Table 6.
Metrics | Non-Pre-Trained Models | Pre-Trained Models | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG-16 | VGG-19 | ResNet-50 | Inception-V3 | Inception ResNetV2 | ‘Custom-Net’ | VGG-16 | VGG-19 | ResNet-50 | Inception-V3 | Inception ResNetV2 | ‘Custom-Net’ Model | |
Accuracy (%) | 57.27 | 57.27 | 98.68 | 99.39 | 99.49 | 99.78 | 99.89 | 99.49 | 99.79 | 99.59 | 98.98 | 98.15 |
Precision (%) | 100 | 100 | 99.29 | 99.11 | 99.64 | 99.29 | 99.82 | 99.29 | 99.64 | 98.64 | 99.58 | 99.10 |
Recall (%) | 57.27 | 57.27 | 98.42 | 99.82 | 99.47 | 98.59 | 100 | 99.82 | 100 | 99.64 | 99.64 | 98.39 |
F1 score (%) | 72.83 | 72.83 | 98.85 | 99.46 | 99.55 | 98.94 | 99.91 | 99.55 | 99.82 | 99.64 | 99.11 | 98.69 |