Table 1.
Layers | Output Size | Multiple Feature Fusion Network |
---|---|---|
Input Layer | 224 × 224 × 3 | -- |
Convolution | 112 × 112 × 64 | filtersize: [7,7], numfilters: 64, stride 2, padding: [3,3,3,3] |
BN | 112 × 112 × 64 | channels: 64 |
ReLu | 112 × 112 × 64 | -- |
Pooling | 56 × 56 × 64 | [3,3] max pool, stride: [2,2] |
Dense Block (1) | 56 × 56 × 256 | [BN, ReLu, 1 × 1 conv, BN, ReLu, 3 × 3 conv] × 6 |
Transition Layer (1) |
56 × 56 × 256 | BN |
56 × 56 × 256 | ReLu | |
56 × 56 × 128 | [1,1] conv | |
28 × 28 × 128 | [2,2] average pool, stride 2 | |
Dense Block (2) | 28 × 28 × 512 | [BN, ReLu, 1 × 1 conv, BN, ReLu, 3 × 3 conv] × 12 |
Transition Layer (2) |
28 × 28 × 512 | BN |
28 × 28 × 512 | ReLu | |
28 × 28 × 256 | [1,1] conv | |
14 × 14 × 256 | [2,2] average pool, stride 2 | |
Classification Layer |
1024 × 1 | 1024 × 50,176 RBM |
1500 × 1 | 1500 × 1024 RBM | |
12 × 1 | 12D Fully Connected, softmax |