluctuation and trial-to-trial variation within the week is restricted to non-coding directions. a TCA components of one
imaging field (n =166). We ordered components by the time to peak in their temporal factors. We ordered neurons in the neuron factors by their dominant
components. Colormap maximum values are set to 2 for all the factors. b Left: two-dimensional neural manifold extracted from reconstructed (denoised)
AF/F population activity (n =166) across weeks using Isomap. Each dot represents instantaneous population activity in the test set. The color of the dot
(same colormap as Fig. 4a) indicates the corresponding time in the trial. The black line is the fitted spline to the training set. Right: zoom-in view on the
neural manifold. Instantaneous population activity corresponding to 28 s in the trial was highlighted with black shade. The Blue arrow denotes the direction
perpendicular to the spline, and the red arrow denotes the direction parallel to the spline. ¢ Histogram of the variance of population activity parallel or
perpendicular to the spline for the imaging field shown in (a, b). d Median variance of population activity parallel to the spline plotted against median
variance of population activity perpendicular to the spline for all the imaging fields. The variance of population activity parallel to the spline was significantly
smaller than the variance perpendicular to the spline for most imaging fields (one-sided Wilcoxon signed-rank test, 350 timepoints, p-values for different
imaging fields are 3.93 x10-31 (n=63), 2.61x 10755 (n = 84), 1.78 x10~40 (n =140), 2.61x 10758 (n=150), 2.91x10-5% (n =166), 7.37 x 1057
(n=185), 2.06 x 10759 (n = 293), 3.03 x 10~31 (n = 353)), except for two imaging fields (p = 1.0 (gray, n = 49) and p = 0.997 (brown, n = 88)). The two
outliers are from two imaging fields whose neural manifold didn't have a clear ring shape (Supplementary Fig. 5a). e The same zoom-in view on the neural
manifold as shown in (b) (right). Each triangle represents instantaneous population activity within a week. The color of the triangle denotes different
weeks. Each cross represents the trial-averaged instantaneous population activity within a week. The color of the cross also denotes different weeks. f Left:
histogram of the variance of trial-averaged population activity within a week parallel or perpendicular to the spline for the imaging field. Right: histogram of
the variance of single-trial population activity within a week parallel or perpendicular to the spline for the imaging field. g Median variance of trial-averaged
population activity or single-trial population within a week parallel to the spline plotted against median variance of population activity perpendicular to the
spline for all the imaging fields. Y-axis is clipped at 9 for visualization. The variance of population activity parallel to the spline was significantly smaller than
the variance perpendicular to the spline for both across weeks and within a week cases for most imaging fields (across weeks: one-sided Wilcoxon signed-
rank test, 350 timepoints, p-values for different imaging fields are 1.45 x 10=27 (n = 63), 1.41x 1039 (n = 84), 1.55 x 1033 (n =140), 513 x 1057
(n=150), 8.50 X108 (n=166), 1.29 x 1054 (n=185), 1.26 x 10757 (n = 293), 1.25 x10~2% (n = 353), two outliers p=1.0 (gray, n=49), p=0.99
(brown, n=88); within a week: one-sided Wilcoxon signed-rank test, number of samples =350 timepoints x number of weeks, p-values for different
imaging fields are 7.36 x10~%7 (n=63), 1.04 x10-21° (n=84), 1.53 x 10177 (n=140), 6.13x10~171 (n=150), 6.23 x10~273 (n =166), 0.0 (n=185),
0.0 (n=293), 2.99 x 10120 (n = 353), two outliers p=1.0 (gray, n=49), p=1.0 (brown, n = 88)).

activity across neurons, in addition to removing the coordination
between episodic activity. For each TCA component, we
randomly shuffled the neuron order in the neuron factor, and
we circularly shifted the temporal factor and the trial factor by a
random amount (Fig. 7c). Thus, by shuffling the factors for each

component independently, we removed all the significant
coordination between episodic activity. As expected, the removal
of coordination between episodic activity resulted in a new
manifold and a new spline (Fig. 7d). However, the variability of
reconstructed population activity (based on shuffled TCA factors)

| (2021)12:5170 | https://doi.org/10.1038/s41467-021-25437-2 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25437-2

Shuffled data

a
Recon AF/F Shuffled recon AF/F b

Trial
o (2] w
o o o

n
(=]

|
|

o
S

I
[

®
S

o (L

o
o
w
a
o

Time (sec)

Time (sec)

10

1st Isomap dim 102nd Isomap dim

Amplitude

Trial

--10

0 35
Time (sec) Time (sec)

Shuffled data with preserved trial structure

c Neuron factor
.

Component

-0 40
0 5
Neuron
For each w
component: Random shuffled
d
g

%;444

Temporal factor

Time (sec)

g ———

Circularly shifted by a random amount

144449

n=140

Trial factor

Trial

Circularly shifted by a random amount

e fos
All trials (shuffled comp) "H"

[0}
2 0.20 1 parallel to spline © 20
8 ’ perpendicular to spline @©
(5] s 15
© 0.15 <>D
2 s
= 0.10 c 10
? 5
[
o [0}
o 0.05 S 5
& i, Z.

0.00

0 5 10 15 20 25 0 I 1

Variance Shuffled comp

originallcomp
shuffled comp

n=150 n=166 n=185 n=293 n=353

Imaging fields

continued to be largely constrained to the direction perpendicular
to the spline (Fig. 7d). The smaller variability of population
activity parallel to the spline is visible in the separation of dots of
different colors, where color indicates the time in the trial of the
instantaneous population activity (Fig. 7d). Indeed, the quanti-
fication of variance showed that the amplitude of neural
variability along the spline was significantly smaller than that
perpendicular to the spline (Fig. 7e). Moreover, the significant
difference between variance along the direction parallel and
perpendicular to the spline held for shuffled data with preserved
trial structure from all the imaging fields (Fig. 7f). In conclusion,
the fact that episodic activity is precise in time across trials

(Fig. 2c) alone is sufficient for constraining neural variability to
the direction perpendicular to the stimulus encoding direction. In
contrast, the coordination among episodic activity plays no role
in this constraint.

However, coordination between episodic activity is essential for
uniquely representing time points in the trial. The neural
manifold of shuffled data with preserved trial structure had a
collapsed ring structure (Fig. 7d and Supplementary Fig. 7a) in
contrast to the clear ring structure from original data (Figs. 5a, 6b).
The collapsed ring structure would lead to ambiguous decoding
due to the overlap between instantaneous population activity
from different time points in the trial (Supplementary Fig. 7b).
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Fig. 7 The precisely timed episodic activity constrains neural variability to non-coding directions. a Reconstructed AF/F responses and shuffled
reconstructed AF/F responses of two example neurons from the imaging field (n =166). The single neuron response was circularly shifted by a random
amount independently for each trial for shuffling. b Left: two-dimensional neural manifold extracted from shuffled reconstructed AF/F population activity
(example single neuronal shuffled responses shown in (a)). The same colormap was used as in Fig. 6b, left panel. Right: neural trajectories along the first
two Isomap dimensions (the same as shown in the left panel) organized in trial by time matrices. Here we set the number of nearest neighbors of ISOMAP
to be 100 (see “Methods"). ¢ TCA components of the imaging field (n = 166) with shuffled factors. For each component, we independently shuffled neuron
order in the neuron factor, circularly shifted the time factor and the trial factor by a random amount. Components with shuffled factors were ordered again
in the same fashion as Fig.6a. d Two-dimensional neural manifold extracted from reconstructed (denoised) AF/F population activity (n =166) from
components with shuffled factors using Isomap. Each dot represents instantaneous population activity in the test set. The black line is the fitted spline to
the training set. Instantaneous population activity corresponding to 16 s in the trial was highlighted with black shade. e Histogram of the variance of neural
variability parallel or perpendicular to the spline for reconstructed (denoised) AF/F populational activity (n =166) from components with shuffled factors
(i.e., shuffled data with preserved trial structure). f Median variance of neural variability parallel to the spline plotted against median variance of neural
variability perpendicular to the spline for all the imaging fields for reconstructed activity from components with shuffled factors. The variance of population
activity parallel to the spline was significantly smaller than the variance perpendicular to the spline (one-sided Wilcoxon signed-rank test, 350 timepoints,
p-values for different imaging fields are 1.34 x 1014 (n = = 49), 6.65 x 10=58 (n=63), 2.24 x10~43 (n=84), 4.93 x 1025 (n=88), 3.76 x 10—24
(n=140), 2.05x10733 (n=150), 5.16 x 1036 (n =166), 9.39 x 1040 (1 =185), 7.87 x 10~46 (n = 293), 1.86 x 10~ 13 (n = 353)). g Radius (distance to
the center of the point cloud) distribution of points on the neural manifold from original TCA components plotted against radius distribution from TCA
components with shuffled factors for all the imaging fields. Except for one imaging field (n = 49), the radius of points on the neural manifold from original
TCA components was significantly larger than the radius from TCA components with shuffled factors (one-sided Mann—Whitney U test, 73,500
timepoints for imaging field n = 63, 84, 185, 293, and 353; 63,000 timepoints for imaging field n =140, 166; 52,500 timepoints for imaging field n = 49,

88, and 150, p-values for different imaging fields are 1.0 (n= 49, outlier), 6.68 x 10113 (n=63), 0.0 (n=84), 1.06 x 10~> (n=88), 2.40 x10—248

(n=140), 0.0 (n=150, n=166, n =185, n =293, n=353)).

We quantified the shape of the neural manifold for original and
shuffled data with preserved trial structure by calculating the
distance from each dot representing instantaneous population
activity to the center of the manifold (see “Methods”). For nine
out of ten imaging fields, the neural manifold of shuffled data
with preserved trial structure had a more collapsed ring structure
than the manifold of original data, as shown by a significantly
smaller radius (Fig. 7g). The collapsed ring structure of shuffled
data showed that stable representation of the time in the natural
movie requires not only that some neurons display reliable
responses over sessions (shuffled data also have neurons with
reliable responses), but also coordination between episodic
activity.

In summary, both the nature of the precise episodic activity
and the coordination between different activity episodes con-
tributes to encode time in the natural movie. However, episodic
activity reproducible in time alone is sufficient for restricting
neural variability to non-coding directions.

Discussion

We showed that single neuronal responses to the natural movie in
V1 consisted of episodic activity with variability in gain across
weeks. Importantly, we found a stable low-dimensional subspace
inside the highly variable high-dimensional neural space. Time in
the movie was represented on a one-dimensional ring manifold
isometrically, where equivalent changes on the ring indicated
equivalent changes in time. Moreover, we found that the limited
influence of neural variability and week-to-week fluctuations on
the stable representation of the natural movie was mediated by
the fact that most of the neural variability was constrained in the
non-coding direction, augmenting the previous literature on
population coding and neural variability!>40-42. Furthermore, we
found that stable episodic activity was sufficient for restricting
neural variability to non-coding directions independent of coor-
dination between episodic activity.

To study the neural representation in V1, it is common prac-
tice in the field to measure tuning curves (trial-averaged single-
neuron activity) with respect to external variables*3-4°> or decode
external variables from neural activity with supervised methods,
such as linear decoders!’4%47. In contrast, recent work intro-
duced unsupervised methods in revealing the internal

representation using neural data alone without reference to
external variables®?#8, Here, we identified an internal repre-
sentation of time in the natural movie by parameterizing the
neural manifold, without using any external information or prior
assumptions.

There are several advantages in the dissociation of internal and
external variables. First, such dissociation avoids the biases
introduced by the chosen external variables. One caveat of
interpreting the neural activity through the lens of the chosen
external variable is that the encoded variable might be different
but correlated with the chosen external variable. Thus, non-trivial
tuning curves or supervised decoding results do not necessarily
reveal the actual neural representation. Second, dissociation of
internal and external variables permits discovering representation
of cognitive variables. It is possible that the internal variable
represents the animal’s inference about an external variable. For
example, as hypothesized by the sampling-based neural variability
theory4>°0, neural variability in V1 might represent the percep-
tual uncertainty of certain visual features. In the future, it will be
interesting to investigate whether the thickness of the ring
manifold (Fig. 6) reflects the animal’s perceptual uncertainty of
certain scenes in the movie.

Even though population activity may never visit the same state
in the high dimensional space, there exists a stable readout
direction as indicated by the fitted spline (Fig. 5). The liquid state
machine (LSM)°!, a computational paradigm for recurrent neural
networks, describes a similar situation. Instead of viewing neural
networks as “feature detectors”, LSM views the network as liquid,
continuously receiving external perturbations. Although the
liquid neural trajectory keeps changing across time, we can get a
stable readout by training a linear readout unit. Note that our
work is different from LSM in the readout method, as we
obtained stable readout in an unsupervised manner. LSM suggests
that trial-to-trial variability reflects an accumulation of informa-
tion instead of noise, as recurrent network activity implicitly
contains the previous external perturbations. This recurrent-
network perspective can be instructive for our future work. In our
work, we found that trial-to-trial variability is mostly constrained
in the direction perpendicular to the spline direction (Fig. 6).
However, we did not interpret the latent variables encoded in
other directions except for the spline direction. Moreover, recent
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works suggest that V1 encodes various behavior and state vari-
ables besides visual-related variables®>°3. A new experimental
design with behavior or state recordings might provide a more
complete picture of internal representation in V1.

The low-dimensional internal representation offered us a better
reference point to understand neural dynamics than the high-
dimensional population activity®®. As a promising future direc-
tion, it would be informative to study neural dynamics on or off
the manifold with perturbations®. One way of perturbation is to
modulate the visual stimulus®®>’. For example, on some of the
trials, we propose to overlay flash dots with some frames in the
natural movie®® and observe whether the neural trajectories first
deviate from the ring manifold and then flow back. Another way
of perturbation is to directly control neural activity with
optogenetics®*-l. As suggested by the TCA analysis, episodic
activity shared across neurons was the building block for the ring
manifold (Fig. 3). It will be interesting to see how the optogen-
etically mediated changes of spiking timing or amplitude of epi-
sodic activity impact population dynamics on or off the manifold.

Previous studies’>0%03 suggest behavioral variables such as
locomotion and arousal could lead to gain modulations in single
neural activity. However, the reported modulations by behavioral
variables were homogeneous across neurons®® and whether
changes in behavioral variables would contribute to the hetero-
geneous gain modulations across episodic activity within the
same neuron (Fig. 2e, f) is not clear. Furthermore, although we
checked the limited impact of eye movement and pupil size on
the stability of neuronal responses in an earlier work?>, how
behavioral variables would affect the neural trajectories remains
to be explored in the future.

At the neural circuit level, there are several possible mechan-
isms that could lead to the observed drift. First, the turnover of
boutons and dendritic spines in V1 at the baseline condition®¢>
would cause changes in the recurrent inputs to single neurons.
Second, potential changes in the feedforward connectivity from
LGN to V1 or drift in LGN responses would cause drift in the
feedforward inputs to single neurons. Third, slowly varying top-
down inputs related to visual information processing could
contribute to the drift as well. Model investigations and simul-
taneous chronic recordings from LGN or high-order visual areas
would be helpful for distinguishing contributions from these
potential mechanisms in the future.

Methods

Animals. For imaging visual cortical responses, a Emx1-Cre (Jax Stock #005628) x
ROSA-LNL-tTA (Jax Stock #011008) x TITL-GCaMP6s (Jax Stock #024104) triple
transgenic mouse line (n =9) was bred to express GCaMP6s in cortical excitatory
neurons®. Mice ranging in age from 6 to 20 weeks of both sexes (four males and
five females) were implanted with a head plate and cranial window and imaged
starting >2 weeks after recovery from surgical procedures and up to 10 months
after window implantation. The animals were housed on a 12 h light/dark cycle in
cages of up to five animals before the implants, and individually after the implants.
All animal procedures were approved by the Institutional Animal Care and Use
Committee at the University of California, Santa Barbara.

Surgical procedures. All surgeries were conducted under isoflurane anesthesia
(3.5% induction, 1.5—2.5% maintenance). Prior to incision, the scalp was infiltrated
with lidocaine (5 mg/kg, subcutaneous) for analgesia and meloxicam (1-2 mg/kg,
subcutaneous) was administered preoperatively to reduce inflammation. Once
anesthetized, the scalp overlying the dorsal skull was sanitized and removed. The
periosteum was removed with a scalpel and the skull was abraded with a drill burr
to improve the adhesion of dental acrylic. A 4 mm craniotomy was made over the
visual cortex (centered at 4.0 mm posterior, 2.5 mm lateral to Bregma), leaving the
dura intact. A cranial window was implanted over the craniotomy and sealed first
with silicon elastomer (Kwik-Sil, World Precision Instruments) then with dental
acrylic (C&B-Metabond, Parkell) mixed with black ink to reduce light transmis-
sion. The cranial windows were made of two rounded pieces of coverglass (Warner
Instruments) bonded with a UV-cured optical adhesive (Norland, NOA61). The
bottom coverglass (4 mm) fit tightly inside the craniotomy while the top coverglass
(5mm) was bonded to the skull using dental acrylic. A custom-designed stainless

steel head plate (eMachineShop.com) was then affixed using dental acrylic. After
surgery, mice were administered carprofen (5-10 mg/kg, oral) every 24 h for 3 days
to reduce inflammation. The full specifications and designs for head fixation
hardware can be found on the Goard lab website (https://goard.mcdb.ucsb.edu/
resources).

Note that we performed glass prism implant surgeries on two of the mice?® to
record from L2-5 neurons in V1. In this work, we only performed analysis on L2/3
neurons.

Two-photon imaging. After >2 weeks’ recovery from surgery, GCaMP6s fluores-
cence was imaged using a Prairie Investigator two-photon microscopy system with
a resonant galvo scanning module (Bruker). Prior to two-photon imaging, epi-
fluorescence imaging was used to identify the visual area being imaged by aligning
to areal maps measured with widefield imaging. For fluorescence excitation, we
used a Ti:Sapphire laser (Mai-Tai eHP, Newport) with dispersion compensation
(Deep Sea, Newport) tuned to A =920 nm. For collection, we used GaAsP pho-
tomultiplier tubes (Hamamatsu). We used a 16x/0.8 NA microscope objective
(Nikon) at 1x or 2x magnification, obtaining a square field of view with a width
ranging from 414 to 828 um. Laser power ranged from 40 to 75 mW at the sample
depending on GCaMP6s expression levels. Photobleaching was minimal (<1%/
min) for all laser powers used. A custom stainless-steel light blocker (https://
goard.mcdb.ucsb.edu/resources) was mounted to the head plate and interlocked
with a tube around the objective to prevent light from the visual stimulus monitor
from reaching the PMTs. During imaging experiments, the polypropylene tube
supporting the mouse was suspended from the behavior platform with high tension
springs to reduce movement artifacts.

For imaging across multiple weeks, imaging fields on a given recording session
were manually aligned based on visual inspection of the average map from the
reference session recording, guided by stable structural landmarks such as blood
vessels and neurons with high baseline fluorescence. Physical controls were used to
ensure precise placement of the head plate and the visual stimulus screen relative to
the animal, and data acquisition settings were kept consistent across sessions.
Recordings were taken once every 7 + 1 days for 5-7 weeks. To acclimate to head
fixation and visual stimulus presentation, mice were head-fixed and presented the
full series of visual stimuli for 1 to 2 full sessions prior to the start of their
experimental run.

Two-photon post-processing. Images were acquired using PrairieView acquisi-
tion software and converted into TIF files. All subsequent analyses were performed
in MATLAB (Mathworks) using custom code (https://goard.mcdb.ucsb.edu/
resources). First, images were corrected for X-Y movement within each session by
registration to a reference image (the pixel-wise mean of all frames) using two-
dimensional cross-correlation. Next, to align recordings to the reference session, we
used a semi-automated method similar to prior work®”:%8. First, anchor points were
automatically generated from matching image features between average projections
detected by the ‘Speeded-Up Robust Features’ (SURF) algorithm (Computer Vision
Toolbox, Mathworks), and were manually corrected and added through visual
inspection when necessary. These anchor points defined a predicted displacement
vector field that would be used to map coordinates from one session to the other.
For each coordinate, the predicted vector was defined by the average (weighted
inversely by distance) of the vectors for all defined anchor points. This vector field
was then applied to every frame of the recording to warp the coordinates of each
image to the reference coordinate plane.

To identify responsive neural somata, a pixel-wise activity map was calculated
using a modified kurtosis measure. Neuron cell bodies were identified using local
adaptive threshold and iterative segmentation. Automatically defined ROIs were
then manually checked for proper segmentation in a graphical user interface
(allowing comparison to raw fluorescence and activity map images). To ensure that
the response of individual neurons was not due to local neuropil contamination of
somatic signals, a corrected fluorescence measure was estimated according to:

Fcorrecled(n) = Fsoma(n) - “(Fneuropil(n) - Fneumpil) (1)

where Feuropil Was defined as the fluorescence in the region <30 um from the ROI
border (excluding other ROIs) for frame 7 (see Supplementary Fig. 8 for example
neuropil signal traces). Pncumpﬂ is Fyeuropil averaged over frames. & was chosen from
[0, 1] to minimize the Pearson’s correlation coefficient between Feyprected and
Freuropil- Empirically, « is typically close to 1 and does not change significantly
across weeks. The AF/F for each neuron was then calculated as:

AFJF = (F, — Fy)/F, @

Where F,, is the corrected fluorescence (F.orrected) for frame n and F is defined as
the mode of the corrected fluorescence density distribution across the entire time
series.

To minimize potential artifacts introduced by misalignments of the imaging
field across sessions, we manually inspected the average projection and pixel-wise
activity maps underlying every defined ROI across all sessions. We assigned each
ROI a quality rating based on its appearance and included only ROISs of sufficient
quality in our analyses. Briefly, we defined ROI quality as follows: ROIs rated a
quality of 4 or 5 were cells that were clearly present across sessions, and the cell
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structure could be clearly resolved in both the average projection and activity map.
ROIs rated a quality of 3 were also cells unambiguously tracked across sessions but
had average maps that were often noisier than cells rated 4 or 5 (for example, they
may be identifiable solely by their appearance on the activity map). ROIs rated a
quality of 2 were either cells that were not well-tracked or were not unequivocally
neuronal somata. ROIs rated a quality of 1 were cells that were not present on the
reference session. Each ROI was also marked as either present or not present on
each session. For our analysis, we only included ROIs which were presented on all
the sessions and with a quality larger than 3.

Visual stimuli. All visual stimuli were generated with a Windows PC using
MATLAB and the Psychophysics toolbox®®. Stimuli used for two-photon imaging
were presented on an LCD monitor (17.5 x 13 cm, 800 x 600 pixels, 60 Hz refresh
rate) positioned 5cm from the eye at a horizontal tilt of 30° to the right of the
midline and vertical tilt of 18° downward, spanning 120° (azimuth) by 100° (ele-
vation) of visual space in the right eye.

For natural movie visual stimulation, we displayed a grayscale 30 s clip from
Touch of Evil (Orson Wells, Universal Pictures, 1958) containing a continuous
visual scene with no cuts (https://observatory.brain-map.org/visualcoding/
stimulus/natural_movies). The clip was contrast-normalized and presented at
30 frames per second. We presented 30 repeats of the natural movie stimulus; each
repeat started with 5s of gray screen, followed by the 30 s of movie.

Spiking episodes. We first calculated deconvolved traces from AF/F using Suite-2p
toolbox 332017, For every neuron, we binarized the deconvolved trace by thresh-
olding at 3 standard deviation above 0 to get inferred spikes. To calculate peri-
stimulus time histogram (PSTH) for a given neuron, we first summed the inferred
spikes across trials and smoothed them using Bayesian adaptive regression
splines”’. The spiking episode in each neuron was defined in the following steps.
First, we found peaks with a prominence larger than 3 in the smoothed PSTH.
Second, the full width at half maximum (FWHM) of the peaks defined the duration
of spiking episodes in most cases. When the FWHM of neighboring peaks over-
lapped, the duration was defined by the difference between the start of the first
peak and the end of the last peak.

Nonnegative tensor decomposition with missing data. We organized our data
into a three-way tensor y (N x T'x K) and let x,,,, represent the activity of neuron n
at time t and trial k. Nonnegative TCA decomposes x into a sum of R rank-one
tensors, where each rank-one tensor can be written as an outer product of three
nonnegative vectors:

Xt & Zf:lw;b:“;( = Xk (€)
Nonnegative TCA with missing values was fit to minimize the squared
reconstruction error:
[IM * (x — {)II% while W>0,B20,A>0
Here, j denotes the reconstructed data. || - ||% denotes the squared Frobenius
norm of a tensor:

1 = s X D Ko @)

M denotes a masking tensor with the same shape as x, and x denotes entrywise
multiplication of two tensors. For fitting nonnegative TCA on AF/F data, we set
My = 0 if x,,4.<0, otherwise we set m,,4 = 1. Normalized reconstruction error is
the squared reconstruction error normalized by ||M % Xle.w

Different from matrix decompositions, tensor decompositions are often
unique’!. However, when R is large or W, B, A have low rank, it could be difficult
to optimize. To monitor this possibility, we calculated similarity between different
TCA fitting results on the same dataset as described in3>. We found that the
similarity between fitting results is close to 1 for all the nonnegative TCA models
reported in this work.

Preprocessing of AF/F data. AF/F data were normalized such that the averaged
squared sum of AF/F traces over time equals to 1 for every neuron:

\/ (Zthitk)/TK =1 (5)

This normalization step is crucial for ensuring TCA fitting is not biased by high
firing rate neurons, since TCA is optimized to minimize the squared
reconstruction error.

Choice of the number of components in TCA. We picked the number of TCA
components such that they captured a significant amount of neural responses
without over-fitting, checked with cross-validation as previously reported®. To
perform cross-validation, we randomly masked out 50% of tensor entries in y. The
remaining data was a training set and the masked-out data was a test set. We
trained nonnegative TCA with missing values to fit the training set. And then we
used the trained TCA model to fit the test set. As we increase the number of
components in TCA, if the normalized reconstruction error of the test set went up,
the TCA model would overfit the training set. As previously reported®®, TCA is
unlikely to overfit, even with up to 70 components. For this paper, we chose 40

components for TCA, given that 40 component TCA captured a significant amount
of neural responses without over-fitting (Supplementary Fig. 2).

Isomap. The instantaneous (temporal frequency: 10 Hz) population response AF/F
of N recorded neurons is a point in an N-dimensional state space. Each axis in this
state-space represents the activity of one neuron. A given trial of 35s duration
generates a discrete sequence (temporal frequency: 10 Hz) of 350 such points. The
population activity from all trials (30 trials per recording session and six sessions)
forms a cloud of 63,000 points in this N-dimensional state space. For the unsu-
pervised transformation of the high-dimensional point cloud to a low-dimensional
space, we ignored the association of a point to a given trial and to the time within
the trial. We computed the Euclidean distance between all points, irrespective of
the trial number and within-trial time. Based on the Euclidean distance we assigned
20 nearest neighbors to each point (choosing a higher number of nearest neighbors
also works).

This step of nearest neighbor assignment is sensitive with respect to the
existence of independent fluctuations of AF/F responses (i.e, independent noise).
To discover meaningful structure in the population activity, we removed such
independent noise. Rather than working with AF/F directly, we conducted the
nearest neighbor assignment based on the “TCA-reconstructed AF/F’, from which
the independent noise was removed.

By linking (edge) each point to its thus defined nearest neighbors, we translated
the point cloud of population responses into a graph, i.e., a network of vertices
(points) with edges (between a point and its nearest neighbor). The geodesic
distance between two vertices in the graph is the distance of the shortest path
connecting them. For our data set, the graph was described by the geodesic distance
matrix of dimension 63,000 x 63,000.

Based on the pairwise geodesic distance between data points, we thus performed
a transformation from the population responses in the N-dimensional state space
to a space of lower dimensions. This isometric mapping method (*Isomap”) was
chosen to incorporate the presumed (but a priori unknown) manifold structure in
the resulting transformation to a low-dimensional space. Isometric mapping
preserves essential structure within the neuronal population responses. Note that
the top k eigenvectors of the geodesic distance matrix represent the coordinates
(Isomap dimensions) in the new k-dimensional Euclidean space.

With all 63,000 data points successfully mapped into a state-space of n
dimensions, we recalled the assignment of each point to a given trial and to the
time within the trial. This temporal sequence of data points formed the trajectory
of population activity for a given trial in this low-dimensional space.

Shuffled data with circularly shifted responses across trials have much higher
intrinsic dimensions than original data. Due to the curse of dimensionality’? and
the smoothness of shuffled responses, we need to define a larger neighborhood size
for Isomap to reveal a robust topology of the neural manifold in this case. Thus, we
chose 100 nearest neighbors for Isomap for shuffled data.

Spline parameterization for unsupervised decoding (SPUD). We used the
SPUD algorithm described in3°. We fitted the manifolds with piecewise linear
curves. We chose to fit a curve L(y) with ten knots to the data points x; embedded
in the two-dimensional spaces by Isomap. Initially, the positions of knots were
determined by K-means clustering centroids of the data points. Each knot was
connected to the other knot with the highest data point density in between to form
the initial curve. Then, positions of the knots were iteratively optimized to mini-
mize (Zi]|(L(y) — x;||)|L(y)], where ||(L(y) — x;)|| is the Euclidean distance between
the ith data point and the nearest point on the curve, and |L(y)| is the length of
the curve.

We picked a random origin on the curve and assigned coordinates from 0 to 1
to the point on the curve. The coordinate of each data point x; was decoded as the
coordinate of its nearest point on the curve. We shifted or flipped the coordinates
of the data points to minimize the mean squared error between the decoded
coordinates and the rescaled actual time in the movie (rescaled to (0,1]). The
decoded time for a given data point was set to the resulting coordinate scaled up to
(0, 35) seconds.

For cross-validation, we randomly picked 80% of the instantaneous population
activity as the training set (distributed across all the weeks), and the remaining 20%
as the test set. We fit the spline to data from the training set and evaluated the
decoding performance using data from the test set.

Note that the neural manifold for shuffled data often did not have a perfect ring
structure (Supplementary Fig. 7a). The SPUD would fail without carefully choosing
the positions of initial knots. For a fair quantitative comparison between original
and shuffled data (Supplementary Fig. 7b), we chose ten trial-averaged projected
instantaneous population activity evenly distributed in time as the initial knots for
the shuffled data analysis.

The variance of population activity along/perpendicular to the coding
direction. We calculated the variance of population activity along or perpendicular
to the coding direction based on the coordinates of the projected instantaneous
population activity along or perpendicular to the spline direction identified by
SPUD. The variance of population activity reported in Figs. 6, 7 was calculated
based on projected population activity in the first two Isomap dimensions.
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Radius of points on the manifold. We quantified the shape of the neural manifold
for original and shuffled data by calculating the distance from each dot repre-
senting instantaneous population activity to the center of the manifold. The Center
of the manifold was calculated as averaged coordinates across all the points.
Empirically, the center was close to the origin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Most of the hardware designs can be found on Michael Goard’s lab website (https://
goard.mcdb.ucsb.edu/resources). Raw data analyzed in this study have been deposited in
the Dryad https://doi.org/10.25349/DIM606.

Code availability

We used tools for fitting TCA in https://github.com/ahwillia/tensortools. We used code
available from https://fietelab.mit.edu/code/ for SPUD. A sample dataset and a Jupyter
notebook for reproducing some of the main figures are available from Supplementary
Software. All the other code used for analysis is available upon request to the
corresponding author.
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