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A B S T R A C T   

Background and purpose: Quantifying radiation dose to cardiac substructures is important for research on the 
etiology and prevention of complications following radiotherapy; however, segmentation of substructures is 
challenging. In this study we demonstrate the application of our atlas-based automatic segmentation method to 
breast cancer radiotherapy plans for generating radiation doses in support of late effects research. 
Material and methods: We applied our segmentation method to contour heart substructures on the computed 
tomography (CT) images of 70 breast cancer patients who received external photon radiotherapy. Two cardi
ologists provided manual segmentation of the whole heart (WH), left/right atria, left/right ventricles, and left 
anterior descending artery (LAD). The automatically contours were compared with manual delineations to 
evaluate similarity in terms of geometry and dose. 
Results: The mean Dice similarity coefficient between manual and automatic segmentations was 0.96 for the WH, 
0.65 to 0.82 for the atria and ventricles, and 0.06 for the LAD. The mean average surface distance was 1.2 mm for 
the WH, 3.4 to 4.1 mm for the atria and ventricles, and 6.4 mm for the LAD. We found the dose to the cardiac 
substructures based on our automatic segmentation agrees with manual segmentation within expected observer 
variability. For left breast patients, the mean absolute difference in mean dose was 0.1 Gy for the WH, 0.2 to 0.7 
Gy for the atria and ventricles, and 1.8 Gy for the LAD. For right breast patients, these values were 0.0 Gy, 0.1 to 
0.4 Gy, and 0.4 Gy, respectively. 
Conclusion: Our automatic segmentation method will facilitate the development of radiotherapy prescriptive 
criteria for mitigating cardiovascular complications.   

1. Introduction 

Radiation dose delivered to the heart is an important constraint in 
radiotherapy when the radiation field is covering or near the heart 
because of concerns about late cardiac complications. Evidence for an 

increased risk of ischemic heart disease and cardiac mortality has been 
reported for survivors who received radiotherapy for breast cancer 
[1–6], Hodgkin lymphoma [7], lung cancer [8], and childhood cancer 
[9]. The Deep Inspiration Breath-Hold (DIBH) technique or prone setup 
are sometimes used in combination with multiple segmented fields to 
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minimize the radiation dose to the heart, especially for left breast 
treatment [10]. However, it remains unclear how to best optimize 
treatments because there are major gaps in knowledge around which 
specific cardiac structures are at risk and the mechanism of damage 
[11]. Early studies on cardiac late effects often used mean dose to the 
whole heart (WH) as a radiation exposure indicator, however, an 
increasing body of literature [12–16] has underscored the importance of 
considering more detailed dosimetry in order to pinpoint the specific 
cardiac structure(s) most associated with late complications. 

A clear barrier to progress is that it is challenging to contour cardiac 
substructures on radiotherapy planning computed tomography (CT) 
images. As a result, most research to date has compared risk of cardiac 
outcomes among groups of patients receiving radiotherapy versus no 
radiotherapy or by laterality of breast irradiation [1–4]. CT-based 
assessment of cardiac substructure dose has been used for dos
e–response analysis, but such studies typically have a small number of 
patients and short follow-up, so may not be sufficiently powered [8]. 
Larger studies on historic cohorts sometimes include radiation doses 
[5,6], but the estimates are often based on reconstructions of radio
therapy plans on a surrogate CT of a “typical” patient because individ
ualized images are unavailable. 

A number of atlas [17–22] and machine learning-based [23–27] 
cardiac segmentation methods can be found in the literature to facilitate 
substructure contouring. However, these methods are often demon
strated on contrast-enhanced cardiac CT angiography or magnetic 
resonance imaging (MRI) datasets whereas the visibility of cardiac 
substructures on a radiotherapy planning CT can be considerably worse. 
To help bridge this gap, we previously developed a method to auto
matically segment the substructures of the heart using a most-similar 
atlas approach followed by a B-spline transformation [28]. Our seg
mentation method has the advantage that it depends only on the pre- 
contoured whole heart, not the quality of CT images. In the current 
study we demonstrate how our method can be used to contour cardiac 
substructures on breast radiotherapy planning CT images to generate 
radiation doses in support of research on late cardiac complications. 

2. Materials and methods 

2.1. Patient data from RadComp clinical trial 

Following an institutional review board-approved protocol we 
collected non-contrast radiotherapy planning CT images for a conve
nience sample of 100 breast cancer patients enrolled in the Radiotherapy 
Comparative Effectiveness (RadComp) clinical trial (NCT02603341) 
[29] who received external photon beam radiotherapy in the supine 
position. We selected 30 of the 100 patients to create a cardiac atlas 
library for the automatic segmentation method. The remaining 70 pa
tients were used for testing segmentation performance (40 left breast 
and 30 right breast). 

The radiotherapy plans for the RadComp study represent current 
real-world practice in the United States for patients with a high risk of 
nodal recurrence in whom the internal mammary nodes (IMNs) are 
covered. Treating physicians were encouraged to reduce heart and lung 
exposure as much as possible while maintaining adequate coverage of 
the clinical target volume (CTV). The dose constraint to the CTV for the 
IMNs was D90% (minimum absorbed dose received by 90% of the CTV 
volume) >90% of the prescription and the mean heart dose was con
strained to less than 15 Gy. Prescribed doses ranged from 45 Gy to 50.4 
Gy in 1.8 Gy to 2.0 Gy fractions [29]. We excluded from our study pa
tients treated with electron boost or bilateral photon treatment. Ten 
patients in the study were treated using the DIBH technique (all left 
breast). 

Anonymized Digital Imaging and Communications in Medicine 
(DICOM) data delivered from the RadComp Radiorepository included a 
non-contrast planning CT, a RTSTRUCT file containing the manual 
contours of the six cardiac structures, and a RTDOSE file containing a 

three-dimensional (3D) dose matrix for the total treatment. The in-plane 
resolution of the planning CT images was between 0.74 and 2.54 mm 
and the slice thickness ranged from 2 to 3.75 mm. 

Two cardiologists manually contoured the WH, left atrium (LA), 
right atrium (RA), left ventricle (LV), and right ventricle (RV), and left 
anterior descending artery (LAD) on the images of the 100 patients using 
an internal cardiac structure atlas created by the RadComp team with 
reference to the work of Feng et al. [30] and Duane et al. [31]. A number 
of training sessions were held between an expert cardiac sonographer 
and level III trained echocardiographer to review the contours. Inter- 
and intra-observer variation was assessed for a small number of patients 
(Supplementary Tables 1 and 2). Cardiac contouring then proceeded by 
single expert sonographer with oversight by the level III 
echocardiographer. 

2.2. Automatic segmentation of cardiac structures 

The automatic segmentation applied in the present study was the 
same as described in our previous publication [28] except that we used 
the segmentations of 30 RadComp patients as the cardiac atlas library, 
not diagnostic CT images. 

The input to our automatic segmentation method is the contour of 
the WH which is typically drawn on the CT of breast cancer patients 
during treatment planning. The 30 heart atlases were individually 
placed at the center of mass of each patient’s WH and linearly scaled to 
match the WH volume. The scaled atlas (out of 30 possible choices) 
showing the greatest Dice similarity coefficient (DSC) (a volume overlap 
index between two volume objects ranging from zero to 100%) for the 
WH was selected. Next, non-rigid transformation was applied between 
the selected atlas WH volume mask and the patient WH volume mask 
(not CT image) by a structure-guided B-spline 3D transformation. The 
resulting transformation matrix was then applied to the WH and sub
structures of the selected atlas to produce the segmentation. Finally, the 
automatic contours were smoothed with a Gaussian kernel before being 
written to DICOM format for analysis. 

2.3. Performance evaluation 

We evaluated our automatic segmentation algorithm performance in 
terms of geometry and dose. Geometric performance was quantified by 
the DSC and average surface distance (ASD) (the average of all distances 
between the surfaces of two objects) metrics to compare the manual and 
automatic structure contours. Dose performance was evaluated by 
applying the structure masks to the 3D dose matrix and comparing 
calculated dose for the manual and automatic contours. Linear regres
sion was performed to quantify the strength of correlation between 
doses calculated using the manual and automatic contours and to 
identify any systematic differences between the two segmentation 
methods. 

Because the mean dose to the WH has been used as a radiation 
exposure indicator, linear regression analysis was also performed for 
correlation plots comparing mean WH dose and mean dose to the sub
structures (manual contouring). We also evaluated the sensitivity and 
specificity of the automatic segmentation method for assigning patients 
to four dose-levels. For the mean dose to atria and ventricles the cate
gories were: 0–3 Gy, 3–6 Gy, 6–9 Gy, >9 Gy. For the mean dose to the 
LAD the categories were: 0–5 Gy, 5–10 Gy, 10–15 Gy, >15 Gy. For the 
maximum dose to the LAD the categories were: 0–15 Gy, 15–30 Gy, 
30–45 Gy, >45 Gy. 

Performance of the automatic segmentation method should be 
evaluated within the context of the uncertainty in manual segmentation. 
However, our cardiology team provided only a single consensus con
touring of the cardiac substructures. Therefore, we opted to assess the 
sensitivity in the manually calculated doses upon shifting the structure 
mask by a nominal distance of 5 mm. A shift of this size (~5 pixels) 
reasonably simulates the variability in manual contouring, patient setup 
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error, and/or motion of the heart. As a point of comparison, Levis et al. 
[32] used ECG-gated contrast-enhanced CT images to analyze the mean 
displacement of several heart structures over the cardiac cycle and 
recommended planning margins of 5 mm for the LAD. For each patient 
we shifted the substructure masks by 5 mm in a randomly selected 3D 
direction and then recalculated the dose. A total of 100 realizations of 
this shift were performed and the maximal and minimal observed dose 
were recorded to define a nominal range of values within which the true 
mean substructure dose is expected to fall. 

3. Results 

3.1. Geometric performance 

Excellent visual agreement was observed between the automatic and 
manual contours for most patients (Fig. 1). We found no significant 
difference in geometric performance with treatment laterality (Supple
mentary Fig. 1). Therefore, for the geometric performance evaluation we 
grouped the left and right breast radiotherapy patients together for the 
geometric performance analysis (Fig. 2). The mean DSC between manual 
and automatic segmentations across the 70 patients was 0.96 for the WH 
and 0.65 to 0.82 for the atria and ventricles (Table 1). The mean DSC for 
the LAD was considerably worse at 0.06. The average ASD was 1.2 mm 
for the WH, 3.4 to 4.1 mm for the atria and ventricles, and 6.4 mm for 
the LAD. 

3.2. Dose performance 

The dose to the heart varied with laterality of treatment with most 
heart substructures tending to receive a higher dose for left-sided 
treatment, except for the RA (right-side treatment larger) and LA 
(similar for left- and right-sided treatment) (Supplementary Fig. 2). 
Therefore, for the dose evaluation we performed separate analyses for 
left and right breast radiotherapy. T-testing did not reveal any signifi
cant difference (5% significance level) in the mean structure doses for 
left-sided treatment with and without DIBH so we grouped all left breast 
patients together for the analysis (Supplementary Fig. 3). 

For left breast radiotherapy, the mean absolute difference (percent 
dose difference) between doses calculated using the manual and auto
matic contours was 0.2 to 0.7 Gy (9.1 to 14%) for the mean dose to the 
atria and ventricles, 1.8 Gy (22%) for the mean dose to LAD, and 5.1 Gy 
(30%) for the maximum LAD dose (Table 2). For right breast 

radiotherapy, these values were 0.1 to 0.4 Gy (8.5 to 14%) for the mean 
dose to the atria and ventricles, 0.4 Gy (15%) for the mean dose to LAD, 
and 0.6 (18%) for the maximum LAD dose. 

The doses calculated using the manual and automatic contours 
exhibited a high degree of correlation with the lines of best fit for the 
atria and ventricles having R2 values >0.87 (Fig. 3). The slopes of the 
best fit lines for these structures ranged from 0.88 to 1.06 Gy/Gy with y- 
intercept between − 0.10 and 0.52 Gy, demonstrating minimal propor
tional or constant systematic differences between the two methods. 
Similar performance was observed for the LAD except in the case of left 
breast treatment. For left breast radiotherapy, the automatic segmen
tation method overestimated LAD mean dose with the best fit line 
having a slope of 0.97 Gy/Gy and y-intercept of 1.13 Gy. For left breast 
radiotherapy the best fit line for the LAD maximum dose had a slope of 
0.93 Gy/Gy and y-intercept of 6.46 Gy. In general, the differences 
observed between manual and automatic doses for all structures were 
within expected variability. The confidence intervals for the manual 
dose estimated from the 5 mm contour shift sensitivity analysis were not 

Fig. 1. Comparison of manual (top row) and automatic (bottom row) contours in the axial (left), sagittal (middle), and coronal (right) views.  

Fig. 2. Box plots of the Dice similarity coefficient (DSC) for the whole heart and 
substructures for the 70 patients. Outliers are denoted by “+” and are defined as 
values located 1.5 interquartile ranges below the first quartile or above the 
third quartile. 
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symmetric around the point of estimate and were sometimes sizeable, 
particularly for the LAD and RV (Table 3). 

Linear regression for the correlation plots showing the relationship 
between mean WH dose (manual contouring) and mean dose to the 
various substructures (manual contouring) yielded fits for the mean dose 
to the LA, RA, LV, RV, and LAD which had R2 values ranging from 0.78 
to 0.90 (left breast treatment) and 0.88 to 0.94 (right breast treatment) 
(Supplementary Figs. 4–8). For the LAD maximum dose the linear 
regression yielded fits with R2 values of 0.31 (left breast treatment) and 
0.80 (right breast treatment) (Supplementary Fig. 9). 

Confusion tables for the dose-level analysis generally exhibited high 
sensitivity and specificity (>85%) for assigning patients to the selected 
dose categories (Supplementary Table 3–8). 

4. Discussion 

In the present study we demonstrated an atlas-based automatic 
method to segment heart substructures which can be applied to breast 
radiotherapy planning CT images. The DSC for the atria and ventricles 
was moderate (0.65 to 0.82). However, the DSC for the LAD was much 
lower (0.06) because it is a narrow and long structure, making perfect 
overlap between manual and automatic contours especially challenging 
to achieve. Despite the observed geometric differences, from the dose 
performance evaluation we found the doses to the cardiac structures 
based on our automatic segmentation agreed well with that of manual 
segmentation within expected variability of manual contouring. 
Although, the automatic segmentation method did systematically 
overestimate the mean and maximum dose to the LAD in the case of left 
breast treatments. 

The results of our geometric analysis demonstrate that the perfor
mance of our atlas-based automatic segmentation method is comparable 
to other atlas [17–22] and machine learning-based methods [23–27] 
found in the literature. However, some methods report better 

performance with DSCs >0.80 for all four heart chambers. Machine 
learning methods appear to have an advantage as demonstrated by 
Morris et al. (2020) [27] who found a significant increase in the DSCs for 
the coronary arteries compared to their multi-atlas method (DSC ~ 0.50 
versus ~ 0.19). Nonetheless, a direct comparison of our results with 
prior studies is not straightforward because they are mostly demon
strated on contrast-enhanced cardiac CT angiography and MRI datasets 
[33]. Otherwise, as in the case of Zhou et al. [18], Morris et al. [27], Haq 
et al. [26], the segmentation methods are applied to non-contrast 
planning CT images, but use co-registered MRI or contrast-enhanced 
CT images to assist the manual delineation. In the present study only a 
non-contrast planning CT was available so there is greater uncertainty in 
the manual segmentation because the substructures are not always 
completely visible. Ultimately, the impact of any geometric disagree
ment on the estimated dose will depend on the gradient of the under
lying dose distribution which can vary with factors such as radiotherapy 
technique and laterality of treatment. 

Many studies report significant inter- and intra-observer variability 
in manual contouring, especially for small structures such as the LAD 
[18,34]. Zhou et al. [18] reported that the largest ASD for six patients 
among eight radiation oncologists was 35 mm for the LAD. Our sensi
tivity analysis showed that even a 5 mm shift in the contours can result 
in substantial variation in dose, particularly for the RV and LAD for left 
breast radiotherapy and RA and LAD for right breast radiotherapy. 
Furthermore, even if the structures are perfectly contoured on CT, the 
dose estimates would still be limited by patient setup error, patient 
breathing, and cardiac motion. Given these limitations, our results 
suggest that further geometric improvement in our automatic segmen
tation is unlikely to significantly improve the dose estimates. 

The sensitivity in the mean dose to the LV, RV, LAD, and maximum 
LAD dose was greater for left-sided treatments; however, the sensitivity 
in mean dose to the RA was larger for right-sided treatments and the 
sensitivity in the mean dose to the LA was independent of treatment 

Table 1 
Mean, median, and range of the Dice similarity coefficient (DSC) and average surface distance (ASD) between manual and automatic segmentation averaged over the 
70 patients.  

Cardiac Structures DSC ASD (mm) 

Mean ± SD Median Range Mean ± SD Median Range 

WH 0.96 ± 0.01  0.96 0.95–0.97 1.2 ± 0.3  1.2 0.7–1.8 
LA 0.69 ± 0.09  0.71 0.38–0.83 3.8 ± 1.5  3.4 1.7–7.8 
RA 0.65 ± 0.10  0.66 0.28–0.83 4.1 ± 1.6  3.7 1.5–12.2 
LV 0.82 ± 0.05  0.84 0.68–0.92 3.4 ± 1.1  3.0 1.6–7.4 
RV 0.68 ± 0.09  0.70 0.31–0.82 4.0 ± 1.2  3.7 1.9–8.2 
LAD 0.06 ± 0.07  0.02 0.00–0.31 6.4 ± 2.8  5.7 2.7–15.7  

Table 2 
Comparison of the cardiac substructure doses between manual and automatic segmentations of a total of 70 breast cancer patients.  

Treatment 
Laterality 

Cardiac 
Structures 

Manual Dose (Gy) Automatic Dose (Gy) Dose Difference (Gy)* Mean Dose Difference 
(%)* 

Mean ±
SD 

Median Range Mean ±
SD 

Median Range Mean ±
SD 

Median Range 

Left (n = 40) WH 4.7 ± 2.5  4.6 1.0–10.5 4.6 ± 2.5  4.5 1.0–10.5 0.1 ± 0.1  0.1 0.0–0.4 1.7 
LA 2.5 ± 1.8  2.4 0.4–7.3 2.5 ± 1.9  2.4 0.3–7.3 0.2 ± 0.2  0.1 0.0–0.7 9.1 
RA 2.6 ± 2.1  2.3 0.3–8.1 2.5 ± 2.1  2.3 0.3–7.9 0.3 ± 0.4  0.1 0.0–1.6 8.7 
LV 4.8 ± 2.2  5.0 1.2–10.4 4.6 ± 2.2  4.7 1.2–9.7 0.3 ± 0.3  0.2 0.0–1.0 5.9 
RV 4.8 ± 2.7  4.6 0.8–11.8 4.7 ± 2.6  4.5 0.8–10.1 0.7 ± 0.7  0.5 0.0–2.6 14 
LAD 9.1 ± 5.1  8.1 2.2–28.0 10.2 ± 5.6  9.4 2.5–25.0 1.8 ± 2.4  1.1 0.0–14.6 22 
LADmax 23.1 ±

11.4  
20.7 5.9–49.1 27.8 ±

11.8  
25.7 9.3–53.1 5.1 ± 5.0  3.6 0.0–23.4 30 

Right (n = 30) WH 2.9 ± 2.1  2.0 0.6–7.2 2.9 ± 2.1  2.1 0.7–7.1 0.0 ± 0.0  0.0 0.0–0.1 1.0 
LA 2.4 ± 1.9  1.6 0.4–6.4 2.5 ± 2.0  1.7 0.3–7.1 0.2 ± 0.2  0.1 0.0–1.0 8.5 
RA 4.7 ± 2.7  4.2 1.5–11.2 4.7 ± 2.7  4.3 1.0–10.3 0.4 ± 0.3  0.3 0.0–1.2 9.5 
LV 1.5 ± 1.5  1.0 0.2–4.1 1.4 ± 1.2  1.1 0.1–4.2 0.1 ± 0.1  0.1 0.0–0.5 9.2 
RV 3.0 ± 2.3  2.3 0.5–9.8 3.1 ± 2.3  2.6 0.4–10.9 0.3 ± 0.3  0.3 0.0–1.3 14 
LAD 3.0 ± 3.0  1.5 0.3–9.5 2.8 ± 2.9  1.5 0.2–10.7 0.4 ± 0.6  0.2 0.0–2.0 15 
LADmax 4.5 ± 4.6  2.0 0.5–15.7 4.5 ± 4.7  2.1 0.5–15.1 0.6 ± 0.8  0.2 0.0–2.4 18  

* Absolute difference between automatic and manual doses. 
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Fig. 3. Correlation plots and best fit lines showing the relationship between manual and automatic segmentation mean doses for the whole heart (WH), left atrium 
(LA), right atrium (RA), left ventricle (LV), right ventricle (RV), and left anterior descending artery (LAD). The maximum dose to the LAD calculated by each method 
was also compared. The error bars define the range in dose values observed for 100 realizations of a 5 mm shift in the contours. Best fit lines were calculated 
separately for left- and right- sided treatment. For the LAD left-sided treatment case, a single outlier was excluded from the linear regression as it was determined to 
unduly influence the regression. 
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laterality. For left-sided treatments, the mean dose to the RV was the 
most sensitive to the 5 mm shift (mean deviation 129%) which can be 
explained by its larger size in comparison to the LAD. The most sensitive 
structure for right-sided treatments was the RA (mean deviation 30%) 
due to its proximity to the field edge. The LAD also exhibited significant 
variability in mean doses ranging from 10% to 160% (mean 58%) for 
left-sided treatments and 7% to 51% (mean 19%) for right-sided treat
ments. The observed sensitivity in the maximum dose to the LAD for left- 
sided treatment was as high as 234%, suggesting that this dose metric is 
especially challenging to reliably estimate. 

The accuracy requirements of radiation dose estimates for epidemi
ological research will depend on the size of the health effect being 
investigated and how the data are analyzed. In some cases, dose is 
treated as a continuous variable, in which case errors have the effect of 
widening confidence intervals or altering the slope of a dose–response 
line depending on whether they are random or systematic in nature. In 
other cases, patients are assigned to dose-level categories so that dose 
errors have impact only if they result in misclassification. Our results 
show that the cardiac substructure doses generated using our automatic 
segmentation algorithm are suitable for either type of analysis. Overall, 
the observed correlations between WH dose and substructure dose are 
slightly worse than that observed in Fig. 3 for the automatic segmen
tation method, suggesting the automatic segmentation will improve on 
the approach of using WH as a surrogate for substructure dose. 

We acknowledge the following limitations in the current study. First, 
the application of our method is dependent on the availability of a 
manual contouring of WH. Second, our structure-guided process only 
uses the WH for registration and does not consider variations in sub
structure anatomy between the chosen atlas and patient. Third, we used 
sensitivity of the substructure doses to a 5 mm shift as a surrogate for 
variability in manual contouring. This is a useful metric for comparison 
but is not the same as inter-observer variability. Fourth, in our study we 
compared doses for automatic and manual contours as reported by the 
TPS. While useful for evaluating the accuracy of our automatic seg
mentation method, it is well known that the TPS underestimates dose 
out-of-field. More accurate dose estimates can be achieved using Monte 
Carlo radiation transport methods [35]. 

In summary, we demonstrated an automatic method for segmenting 
cardiac substructures on breast radiotherapy planning CT images. In the 
future we plan to apply our method to large patient datasets in support 
of epidemiological research on cardiac morbidity following 
radiotherapy. 
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[24] Payer C, Štern D, Bischof H, Urschler M. Multi-label whole heart segmentation 
using CNNs and anatomical label configurations. In: Pop M, Sermesant M, 
Jodoin P-M, Lalande A, Zhuang X, Yang G, editors. Statistical Atlases and 
Computational Models of the Heart. ACDC and MMWHS Challenges. Cham: 
Springer International Publishing; 2018. p. 190–8. https://doi.org/10.1007/978-3- 
319-75541-0_20. 
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