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Abstract: The lower limb joints might be affected by different shoe types and gait speeds. Monitoring
joint angles might require skill and proper technique to obtain accurate data for analysis. We aimed
to estimate the knee joint angle using a textile capacitive sensor and artificial neural network (ANN)
implementing with three shoe types at two gait speeds. We developed a textile capacitive sensor
with a simple structure design and less costly placing in insole shoes to measure the foot plantar
pressure for building the deep learning models. The smartphone was used to video during walking
at each condition, and Kinovea was applied to calibrate the knee joint angle. Six ANN models were
created; three shoe-based ANN models, two speed-based ANN models, and one ANN model that
used datasets from all experiment conditions to build a model. All ANN models at comfortable and
fast gait provided a high correlation efficiency (0.75 to 0.97) with a mean relative error lower than
15% implement for three testing shoes. And compare the ANN with A convolution neural network
contributes a similar result in predict the knee joint angle. A textile capacitive sensor is reliable for
measuring foot plantar pressure, which could be used with the ANN algorithm to predict the knee
joint angle even using high heel shoes.

Keywords: artificial neural network; gait speed; knee joint angle; foot plantar pressure; shoe type;
textile capacitive sensor

1. Introduction

The lower limb joint angles of optimal performance may be affected by different gait
speeds and shoe types. Modification of gait speed may change spatiotemporal parameters,
joint kinematics, joint kinetics, and ground reaction forces [1]. In addition, the fluctuating
function of the metatarsophalangeal joint and other mechanics of lower limb joints may be
affected by different shoe outsole structures [2]. The lower limb joint in humans, especially
women, could be influenced by the type of shoe worn, which is mainly due to increasing
shoe heel height [3,4]. The increasing knee range of motion was found in fast gait speed
compared to comfortable gait speed [5] and the knee flexion also appears to increase when
increasing the height heel [3]. Observations of the effects of altering human gait not only
benefit clinical and medical studies but are also crucial to the fields of sport, rehabilitation,
training, and robotic research [6]. Monitoring human joint angles requires skill and proper
technique to obtain accurate and reliable data. Several systems and technologies have few
limitations that can be used to measure joint angles, including motion capture systems,
clinical tools, and sensor application.

Imaging and video-based tracking systems and motion capture systems provide good
results when measuring joint angles due to multiple camera usage but these systems re-
quire a large space and professional technical setup, which is a costly undertaking [7,8].
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The universal goniometer is the clinical tool defined as the gold standard for assessing joint
angles [9] but requires two hands to manipulate the instrument, which might cause errors
during the measuring process [10]. Moreover, joint angles can also be obtained from appli-
cation of sensors such as optical fibers [11,12], optical-based goniometers [13], textile-based
conductive wires [14], textile-based flex fabric [15], textile-based strain fabric [16], smart-
phone sensors [17], gyroscopes [18], and inertial measurement units (IMU) [19]. Measuring
joint angles with those sensor technologies is still under a few limitations related to sensi-
tivity, low accuracy, nonlinearity, complex algorithms, and they require accurate sensor
alignment [20]. Recently, advancements in new technologies that use a machine [21,22] and
deep learning approach [23,24] with sensor technologies have contributed to developing
various algorithms that provide accurate and effective predictions for lower limb joint
angles giving reliable results for further analyses. Moreover, to make the system more con-
venient and easier to implement, the user avoids finding the optimal sensor placement, so
the current method of joint angle assessment could conduct through foot plantar pressure
and a deep learning algorithm.

The foot plantar pressure in the form of ground reaction force has been applied to
deep learning of an artificial neural network (ANN) in estimating ankle joint angle [25].
Sivakumar et al. (2019) indicated that the ground reaction force could have the capability to
assess ankle joint angle relied on the ANN approach. Moreover, integrating foot pressure
data with multi-source data, including surface electromyography (sEMG), hip joint angle,
provides high accuracy in building a deep learning model in estimating lower limb joint
angles [23]. The model provided a better correlation efficiency and short calculation times
compared to a backpropagation neural network [23]. The foot plantar pressure has been
shown the capability, although it can stand alone or integrate with multi-sources signals,
to serve as input data for deep learning to assess the joint angles. Therefore, the foot
plantar pressure plays an essential role in building a deep learning model, and the most
common system used to measure plantar pressure are the platform system and the in-shoe
system [26,27].

The plantar platform system includes a rigid flat platform, while the in-shoe system
is flexible and embedded in shoes, which is a more suitable application for various shoe
and heel heights [26,27]. The in-shoe system could use various types of pressure sensors
placed to the insole that can be applied with variation shoe designs. The most common
pressure sensors are the capacitive sensors, resistive sensors, piezoelectric sensors, and
piezoresistive sensors [26]. Moreover, recently many researchers have developed various
pressure sensors to measure foot plantar pressure with high performance and effectiveness,
which can apply in many applications. Zhang et al., (2019) proposed the development
of a textile capacitive sensor that could use to measure foot plantar pressure. The textile
capacitive sensor provides good performance in signal response, hysteresis, and stability
with a less complex fabrication process resulting in a low cost [28]. Due to those advantages
of a textile capacitive sensor and it also can apply with variation shoe design, we propose
the development of a textile capacitive sensor with simple structure design, wireless, and
less costly placing in insole shoes to measure the foot plantar pressure for building deep
learning model.

The deep learning approach can use input data directly, so it omitted the process of
feature extraction that might take time and costly operation. Recently, the deep learning
approach of ANN [25] and convolutional neural network (CNN) [29] have been imple-
mented with various data source to estimate joint angles. The CNN approach is required
to employ the convolute technique to the input data, which needs to consider few factors,
including the number of filters, filter size, and pooling method. This process may cause
information leakage affecting model training. So, obtaining joint angles using the CNN
approach is challenging due to the convolute technique. The ANN approach may consider
as a simple neural network consisting of three or more layers; input layer, hidden layer(s),
and output layer. The data pass through various nodes till to output node in one direction.
Moreover, the potential of ANNs could generalize to a wider population, and estimation
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through ANNs does not require anthropometric information [30]. Therefore, the main
aims of this study were to (1) observed the textile capacitive sensor’s characteristics as a
pressure sensor that generated input data to create an ANN model, and (2) evaluated the
ANN algorithm depending on foot plantar pressure only to predict knee joint angle when
using three shoe types at two gait speeds.

2. Materials and Methods
2.1. Design of Foot Plantar Pressure System
2.1.1. Textile Capacitive Sensor

Construction of the capacitive sensor using three electrodes increases the capacitance
in equivalence compare to two electrodes. And adding a third plate produces a more stable
ratiometric output signal [31]. Moreover, placing the ground electrode on the top and
bottom could minimize friction noise and proximity effects caused by the shoe. Figure 1a
indicates the design structure of the textile capacitive sensor and Figure 1b shows the
equivalence structure of each layer. The textile capacitive sensor was developed to measure
the foot plantar pressure using three shoe types at two gait speeds. Under pressure and
the inclination of the high heel shoe may cause slippering in between sensor layers, so
this factor needs to minimize through the slipping resistance material. The nonwoven
dielectric material has a rough surface that could function as slip-resistant, inducing less
slippering between sensor layers. Our sensors were made by electrode plates using the
conductive textile of W-209-PCN (A-jin Electron, Gangseo, Busan, Korea) and non-woven
fabric dielectric has a thickness of 1.00 × 10−3 m.
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The capacitance of the sensor can also calculate using a formula as express below:

C = εrεo
A
d

, (1)

where εr is the relative permittivity of the dielectric material of non-conductive rubber,
ε0 is the vacuum permittivity, A is the area of the electrode, d is the distance between
two electrodes.

Figure 2a shows a schematic of hardware design to measure the capacitance of the
textile capacitive sensor. And Figure 2b shows the detail and connection of hardware
design based on the development by Wang et al., (2018) [32]. The MPR121QR2 was used
to convert the analog to a digital signal. MPR121QR2 can measure sensor frequency up
to 400 kHz, and capacitance range from 10 pF to 2000 pF with a resolution of 0.01 pF. The
development of STMicroelectronics (Geneva, Switzerland) served as a microcontroller unit
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used to measure the capacitance. The data were sampled with a sampling frequency of
100 Hz and sent to a computer through Bluetooth communication.
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2.1.2. Performance Testing

The upper part of our sensor design was a textile conductive electrode that serves as
the ground electrode (Figure 1). In our experiment protocol, the participants were required
to wear socks that prevent direct contact with the sensor. Therefore, in performance testing
of our development sensor, we covered the sensor’s surface with the same socks to avoid
direct contact with the sensor and metallic weight.

Before we test the performance of our development textile sensor, we defined the
limits of the maximum pressure that could apply to our sensor. In our study, the three shoe
types have the same size of 23.5 cm with a minimum ball width of 8.0 cm, so the minimum
stress area of the insole (23.5 cm × 8.0 cm = 188.0 cm2) is 188.0 cm2. At mid-stance, one
foot fully supports the body weight while the other foot lifts the ground. We defined a
subject’s bodyweight as up to 800 N (80 kg × 9.81 m/s2). Therefore, the pressure while the
foot fully supports the bodyweight based on formula (P = F/S, where F is the bodyweight
and S is the stress area of the foot) is 41.74 kPa. Typically, the total stress area of the
foot in contact may be less than we defined due to the foot of participant contact to the
insole. When the stress area of contact becomes small, so the pressure gets high. The
different pressure ranks maybe provide the various trends of sensor performance. To avoid
lacking information for generating the trend of changing capacitance verse pressure, we
investigated the characteristic of our sensor with pressure higher than define.

We tested the textile capacitive sensor to observe the relationship of changing capaci-
tance under applied mass from 0 to 10 kg of stainless-steel calibration weight. The mass
was incremented by 0.50 kg, which was used on the developed sensor five times, so the
capacitance was noted five times. The LCR meter (LCR-8110G, GWInstek, New Taipei
City, Taiwan) was used to measure the capacitance of our sensor correspond to applying
weight. The performance testing was done on a textile capacitive sensor with a dimension
of 0.03 m, 0.03 m, and 1.00 × 10−3 m for height, width, and thickness. The sensor was
composited with the same sensor structure in Figure 1b. According to the pressure formula
(P = F/A; F is the weight of stainless-steel, A is the sensor’s area), it can calculate that the
pressure that applies to the sensor is closed to 110 kPa. Figure 3 depicts the performance
testing setup for our sensor.
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Figure 3. Set up for testing textile capacitive sensor performance.

2.2. Experimental Setup and Protocol

In this paper, the method proposed to evaluate the artificial neural network (ANN)
algorithm relies on foot plantar pressure measures from three shoe types under two gait
speeds, making it possible to predict the knee joint angle. Three shoe types were selected for
this study, flat (S1), sneaker (S2), and stiletto heel (S3). The two gait speeds of comfortable
gait (C) and fast gait (F) were also chosen. Figure 4a shows the lateral side of the three shoe
types used in our study. The foot plantar pressure was collected using the development of
the textile capacitive sensor. We designed a textile capacitive sensor with a dimension of
0.01 m × 0.01 m. Ten textile capacitive sensors were set up in each insole of three testing
shoes. To achieve all plantar pressure data on foot during walking, we arranged the sensor
location into three main foot areas; forefoot, midfoot, and rearfoot. Figure 4b shows the
sensors set up in the insole to collect the foot plantar pressure of three main foot areas.
Table 1 describes the three shoe types characteristics. Figure 5 shows the system setup,
indicating sensor layers and hardware design to receive and transmit data.
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Table 1. The characteristics of three testing shoes.

Shoe Characteristics S1 S2 S3

Heel height (cm) 1.0 3.0 9.0
Ball width (cm) 8.0 9.5 8.0
Shoe size (cm) 23.5 23.5 23.5

Heel base (cm2) 28.5 55.3 0.9
S1: flat shoe; S2: sneaker, S3: stiletto heel.
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The kinematic data of the knee joint was measured throughout the experiment. The
lateral side of the hip, knee, and ankle joint was marked with a reflective marker, and a
smartphone was used to video record the walking of each participant. A tripod held the
smartphone (camera). It was set to a height of 1.0 m from the ground and positioned 2.5 m
away from the treadmill center [33].

Seven young, healthy women participated in this study. Their average age, height,
weight, and body mass index (BMI) were 20.7 ± 0.8 years, 1.58 ± 0.04 m, 50.40 ± 2.20 kg,
and 20.30 ± 2.20 kg/m2, respectively. The inclusion criteria were any healthy women who
have experience of walking in high heels and have used a treadmill for running before. The
women who had any leg injury history, surgery in the lower extremity, musculoskeletal
diseases, pain in the foot area, and flat foot were excluded from our study.

First, we informed the main objective in our study and clearly explained the experi-
mental protocol to all participants. The order of wearing 3 test shoes and choosing the two
gait speeds were all randomized by computer software. Each participant was instructed
to start walking on the treadmill to get familiar with the environment and, at the same
time, to self-select the comfortable and fast gait speed. The participants were required to
wear socks that prevent direct contact with the sensor. A total of 6 experimental conditions
were performed by each participant with three shoe types, S1, S2, and S3, and two gait
speeds, C and F. Participants were required to walk for 2 min on a treadmill for each
experimental condition and had 5-min breaks in between. Our experiment protocol was
approved by the ethics committee of the Institutional Review Board of Soonchunhyang
University (No.1040875-202012-BM-091).
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2.3. Data Processing

The Kinovea 0.8.27 (Open and Free Software Foundation, Inc., Boston, MA, USA) is
the motion capture software used to calibrate the knee joint angle from the video recording
of each experiment condition. After calibration, the software can save the knee joint angle
data as the excel field for further processing. MATLAB R2015b (MathWorks, Inc., Natick,
MA, USA) is a software containing many libraries that can be used for signal processing.
MATLAB R2015b was used to process raw foot plantar pressure data. It was also used
to extract 30 gait cycles (GCs) data from the knee joint angle and foot plantar pressure
then normalize each gait cycle data to 100 data points. The EXCEL is a powerful data
visualization and analysis tool used to generate the trend of capacitance variation regarding
varying pressure. Python 3.7 is free software containing many libraries that can create deep
learning models [34].

In this paper, a development of textile capacitive sensor was used to collect the foot
plantar pressure. The textile capacitive sensor serves as a pressure sensor consisting of ten
sensors mounted on the left insole and can measure the data at a sampling rate of 100 Hz.
These measured data were transmitted to the computer through a Bluetooth application
and save as an excel file for further processing. Our study used the knee joint angle data as
the reference. The smartphone was used to record the video data with a 30 Hz frame rate,
and the video data were transferred to a computer by a USB cable that can operate with
motion capture software to extract knee joint angle.

2.3.1. Foot Plantar Pressure

During the experiment, the sensor’s raw foot pressure data was transferred from the
microcontroller through Bluetooth communication to a personal computer. The software-
based on C# language displays the raw data then saves data to an excel file for further
processing. The 2-min raw data of foot plantar pressure was proccing in MATLAB 2015b.
Figure 6 shows the workflow of processing the raw pressure data to obtain 30 GCs data
from each subject and experiment condition used as an input to train the ANN model.
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Figure 6. The process of extracting 30 gait cycles of foot plantar pressure that each gait cycle contains
100 data points.

All subjects were asked to walk on the treadmill for 2 min for each experimental
condition. To obtain stable and useful data for building the model, we trimmed 1-min data;
cut out some data from the beginning and ending of each trial out of 2 min data. The foot
plantar pressure was calculated regarding the trend of changing capacitance obtained from
the performance test of the textile capacitive sensor. Each insole consisted of ten sensors, so
we calculated the summation of the pressure of all sensors, which was defined as the total
plantar pressure that could generate during walking.
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The raw plantar pressure data contain the noise made by the treadmill and friction
between sensor and insole, so 10 points of moving average filter were applied. Normally,
the frequency of the foot plantar pressure signal in humans was below 15 Hz [35], so the
Butterworth low pass filter with 4th order and a cut-off frequency of 15 Hz was applied to
remove the unwanted signal.

Our work intended to evaluate a deep learning approach’s ability to predict the knee
joint angle throughout GC data. We defined a GC data contain 100 input features which
used to build the model. Moreover, deep learning model require large dataset for training
to get the good performance model. Therefore, for each subject and experimental condition,
30 GCs of foot plantar pressure were extracted as input for building models.

Typically, the foot plantar pressure appears to higher than zero value (p > 0 kPa) when
the foot contacts the ground, so no contact foot plantar pressure may go to zero. We defined
the first zero value of plantar pressure appears at the toe-off gait event. We created the
Zero-To-Zero detection algorithm to segment the GC on mid-1-min data. The Zero-To-Zero
detection defined a GC data at toe-off to next toe-off gait event. So, we extracted 30 GCs
regarding Zero-To-Zero segmentations on mid-1-min data. Due to a different subject and
experimental condition, the length of a GS was unequal. To obtain 100 data of a GC, we
normalized each GC data to 100% data with the interpolation technique of interp1 in the
1D function on MATLAB. Then we reconstruct the GC at toe-off to heel strike gait event
based on gait interval percentage.

2.3.2. Knee Joint Angle

The 2-min video data were calibrated through the motion capture software of Kinovea.
The video was trimmed to 1 min by cut out some data from the beginning and ending.
In Kinovea, the marker on the hip, knee, and ankle were connected using an angle tool.
Figure 7 demonstrates the sample image on how to measure the knee joint angle. From the
video of each experimental condition, the angle tool was assigned to start the track at the
heel strike angle and end at the next heel strike, and the data was export as an excel file. For
each subject and experimental condition, 30 GCs of knee joint angle data were extracted as
the reference data for the ANN model. Due to the unequal length of each GC data, the knee
joint angle was normalized using the same technique as plantar pressure data. Balancing
input and reference data may make the machine easy to learn during training, contributing
to the high accuracy of prediction.
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2.4. Artificial Neural Network (ANN)

The workflow of data processing of prediction on knee joint angle based on plantar
pressure data with the ANN algorithm is shown in Figure 8. We used the data of five
subjects for building the ANN model and two subjects for testing the model performance.
The data set is normalized to enhance the training and convergence speed of neural
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networks by reducing the wide range of amplitude differences [23]. Equation (2) is applied
to normalize the data set.

xnorm =
x− xmin

xmax − xmin
, (2)
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The xnorm results from input normalize in the range of 0 and 1, x is the input data,
xmin is the minimum value of x data, and xmax is the maximum value of x data.

2.4.1. Propose ANN Models

In our study, there is a total of six experimental conditions; three shoe types and two
gait speeds. We extracted 30 GCs from each experimental condition, and GC data consisted
of 100 data points. The number of the GC and dataset conditions for training and validation
used to develop a specific mode are shown in Table 2. In our research, a total of six ANN
models was proposed, three shoe-based ANN models, two speed-based ANN models, and
all condition ANN model. The shoe-based ANN model was defined when the ANN model
relied on a foot plantar pressure dataset collected from a single shoe at comfortable and
fast gait speed. The speed-based ANN mode was set when the ANN model used a foot
plantar pressure dataset collected from three shoe types at each gait speed. We investigated
each model’s performance to see which parameters (shoe-based or speed-based) could
have more capable of producing the model in deep learning that provides better results
to estimate the knee joint angle. The six ANN models are listed below which are defined
based on using a combination of datasets:

• M1 is the ANN model using the dataset of shoe type S1 at comfortable and fast gait
speed to train the model.

• M2 is the ANN model using the dataset of shoe type S2 at comfortable and fast gait
speed to train the model.

• M3 is the ANN model using the dataset of shoe type S3 at comfortable and fast gait
speed to train the model.

• M4 is the ANN model using the dataset of three shoe types (S1, S2, and S3) at comfort-
able gait speed to train the model.

• M5 is the ANN model using the dataset of three shoe types (S1, S2, and S3) at fast gait
speed to train the model.
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• M6 is the ANN model using the dataset of three shoe types (S1, S2, and S3) at comfort-
able and fast gait speed to train the model.

Table 2. The condition of the data set used to form six ANN models.

Shoe Type Speed Model Name Number of Gait Cycle for
Training ANN Model

S1 C and F M1 300
S2 C and F M2 300
S3 C and F M3 300

S1, S2, S3 C M4 450
S1, S2, S3 F M5 450
S1, S2, S3 C and F M6 900

S1 (flat), S2 (sneaker), S3 (stiletto heel), C (comfortable speed), F (fast speed).

2.4.2. ANN Algorithm

In general, an ANN consists of three or more layers, including the input layer, hidden
layer(s), and output layer. Our paper designed an ANN that can utilize foot plantar
pressure data (P) in estimating knee joint angle (θ). Our study used four layers of ANN
(input-hidden 1-hidden 2-output) contain (100-250-150-100) nodes to form each model of
predicting the knee joint angle. Multiple hidden layers may make the system more flexible
and more powerful. To reduce the complexity and introduce the non-linearity of data,
three activation functions, Sigmoid, Relu, and Elu, have been chosen. Figure 9 depicts the
detailed elements in the block diagram of ANN layers for our study. Each layer consists of
the node number (i, j, k, m) and is fully connected by weight.
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During training, each neuron of hidden layer 1 (hj) was fed by summation of the
linear combination of inputs (Piwji) and bias (b′j ) for sample n, which is presented in
Equation (3). The apostrophe (′) and (′′) are defined to identify hidden layer 1 and hidden
layer 2, respectively. And each activated neuron of hidden layer 1 (y1j) was obtained from
applying Sigmoid activation function to hj, Equation (4).

hj(n) =
Nl

∑
i=1

Pi(n)wji + b′j , (3)

y1,j(n) = σ
(
hj(n)

)
=

1

1− ehj(n)
, (4)

where Pi is the ith input of sample n, wji is defined as the network weight between input
ith and hidden layer 1 jth, b′j is the bias at hidden layer 1, and Nl is the total number of
input nodes.
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For each neuron of hidden layer 2 (zk) was fed by summation of (y1,jwkj) and bias (b′′k )
for sample n, which is shown in Equation (5). And each activated neuron of hidden layer 2
(y2,k) was obtained by using Relu activation function to zk, Equation (6).

zk(n) =
Nh

∑
j=1

y1,j(n)wkj + b′′k , (5)

y2,k(n) = RELU(zk(n)) = max (0, zk(n)), (6)

where wkj is defined as the network weight between hidden layer 1 jth and hidden layer 2
kth, b′′k is the bias at hidden layer 2, and Nh is the total number of nodes for hidden layer 1.

For each neuron of output layer (y3,m) was fed by summation of (y2,kwmk) and bias
(bm) for sample n, which is illustrated in Equation (7). And each neuron of output layer
(θm) was activated by applying Elu activation function to y3,m, Equation (8).

y3,m(n) =
Nz

∑
k=1

y2,k(n)wmk + bm, (7)

θm(n) = ELU
(

y3,m(n)
)

,
{

θm(n) = y3,m y3,m ≥ 0
θm(n) = α(ey3,m − 1) y3,m < 0

(8)

where wmk is defined as the network weight between hidden layer 2 kth and output layer
mth, bm is the bias at output layer, and Nz is the total number of nodes for hidden layer 2.

The loss during training cannot avoid, but we can minimize the loss by introducing the
optimizer to form generalization. The Root Mean Square Propagation (RMSpro) optimizer
with a learning rate of 0.007 was chosen in our study. The RMSpro updated the weights
and biases during the iteration of each epoch. The RMSpro is keeping the moving average
of the squared gradients for each weight and bias.

During training, the training dataset were validated by validation data to improve the
learning and follow checking the fitting situation for each epoch. All the deep learning ap-
proach was used leave one subject out cross-validation to validation model during training.

The result of prediction has to de-normalized to obtain the knee joint angle. While
training and validation generally increase the goodness-of-fit, the signal may be distorted.
Then we executed the digital low pass filter to signal after de-normalize, which could
maintain the same frequency between input and prediction output.

2.4.3. Accuracy Analysis

The root mean squared error (RMSE) is used to measure the difference between the
knee joint angle prediction and the actual value. The RMSE perform over data sample to
estimate the error between prediction and actual, and the equation to perform its error
illustrated in Equation (9).

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2, (9)

where N is the number of samples, xi is the perdition and yi is the actual output.
The mean relative error (MRE) performs to see the goodness of the model in the fitting.

The equation (10) is used to calculate the MRE of each model.

MRE =
1
N

N

∑
i=1
|(xi − yi)/xi|, (10)
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Correlation efficiency (R-value) is used to identify the statistical relationship between
prediction output and actual output. The formula is shown in Equation (11).

R =

√√√√√1− ∑N
i=1(yi − xi)

2

∑N
i=1

(
yi −

−
y
)2 , (11)

where N is the number of samples,
−
y is the mean of actual knee joint angle, xi is the

perdition, and yi is the actual output.

2.4.4. Knee Flexion

We also observed each model’s performance by looking at knee flexion patterns.
The knee flexion was achieved by substrate 180 degrees to an output of knee joint angle
prediction, obtained for ANN models. The gait phases of the stance phase (SP) and swing
phase (SwP) are defined as the silence phase in the GC. The percentage of each gait phase
was defined as (0–60) %, (60–100) % for SP and SwP, respectively.

2.5. Convolution Neural Network (CNN)

A convolution neural network (CNN) is also a state-of-the-art model as ANN, so we
compared our ANN with the CNN approach to see the system’s flexibility. In our work, the
CNN model utilizes 32 filters and 64 filters for the Conv1D_1 layer and Conv1D_2 layer,
respectively. Each filter size consists of 3 × 3 and 2 × 2 max-pooling in all convolutions.
We employed dropout with a probability level of 50% max-pooling in all convolution
layers. We transformed the output of Conv1D_1, Conv1D_2, Dense through the activation
function of Sigmoid, Relu, and Elu, respectively. So, the output layer is fed by applying a
linear activation function to the Dense layer’s summation output. For training parameters,
batch sizes of 32, 50 epochs, and RMSpro optimizer with the learning of 0.007 were set. All
the deep learning approach was used leave one subject out cross-validation to validation
model during training. All CNN models were trained by using the same combination of
the dataset as used in ANN models.

3. Results
3.1. Textile Capacitive Sensor Performance

Figure 10 depicts the textile capacitive sensor trend obtained from performance testing
under the various forces applied. The textile capacitive sensor trend behaved linearly and
non-linearly when the applied pressure was below and above 11.00 kPa, respectively. The
sensitivity of our textile capacitive sensor was 0.232 MPa−1 and 0.070 MPa−1 for using
pressures lower and higher than 11.0 kPa, respectively.
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3.2. Data after Processing

Figure 11 demonstrates the result of applying the Zero-To-Zero detection algorithm
to mid-1-min foot plantar pressure data. Figure 12 presents the result of normalizing a
GC that provides 100 data points and then reconstructs the gait event from toe-off to heel
strike. During the experiment, all participants were allowed to self-select their walking
speed. We obtained an average walking speed of 2.40 ± 0.30 km/h for comfortable gait
and 5.10 ± 0.20 km/h for fast gait. Figure 13 shows the result of input data and reference
data after processing a GC from a random subject.
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3.3. ANN Models Evaluation

The summary result for RMSE, MRE, and R to evaluate each model’s accuracy on GC
data is illustrated in Table 3, Table 4, and Table 5. They show the efficiency of five models
for predicting the knee joint angle for both comfortable and fast walking speeds by shoe
type: S1 (flat), S2 (sneaker), and S3 (stiletto). The implementation of all ANN models to
predict the knee joint angle when wearing S1, S2, S3 walking at comfortable and fast gaits
showed a (minimum, maximum) of (5.60, 21.32), (0.03, 0.12), (0.75, 0.97) for RMSE (deg),
MRE, and R-value, respectively. The implementation M6 to predict the knee joint angle
when wearing S1 and S2 walking at comfortable and fast gaits showed an R-value was
higher than 0.90 with MRE lower than 15%. The implementation M6 to predict the knee
joint angle when wearing S3 showed an R-value of 0.90 and 0.82 for comfortable and fast
gait, respectively.

Table 3. Summary of the accuracy analysis of each model with S1 (flat) testing data.

Models
Comfortable Gait Fast Gait

RMSE MRE R RMSE MRE R

M1 7.10 0.04 0.95 8.18 0.05 0.94
M2 5.08 0.03 0.96 18.90 0.10 0.81
M3 7.50 0.04 0.91 11.46 0.06 0.94
M4 6.46 0.03 0.96 14.52 0.08 0.91
M5 9.11 0.05 0.94 8.79 0.05 0.92
M6 6.60 0.04 0.91 8.61 0.05 0.92

S1 (flat), S2 (sneaker), S3 (stiletto heel), M1 (S1 model), M2 (S2 model), M3 (S3 model), M4 (comfortable gait
model), M5 (fast gait model), M6 (model using all condition of dataset).
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Table 4. Summary of the accuracy analysis of each model with S2 (sneaker) testing data.

Models
Comfortable Gait Fast Gait

RMSE MRE R RMSE MRE R

M1 15.56 0.10 0.94 7.45 0.04 0.94
M2 5.53 0.03 0.96 13.21 0.07 0.87
M3 9.92 0.05 0.86 12.50 0.07 0.75
M4 4.93 0.03 0.96 12.54 0.07 0.92
M5 10.78 0.06 0.95 7.73 0.04 0.96
M6 6.10 0.03 0.95 6.90 0.04 0.97

S1 (flat), S2 (sneaker), S3 (stiletto heel), M1 (S1 model), M2 (S2 model), M3 (S3 model), M4 (comfortable gait
model), M5 (fast gait model), M6 (model using all condition of dataset).

Table 5. Summary of the accuracy analysis of each model with S3 (stiletto heel shoes) testing data.

Models
Comfortable Gait Fast Gait

RMSE MRE R RMSE MRE R

M1 14.13 0.09 0.90 6.69 0.04 0.85
M2 7.63 0.04 0.91 21.32 0.12 0.81
M3 5.60 0.03 0.91 17.55 0.10 0.85
M4 6.55 0.03 0.90 20.92 0.12 0.79
M5 10.55 0.06 0.92 7.23 0.04 0.87
M6 8.46 0.05 0.90 8.67 0.05 0.82

S1 (flat), S2 (sneaker), S3 (stiletto heel), M1 (S1 model), M2 (S2 model), M3 (S3 model), M4 (comfortable gait
model), M5 (fast gait model), M6 (model using all condition of dataset).

Table 6 illustrates the ANN and CNN approach’s result under considering the shoe
base in predicting knee joint angle. Using S1, five ANN models provide R-value higher
than 0.90, but M2 provides 0.88 of R-value. Using S2, five ANN models provide R-value
higher than 0.90, but M3 provides 0.81 of an R-value. However, using S3, all ANN models
give an R-value lower than 0.90. For CNN approach, all CNN model provides R-value
higher than 0.90 when wearing S1 and S2. Using S3, five ANN models provide R-value
lower than 0.90, but M3 yields an R-value of 0.90.

Table 6. Comparison of ANN and CNN approach for each shoe types.

Models
ANN CNN

S1 S2 S3 S1 S2 S3

M1 0.94 0.94 0.88 0.93 0.94 0.87
M2 0.88 0.91 0.86 0.92 0.94 0.88
M3 0.92 0.81 0.88 0.92 0.93 0.90
M4 0.94 0.94 0.85 0.92 0.93 0.83
M5 0.93 0.95 0.89 0.93 0.94 0.88
M6 0.92 0.96 0.86 0.94 0.95 0.88

S1 (flat), S2 (sneaker), S3 (stiletto heel), M1 (S1 model), M2 (S2 model), M3 (S3 model), M4 (comfortable gait
model), M5 (fast gait model), M6 (model using all condition of dataset).

Table 7 shows quantifiable measures; mean bias and limits of the agreement give
information about the utility of each ANN model in estimating knee joint angle com-
pare with actual value. The mean bias is represented by the gap between the X-axis,
regarding the zero differences between estimating using each ANN model and actual knee
joint angle as regression analysis. In our data set, the Upper LOA (Limit of Agreement)
can be calculated using mean bias + 1.96 SD (Standard Deviation), and the Lower LOA
can be calculated using mean bias − 1.96 SD. Table 7 illustrates the positive mean bias
when comparing the knee joint angle estimate of M1, M5, and M6 with actual values.
And the negative mean bias was found with M2, M3, and M4 compare to actual value.
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Figure 14 indicates the Bland-Altman plot showing the difference between estimation re-
sult and actual knee joint angle for three shoe types and two gait speeds regarding each
ANN model.

Table 7. Summary of mean bias, Upper LOA, Lower LOA obtained from the Bland-Altman.

M1 & Act M2 & Act M3 & Act M4 & Act M5 & Act M6 & Act

Mean bias 7.01 −8.85 −3.58 −8.36 4.53 2.05
Upper LOA 18.87 7.24 14.25 5.95 16.49 13.00
Lower LOA −4.84 −24.95 −21.41 −22.68 −7.44 −8.89

Six ANN models (M1, M2, M3, M4, M5, and M6), Act (Actual knee joint angle).
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3.4. Knee Flexion Pattern

Figure 15 shows the knee flexion patterns during a GC by the three shoe types while
walking at a comfortable gait and a fast gait. ANN deep learning predicted these well, and
provided similar patterns compared to actual patterns.
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of the dataset).
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4. Discussion

This paper presents the development of a textile capacitive sensor that has two dielec-
tric layers, which are placed between three electrodes to measure foot plantar pressure.
Our findings indicated that when applying pressure below and above 11.00 kPa, our
sensor’s sensitivity was 0.232 MPa−1 and 0.070 MPa−1, respectively. According to the
studies by Zhang et al., and Duc et al., implemented pressure at different ranges varies the
sensitivity of the sensor, and the thinner the dielectric film, the higher the sensor sensitiv-
ity [28,36]. Therefore, the other pressure ranges and the dielectric thickness might affect
our sensor’s sensitivity.

Our study also investigated the performance of ANN based on foot plantar pressure
to estimate knee joint angle by three shoe types in subjects who walked at comfortable
and fast speeds. Previous studies stated that if the correlation coefficient between the
predicted and the actual measure is higher than 0.90, and the MRE is less than 15%, then
the prediction model is reliable and valid [23,37]. Moreover, the R-value lay between 0.70
to 0.90 is also empathized a strong correlation [38] between foot plantar pressure and knee
joint angle estimation. After comparing ANN and CNN approaches, it could be found that
correlation coefficients of the knee joint prediction are similar regarding three shoe types.

In our work, the estimated results for knee joint angle using foot plantar pressure of
three testing shoes provided a low RMSE, great model fitting, and strong correlation when
implementing M4 and M5 for comfortable gait and fast gait speed, respectively. So, the
obtained accuracies were higher when using speed-based ANN models than shoe-based
ANN models. Table 1 presents the relatively small sample size used in shoe-based ANN
models compared to speed-based ANN models that may have affected model training and
interpretation of this result.

We found a similar result compared to the previous research, which integrated a
deep learning approach and foot plantar pressure to estimate lower limb joint angles.
Sivakumar et al. (2018) estimated the ankle joint angle from ground reaction forces and
a Feed Forward Neural Network deep learning approach. They found a high Pearson
correlation coefficient (ρ > 0.94) when estimating ankle joint angle during the stance
phase [30]. Xie et al., (2020) predicted the lower limb joint angle base on multi-source
signals using the general regression neural network optimized by golden section algorithm
for subjects wearing an exoskeleton [23]. They employed a combination of three different
types of data sources; hip angle electromyography, and plantar pressure to estimate the
lower limb hip, knee, and ankle joint angles. From their study, the knee joint angle
estimation had a high correlation coefficient of 0.99. Their algorithm provides a high
accuracy, which may be due to the combination of multi-source data, which could improve
deep learning models during training [23].

The Bland-Altman plot analysis is a method to evaluate a bias between the mean
differences and to estimate an agreement interval, within which 95% of the differences
of knee joint angle estimate regarding each ANN model and actual data. Our finding
indicated that few scatter points move off the limit lines (Lower LOA and Upper LOA),
and some scatter points lie close to the mean bias line (Figure 14). A good agreement
between the two methods is shown through the scattering points lie relatively close to the
mean bias line [39]. We found the mean bias is not zero, which indicates the systematic
error between the estimate and actual knee joint angle. In this study, each ANN model was
built with a relatively small sample size with no pressure data appear during the swing
phase, yielding a lack of information for training the model. This result may indicate that
the sample size and no foot pressure data during the swing phase affect model training,
influencing agreement between the estimate and actual knee joint angle.

Our study revealed that the knee flexion pattern was similar to actual data when
applying ANN deep learning. These results indicate that our textile capacitive sensor
performs well and indirectly detects knee flexion angle across gait periods during two
gait speeds for three different shoe types, even with high heels. During the swing phase,
the large amplitude difference indicates that it was more challenging to predict knee joint
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angle due to a lack of signal because of the foot plantar pressure commonly present during
the stance phase. This makes it difficult for ANN deep learning algorithms to learn. Our
study is applicable for predicting joint angles for the whole GC; even though the plantar
pressure information was only present during the stance phase. Typically, gait disorders or
abnormalities could happen at any stage of the GC. Example, wearing high heels decreased
knee flexion during the swing phase [40], resulting in a stiff-knee gait that may present as
a gait abnormity. It is essential to measure the joint angles for the whole GC for further
analysis. Therefore, this approach might be useful for outdoor monitoring on joint angle
performance during the GC, especially for high heel wearers with different gait speeds.

This study has limitations, which subsequent studies will overcome. First, our textile
capacitive sensor only measured normal stress during walking; while walking with a high
heel, the stress may be subject to normal stress and shear stress. So, our sensor may not
have acquired all data for the ANN model to yield high accuracy for S3 estimation. Second,
our work limited the number of sensors in each insole with ten; increase the number of
sensors set up in the insole may induce less space between each sensor. So, less lacking foot
plantar pressure measurement provides enough information for training deep learning
models to achieve a highly accurate estimation. Third, our ANN models were used young
subject data and a relatively small sample size; even 30 GCs may significantly contribute to
the ANN capacity to learn during training, resulting in an MRE of less than 15%. Typically,
a generalized deep learning model requires a large dataset because the deep learning
approach can train using direct input features without employing a feature extraction. Our
study was under pilot test, but our finding might contribute necessary information for the
leading research, which should consider the primary variable (shoe type and gait speed)
that would affect model training when using foot pressure data. Fourth, our ANN models
were built with a dataset that has a small range of shoe height and gait speed. We only
investigated the capability of the development sensor to measure foot plantar pressure
on three shoe types with heights of 0.01 m, 0.03 m, and 0.09 m. Moreover, we did not
consider a wide range of walking speeds which means we should add more categories of
walking speeds, i.e., slow and medium speeds, that can identify which walking speed is
best for building ANN models. The foot plantar pressure may vary depending on shoe
height and gait speed [41]. Large range datasets could be made model well training that
can generalize quickly.

Although our work has limitations, based on our preliminary investigation, we found
that the foot plantar pressure measure through the textile capacitive sensor could integrate
with the ANN approach to estimate knee joint angle. Moreover, we also found that shoe
type and gait speed play an essential role, which should be considered before creating an
ANN model using foot plantar pressure to estimate knee joint angle. Future studies should
investigate those issues to achieve a generalized model that can apply with various shoe
types and gait speeds for estimating knee joint angles.

5. Conclusions

The development of a textile capacitive sensor with a less complex structure resulting
in low-cost operation can measure the foot plantar pressure even for high-heel wearers
walk at comfortable and fast speed. The integration of ANN and foot plantar pressure
data obtained from three shoe types with two walking speeds could provide more accurate
data to make functional models predict knee joint angles. We found all five ANN models
provided a high correlation efficiency of 0.75 to 0.97 for three testing shoes with two
gait speeds. Comparing shoe type and gait speed variables, speed-based ANN yields
higher efficiency in estimating knee joint angle. Moreover, analysis through Bland-Altman
also shows an agreement between actual and estimate knee joint angle through the deep
learning approach using foot pressure data. Our research supports evidence that the ANN
model and foot plantar pressure provide a strong correlation that predicts knee joint angle
for a GC. This method may provide a potential opportunity for outdoor gait monitoring to
follow up knee joint angle performance during walking, especially for high heel wearers.
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