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Abstract: Diagnosing liver steatosis is an essential precaution for detecting hepatocirrhosis and liver
cancer in the early stages. However, automatic diagnosis of liver steatosis from ultrasound (US)
images remains challenging due to poor visual quality from various origins, such as speckle noise
and blurring. In this paper, we propose a fully automated liver steatosis prediction model using three
deep learning neural networks. As a result, liver steatosis can be automatically detected with high
accuracy and precision. First, transfer learning is used for semantically segmenting the liver and
kidney (L-K) on parasagittal US images, and then cropping the L-K area from the original US images.
The second neural network also involves semantic segmentation by checking the presence of a ring
that is typically located around the kidney and cropping of the L-K area from the original US images.
These cropped L-K areas are inputted to the final neural network, SteatosisNet, in order to grade the
severity of fatty liver disease. The experimental results demonstrate that the proposed model can
predict fatty liver disease with the sensitivity of 99.78%, specificity of 100%, PPV of 100%, NPV of
99.83%, and diagnostic accuracy of 99.91%, which is comparable to the common results annotated by
medical experts.
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1. Introduction

Early diagnosis and treatment of liver steatosis, defined as the abnormal accumu-
lation of fat in more than 5% of liver cells, are critically important [1] to prevent further
progression of liver diseases, such as hepatocirrhosis and hepatocellular carcinoma [2–4].
Ultrasound (US) is the most widely used imaging technique, particularly for diagnosing
liver steatosis [5,6]. However, US images are inevitably degraded by speckle noise, blurring,
shading, and other artifacts, which cause adverse effects, sometimes leading to misdiagno-
sis based on image interpretation [7,8]. The US image quality strongly depends on how
effectively the speckle noise is reduced. Thus, many attempts have been made to reduce
speckle noise and improve visual quality for better diagnoses [9–15]. However, despite
the improved performance, these methods still suffer from several limitations as they are
sensitive to the selected kernel or prone to image blurring. In addition to reducing speckle
noise, much work has been carried out to assess the level of liver steatosis more precisely
by applying complicated algorithms, statistical models, or image-processing techniques to
US images. Among these, the hepatorenal index (HRI) and the gray-level co-occurrence
matrix (GLCM) are the most commonly known accurate, simple, and cost-effective tools
used in the screening for liver steatosis [16–19]. However, these methods significantly
depend on the skill of choosing the region of interest (ROI) and the experience of physicians
performing the examination.

Recently, several deep learning-based artificial intelligence approaches have been
introduced in the literature [20–25] to overcome the issues and challenges associated with
US image quality and operator dependency. Andrea et al. [20] proposed a computer-aided
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diagnosis (CAD) system based on feature extraction to assist in the classification task of
liver pathologies. The incorporated feature extraction is based on first-order statistics,
co-occurrence matrix, run-length matrix, and fractal dimensions, where three different
classifiers are used for the evaluation of certain features, including artificial neural net-
work, support vector machine (SVM), and k-nearest neighbor. However, the CAD system
achieved the accuracy of 79.77%, which is not sufficient for automated clinical use. In addi-
tion, Zhang et al. [21] used a shallow convolutional neural network (CNN)-based model to
extract texture features from US images and detect liver steatosis levels. Their experiment
was generally based on the unrealistic assumption that the texture of a normal liver US
image is uniform, while that of the fatty liver is nonuniform. The actual liver US images
acquired from a commercial scanner are too obscure and shaded to confidently classify fatty
liver using such a shallow CNN-based model. A deep CNN pretrained through transfer
learning was first applied by Byra et al. [22] and compared with the HRI and GLCM,
showing that the pretrained CNN produces a better result. Transfer learning is a machine
learning technique where a model trained on one task is re-purposed on a second related
task. It makes use of the knowledge gained while solving one problem and applying it to a
different but related problem [26,27]. However, considering the performances of the HRI
and GLCM, which are greatly affected by the selection of ROIs, it is difficult to believe that
the pretrained CNN outperforms the HRI- and GLCM-based classification methods. Cao
et al. [23] compared three image-processing techniques: envelope signal, grayscale values,
and a neural network. Although the comparison showed that the neural network had the
best sensitivity and specificity in assessing the severity of nonalcoholic fatty liver disease,
the result of a deep learning neural network was not considered. They used a shallow
network architecture with only three convolutional layers and two fully connected layers
for the experiment.

As an actual deep learning approach for assessing liver steatosis, a previous study [24]
used transfer learning with two pretrained networks, VGG16 and Inception v3, which
are currently the most preferred models of deep learning neural networks. According to
the results, the transfer deep learning exhibits high accuracy and sensitivity in classifying
normal and fatty liver images. Nevertheless, further studies are required for automated
patch selection because the assessment still requires the use of patches manually chosen
according to physician preference, which could have significantly influenced the results
of fatty liver estimates. More recently, research using deep learning networks has been
conducted, but some limitations remain. Zamanian et al. [25] used four pretrained net-
works, specifically Inception v2, GoogLeNet, AlexNet, and ResNet101, to extract features
from initial data. All features from the four networks were then summed and classified
using an SVM. The results were compared with those from the four individual networks.
Although improved results were expected, the actual experimental results show that the
individual pretrained networks are more accurate than the proposed algorithm combining
the four networks. Specifically, AlexNet and ResNet101 produce better results, but they
still contain errors.

In the present work, a cascaded deep learning neural network is proposed to auto-
matically estimate the level of liver steatosis from a US image. The model constitutes three
deep learning neural networks for liver and kidney (L-K) detection, ring detection, and
grading the severity of disease (i.e., SteatosisNet).

(a) L-K detection involves cropping of the L-K area from a given US image. To achieve
this, the DeepLabv3+ model [28] is employed for the semantic segmentation [29] of
L-K candidate areas. This is combined with transfer learning to speed up the training
and improve the performance of the model.

(b) Ring detection involves checking the L-K area obtained from a US image by checking
for the presence of a ring that typically appears around the kidney. This method is
employed for areas that are difficult to detect using only the L-K detection method
described above.
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(c) SteatosisNet takes the above L-K areas as the input and grades the severity of fatty
liver disease. It incorporates transfer learning using a CNN model called Inception
v3 [30] with a dataset comprising the obtained cropped L-K areas.

We present very promising results regarding the accuracy, sensitivity, and specificity
of the proposed model using a dataset from the Samsung Medical Center (SMC) and the
widely adopted Byra dataset [22]. The rest of the paper is organized as follows. Data
preparation and preprocessing are explained in Section 2.1 and Section 2.2, respectively.
In Section 2.3, the proposed cascaded deep learning neural network is briefly described.
Sections 2.4 and 2.5 present the L-K detection and ring detection results, respectively.
Using the experimental results, the quality of the proposed cascaded deep learning neural
network is illustrated in Section 3. Finally, the work is concluded in Section 4.

2. Materials and Methods
2.1. Dataset Preparation

The liver US images used in this study were collected using a Siemens ACUSON Se-
quoia 512 US machine, with the frequency range of 3–6 MHz, 256 Gy levels, and maximum
depth of 36 cm, from the SMC, which is one of South Korea’s leading hospitals. In addition
to this main dataset, we collected liver US images from a public dataset [22]. The whole
dataset comprised 3200 images obtained in the parasagittal scanning plane. As shown in
Figure 1, the parasagittal scanning plane is where most liver parts, the right kidney, and
the diaphragm are well-visualized in US imaging.
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Figure 1. Examples of ultrasound (US) images: (a) parasagittal and (b) non-parasagittal.

Medical experts previously annotated the images as normal, mild, moderate, or severe,
according to the level of steatosis. Then, the US image dataset was randomly split into
training, validation, and test sets with a 6:2:2 ratio, respectively, as listed in Table 1, where
the training set was used to build an optimized network model through supervised learning
to label unknown test examples.

Table 1. Data source and the number of individual images according to the level of steatosis (N: Normal, Mi: Mild, Mo:
Moderate, S: Severe).

Data
Source

Training (60%) Validation (20%) Test (20%) US
MachineN Mi Mo S N Mi Mo S N Mi Mo S

Sasung 900 330 300 60 300 110 100 20 300 110 100 20 ACUSON
Sequoia 512

Byra [22] 102 114 54 60 34 38 18 20 34 38 18 20 GE Vivid E9

Total 1902 444 594 180 634 148 198 60 634 148 198 60 –
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2.2. Preprocessing

The images were resized to 960 px × 720 px and converted to the PNG file format for
inputting to our deep learning network. Then, all metadata and unnecessary black parts
were removed from the dataset before applying histogram equalization (HE), as shown
in Figure 2. HE is a useful image-processing technique that adjusts image intensities to
enhance contrast between medical devices [31]. This allows our deep learning model to
maintain better compatibility with images from different equipment or existing databases.
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Figure 2. Overview of preprocessing steps: (a) Original US image. (b) Image with black parts removed. (c) Image is
geometrically rearranged into a squared image via ISP. (d) Histogram equalization (HE) of image in (c). (e) Reverse
conversion of image into the original shape via inverse ISP, and its histogram result.

2.3. Proposed Cascaded Deep Learning Neural Network

The proposed cascaded deep learning neural network is shown in Figure 3. It consists
of three cascaded neural networks.

(i) L-K detection: In this step, a pretrained deep learning neural network was used for
cropping the L-K area while classifying parasagittal and non-parasagittal images.

(ii) Ring detection: This step checks the parasagittal images via so-called “ring semantic
segmentation (RSS),” where the presence of a ring, that is typically located around
the kidney, was determined in the images.

(iii) Liver steatosis grading: The SteatosisNet used an Inception V3 network [32] transfer-
learned with cropped L-K images. Once being transfer-learned, the liver and kidney
areas obtained from the above steps (i) and (ii) were taken as the input, and the grade
of liver steatosis was determined.

The following sections detail the steps required for L-K detection, ring detection, and
liver steatosis grading.
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Figure 3. Simplified flowchart of the proposed method: (a) Liver and kidney (L-K) detection yielding 1st parasagittal and
non-parasagittal images. (b) Ring detection to double-check the 1st non-parasagittal image, producing 2nd parasagittal and
non-parasagittal images. (c) Grading of the 1st and 2nd parasagittal images using SteatosisNet according to the level of
steatosis. (d) Grading the steatosis level of the 2nd non-parasagittal images by physician inspection.

2.4. Liver and Kidney (L-K) Detection

In this step, a semantic segmentation network (SSN) was used to localize and crop
the L-K area, while a CNN was employed to classify the US images into two categories:
parasagittal and non-parasagittal. Accordingly, a novel L-K detection method was designed,
such that it cascades the SSN to the CNN. Figure 4 illustrates cropping of the L-K area and
determination of images as parasagittal or not through the serial connection of the SSN
and CNN. The steps involved in L-K detection are summarized as follows.
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(a) Cropping of the L-K area: SSN was employed to obtain an L-K labeled image from a
given HE image.

(b) Classifying 1st parasagittal and non-parasagittal images: The output of the SSN was
used as the input for the CNN, which then classified the L-K labeled image as a
parasagittal or non-parasagittal image.

(c) Masking operation: The logical AND operation between the L-K labeled area and HE
image yielded the cropped L-K image (ROI1st

LK).

2.4.1. Cropping L-K Area

Localizing and cropping the L-K cortex on a US image was the most important
step in our study because it offered crucial and rich information for predicting the level
of liver steatosis. For this, we used a DeepLabv3+ network pretrained through transfer
learning that helped to segment the L-K area more effectively where the pretrained network
was further trained on the specific target of interest, such as the liver and kidney. First,
the DeepLabv3+ network was initialized with the weights from a pretrained ResNet-18
network and then transferred to the L-K labeled dataset (total of 2.650 images) to obtain a
new classifier for segmenting the L-K area. Figure 5 presents some semantic segmentation
results when the transfer learning network was applied for both parasagittal (top row)
and non-parasagittal (bottom row) images. Figure 5b shows the ground truth for the two
classes, liver and kidney, labeled with different colors. Meanwhile, Figure 5c shows the
corresponding L-K labeled images overlaid onto the original HE images. When the L-K
labeled images were obtained, the L-K area, herein referred to as the “ROILK image,” could
be logically cropped via the masking operation, defined as

ROILK image = HE image = HE image ∩ L-K labeled area, (1)

where ∩ indicates the operator that performs the masking operation between the HE
images and L-K labeled area. In this figure, it is also apparent that the image on the bottom
row, compared with those on the top row, is much less segmented into red or green because
it is a non-parasagittal image. Thus, the ROILK images are easily classified into parasagittal
and non-parasagittal images using the CNN, which is trained by supervised learning with
a training set collected from the L-K labeled images manually annotated as parasagittal or
non-parasagittal.
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2.4.2. Classifying Parasagittal and Non-Parasagittal Images

When the L-K labeled images were obtained, they were inputted to the CNN for
classification as parasagittal and non-parasagittal images, resulting in the first parasagittal
and non-parasagittal images. If an L-K labeled image was classified as a parasagittal image
with high possibility, then the corresponding HE image was categorized as a parasagittal
image. For this purpose, a CNN model called Inception v3 was transfer learned using a
dataset of L-K labeled images. Figure 6 shows the data split between training, validation,
and test sets for the transfer learning of Inception v3, where each set consists of parasagittal
and non-parasagittal L-K labeled images. The resulting transfer-learned network achieved
the accuracy of 99.90% for parasagittal detection on the test set.
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Figure 6. Datasets for the transfer learning of Inception v3: (a) Dataset consists of 2650 parasagittal
images. The dataset was obtained by collecting the L-K labeled images from the SMC dataset, as
listed in Table 1, and then divided into (b) training (60%), validation (20%), and testing (20%) sets
regarding steatosis level.

2.4.3. Masking Operation

As shown in Figure 7, the masking operation was used to extract the L-K regions from
the HE images by taking the logical AND operation on the L-K labeled area and HE image,
yielding the cropped L-K image (ROI1st

LK). The masking operation removes all unnecessary
components in assessing the steatosis level of the liver, except the L-K regions, and thus
provides better prediction of liver steatosis severity.
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The ROI1st
LK images were inputted to SteatosisNet for grading the severity of fatty liver

disease as normal, mild, moderate, or severe. As will be explained in Section 3.2, compared
with when non-cropped images were applied, the use of cropped L-K images improved the
grading accuracy by approximately 4.5%. This was mainly because SteatosisNet can pay
more attention to L-K features cropped by semantic segmentation [32], without irrelevant
information.
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2.5. Ring Detection

Ring detection was a further step for identifying parasagittal images that might have
been missed during L-K detection. Therefore, the input of ring detection would represent
the 1st non-parasagittal image. One of the outstanding features of parasagittal images is
the ring-shaped contour encircling the kidney cortex; thus, if a ring-shaped contour can be
found on a US image, then it is most likely a parasagittal image. As described in Figure 8,
ring detection includes two steps. The first step includes RSS, which is a type of semantic
segmentation for identifying ring objects at the pixel level on a given 1st non-parasagittal
image. To achieve this, DeepLabv3+ was transfer learned using the same parasagittal
training set presented in Figure 6, but labeled with two ring objects, each encircling the
liver or kidney cortex.
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After the two rings were semantically segmented on the US image, their inner portions
(i.e., hole regions) could be completely filled with the corresponding color labels to readily
produce an L-K labeled image. Therefore, the hole-filling process of the ring-segmented
image is the second step in which the morphological closing operation [33] was applied to
the ring-segmented image, resulting in an L-K labeled image. As shown in Figure 9, an
L-K-labeled image derived from a parasagittal image was more likely to be parasagittal.
Finally, the CNN and masking operation, as described in Sections 3.2 and 3.3, could again
be applied to the L-K labeled image to obtain the 2nd parasagittal and the corresponding
ROI2nd

LK images, forming the set of ROILK, given by

ROILK =
{

ROI1st
LK, ROI2nd

LK |US Image ∈ parasagittal
}

, (2)

Figure 10 shows an example of the effectiveness of ring detection, where a 1st non-
parasagittal image, which should be parasagittal, could be reclassified as parasagittal
through ring detection. According to the experimental results, the detection accuracy of
parasagittal images increased by 0.07% upon the application of ring detection, and hence a
very high performance was achieved. The set of ROILK images was inputted to SteatosisNet
for grading the severity of fatty liver disease as normal, mild, moderate, or severe.
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parasagittal, with the application of morphology closing operation to the result in (c).

3. Results

The proposed deep learning model was implemented with MATLAB programming
language on a machine with a 2-way GeForce RTX 2080 Ti GPU 11GB. Liver US images
were collected from the SMC, and a public dataset (https://zenodo.org/record/1009146#
.YL2a5fkzYuU (accessed on 21 May 2021), [24]) to verify the performance of the proposed
cascaded deep learning model. The images were categorized based on the level of disease
severity: normal, mild, moderate, or severe. In addition, data augmentation techniques [34]
were used to generate more training data, where affine transformations, such as a random
rotation of ±20 and random translation of ±5 pixels in the horizontal/vertical direction,
were applied to the original dataset. These data augmentations help avoid overfitting

https://zenodo.org/record/1009146#.YL2a5fkzYuU
https://zenodo.org/record/1009146#.YL2a5fkzYuU
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issues while training. As shown by the experiments, the proposed cascaded deep learning
neural network yields better performance than the recently reported results (see Table 2),
confirming the advantages of the proposed model. The results of L-K detection, RSS, and
SteatosisNet are described in detail below.

3.1. Performances of L-K Detection and Ring Semantic Segmentation

The resulting performances of semantic segmentation related to L-K detection and
ring detection are presented in Table 2. In this work, a cross-entropy loss was used when
adjusting the model weights during training of the neural networks, while the semantic
segmentation quality was evaluated using metrics, such as the mean accuracy, mean
intersection over union (IOU), and boundary F-1 score (BF1 score), as shown in Table 2.

Table 2. Semantic segmentation performances of L-K detection and ring detection (IOU: intersection
over union, BF1: boundary F-1).

Performance Deleted Extra Space

Area Mean Accuracy Mean IOU BF1 Score Dataset

L-K
Detection

Kidney 0.9682 0.8088 0.4650
Training: 1590
Validation: 530

Test: 530

N:Mi:Mo:S
= 30:11:10:2

Liver 0.9487 0.7856 0.5228

Null 0.9415 0.9341 0.8002

Ring
Detection

Kidney 0.8642 0.6665 0.5510

Liver 0.8318 0.6576 0.5785

Null 0.8318 0.8307 0.8663

Training optimizer: Adam, Minibatch size: 8, Max epoch: 10, Learning rate of 0.001 with decay
factor of 0.9, Termination condition: validation accuracy < 0.98

The mean IOU is a common evaluation metric for image semantic segmentation and
quantifies the percentage overlap between the ground truth and predicted pixels, whereas
the BF1 score is a measured value of how close the boundaries of segmented images match
those in the ground truth. Table 2 shows that the BF1 score was relatively low compared
with the mean accuracy or the mean IOU. This is because speckle noise is inherently
present in medical US images. Fortunately, in assessing liver steatosis, echogenicity and
echotexture from the L-K areas are much more important than the boundary. The BF1 score
merely indicates how well the predicted boundary aligns with the true boundary, and
hence does not significantly affect the prediction accuracy of hepatic steatosis. Therefore, it
makes sense to improve the IOU or accuracy metrics rather than the BF1 score by either
adjusting training parameters or augmenting data. The mean accuracy, IOU, and BF1 score
were lower for ring detection than for the semantic segmentation of the L-K area, but this
is not very important because ring detection only determines the edge of the liver and
kidney. It was also found that the overall detection accuracy of parasagittal images could
be improved by up to 99.97% upon ring detection.

3.2. Performance of SteatosisNet

As shown in Figure 11, SteatosisNet classifies ROILK images, each falling into one of
four categories regarding the level of steatosis: normal, mild, moderate, or severe.
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Figure 11. Flowchart of SteatosisNet classification.

SteatosisNet uses the CNN model Inception v3, transfer-learned with 2,0 ROILK
images, to grade the severity of fatty liver disease. The ROILK images were split into
four categories according to the steatosis level: normal (0–5%), mild (5–30%), moderate
(30–70%), and severe (70–100%). The model was trained with the Adam (adaptive moment
estimation) optimizer, along with momentum (momentum rate = 0.9). The initial learning
rate was set as 0.001. The max epoch with the termination condition of validation accuracy
of <99.98 was set as 10 to guarantee sufficient training of the model as well as mitigate
network overfitting. Early stopping is a technique used to terminate the training before
overfitting occurs. The training terminates immediately when the termination condition
is satisfied. Shuffling of the training data is applied at the beginning of every epoch to
help the model converge on the optimal solution sooner. Figure 12a shows the training
and validation accuracy (y-axis) over 10 training epochs (x-axis). The corresponding loss is
displayed in Figure 12b. Note that the validation set is not used to update the network weights,
but to assess whether a model suffers from overfitting. As shown in Figure 12b, the training
progress stops early at epoch 10. This is when the validation accuracy is below 99.98%.
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The experimental results were assessed using performance evaluation metrics, includ-
ing the classification accuracy, sensitivity, and specificity. The analytical comparison in
Figure 13 shows how much the performance of SteatosisNet is improved with use of the
cropped L-K image compared with the non-cropped image. The performance evaluation
metrics improved by approximately 4–5% on average when cropped US images were used
as the input to SteatosisNet. This is because the cropped L-K image does not contain
unnecessary parts; therefore, SteatosisNet can focus more on liver steatosis-related areas,
leading to better results.
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The proposed model was compared with state-of-the-art results provided in the
published literature [22–27]. As seen in Table 3, the proposed model is the best regarding
various performance evaluation metrics, such as accuracy, sensitivity, and specificity. The
resulting metrics based on the testing dataset reached almost 99–100%. It is also apparent
from Table 3 that the proposed model exhibits almost the same performance for both
the SMC and Byra datasets. Thus, it can be concluded that the proposed cascaded neural
network model is fairly robust between databases and between different US image qualities.
The results of this study reveal that the proposed model can serve as a valid and reliable
screening tool for estimating the level of steatosis, and for identifying patients who require
further investigation.
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Table 3. Performance comparison regarding classification accuracy, sensitivity, and specificity (%)
with recently published state-of-the-art algorithms.

Reference Model Accuracy Sensitivity Specificity

Andrea et al. [20] KNN (1) 74.05% - -
Zhang et al. [21] CNN (2) 90.00% 81.00% 92.00%
Byra et al. [22] CNN (3) 96.30% 100.00% 88.20%
Cao et al. [23] CNN (4) 73.97% - -

Anca et al. [24] CNN (5) 93.23% 88.90% -
Zamanian et al. [25] CNN (6) 98.64% 97.20% 100.00%
Proposed methods Cascaded NN ♠ 99.91% 99.78% 100.00%

¤ 100.00% 100.00% 100.00%
♣ 99.62% 99.13% 100.00%
� 100.00% 100.00% 100.00%

♠: When being trained and tested by SMC database. ¤: When being trained and tested by Byra database. ♣:
When being trained both by SMC and Byra database, but tested by SMC database. �: When being trained both
by SMC and Byra database, but tested by Byra database. (1) (2012) ANN where k-nearest neighbor is better
than SVM. (2) (2019) Shallow convolutional neural network-based model to extract texture feature. (3) (2018)
Pretrained CNN through transfer learning. (4) (2019) 3 image-processing techniques: including envelope signal,
grayscale values and a NN. (5) (2020) Transfer learning with comparison of 2 pretrained networks: VGG16 and
inception V3. (6) (2021) Performance comparison study of 4 pretrained networks: Inception v2, GoogleNet, etc.

3.3. Ablation Study of Our Method on SMC Database

We designed an ablation study to examine the power of ring and L-K detections in
an SMC dataset of US images. SteatosisNet uses a deep convolutional neural network
deciding the steatosis level at the final stage, thus it is definitely essential in our study. In
this study, it compares the performance of our network with the following configurations:

(1) Ring detection is ablated, i.e., only L-K detection is taken into account; (2) L-K
detection is ablated, thus only ring detection; and (3) both ring and L-K detections are
ablated, thus only SteatosisNet is considered. These ablated architectures are trained under
the same training scheme and tested with the same data.

The following table shows the ablation study results on the dataset.
The accuracy metric has been widely used for evaluating the classification models.

The metric calculates the proportion of correctly classified instances, either true positives
or true negatives. Equation (3) represents the accuracy where TP stands for true positives,
TN for true negatives, FP for false positives and FN for false negatives.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

From the Equation (3), it is seen that the simplest way to improve the accuracy is to
decrease FP and FN. Remember that when we crop and extract only liver and kidney areas
through L-K detection, which are the most informative portion of US images in estimating
the steatosis level, we could decrease FP and FN by 97.96% (See Figure 13), eventually
leading to an improvement in accuracy. Table 4 quantitatively proves how much the
cropping technology can help improve the overall performance where the test performance
largely degrades as the ablation happens on the L-K detection. Therefore, we find that the
L-K detection is highly necessary in our system. Additionally, the above table indicates that,
on average, the ring detection is substantially effective in reducing the screening inspection
cost. The above ablation study results teach us that the L-K detection is relatively more
significant than ring detection as a new component in improving performance, nevertheless
both are useful in implementing an effective liver steatosis diagnosis system.
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Table 4. Ablation study detailed results on SMC dataset.

Ablated Components Accuracy Sensitivity Specificity

Only Ring 98.50% 98.50% 97.17%
Only L-K 96.89% 97.83% 95.65%

Ring + L-K 95.38% 95.77% 95.09%
Nothing 99.91% 99.78% 100.00%

4. Discussion and Conclusions

US images are the most commonly used type of image in CAD systems for diagnosing
fatty liver disease. In this paper, we proposed a cascaded deep learning neural network
model that can automatically predict the level of liver steatosis. The validity of the proposed
model was thoroughly evaluated using both the Samsung Medical Center dataset and the
Byra database, which is widely adopted in extant studies. Using an effective semantic
segmentation of the liver and kidney, the automatic diagnosis task could be effectively
accomplished via the masking operation and ring detection. Furthermore, the cascaded
deep learning network model exhibited excellent performance in terms of sensitivity,
specificity, and accuracy in predicting the level of liver steatosis. We achieved an accuracy
of 99.91%, sensitivity of 99.78%, and specificity of 100%, which are incomparable to those
of the conventional research results, clearly highlighting its usefulness and feasibility as a
screening tool for grading liver steatosis. We believe that this surprising result is due to the
incorporation of the masking operation and ring detection. The former method removes all
unnecessary components, except the L-K regions, before assessing the steatosis level, while
the latter minimizes the screening number of US images to be inspected by a physician.

The masking operation, which takes only the L-K areas and applies to the input of
SteatosisNet, gives a remarkably good result compared with the annotation consistency by
medical experts and thus outperforms the state-of-the-art techniques. The masking opera-
tion elaborately eliminates non-liver and kidney portions in evaluating and monitoring
levels of hepatic steatosis, thus being able to obtain a better prediction of the severity of the
fatty liver disease. The ring detection, which tries to detect a ring-shaped contour on US
images, increases the detection accuracy of parasagittal images by 0.07% and can accord-
ingly reduce the screening inspection cost. Screening an entire US image is labor-intensive
and time-consuming for physicians. The proposed model does not require a presence of
physician; in turn, they can invest time into more important tasks and manage patients in
critical condition. Thus, the proposed model is promising and can be widely applicable for
screening inspection of fatty liver on US images, with a performance comparable to that
of physicians.

However, our method has a limitation. The algorithm only works on ultrasound
images which are captured by the same ultrasonography machine. It means the network
transfer learned with SMC datasets only work at SMC datasets. However, this does not
mean that we cannot use other types of ultrasonography images. We need an extra training
process when we change the ultrasonography machine. In the future, when different kinds
of data are stacked and learned, it will work on images taken from all kinds of ultrasound
devices. We expect our new method to be used or helped clinically by radiologists.
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