Table 2.
Methods for identification of statistically significant interactions for Hi-C data
| Method name | Type | Base model | Specific features | Reference |
|---|---|---|---|---|
| Duan et al. 2010 | Global background | Binomial | Specifically designed for yeast genome | [121] |
| Fit-Hi-C/FitHiC2 | Global background | Binomial | Spline fitting procedure, compatible with different formats | [122, 123] |
| HOMER | Global background | Binomial | Highly compatible with the HOMER Hi-C analysis pipeline | [124] |
| GOTHiC | Global background | Binomial | Use relative coverage to estimate biases | [125] |
| FitHiChIP | Global background | Binomial | Specifically designed for HiChIP data | [126] |
| HIPPIE | Global background | Negative binomial | Account for fragment length and distance biases | [72, 127] |
| HiC-DC | Global background | Negative binomial | Use zero-inflated model | [128] |
| HMRFBayesHiC | Global background | Negative binomial | Use hidden Markov random field model | [129] |
| FastHiC | Global background | Negative binomial | An updated version of HMRFBayesHi, with improved computing speed | [130] |
| MaxHiC | Global background | Negative binomial | Use ADAM algorithm, identify interactions with enrichment for regulatory elements | [131] |
| CHiCAGO | Global background | Negative binomial | Specifically designed for CHi-C data | [132] |
| ChiCMaxima | Global background | Local maxima | Specifically designed for CHi-C data, more stringent and robust when comparing biological replicates | [133] |
| HICCUP | Local background | Local enrichment | Robust for finding chromatin loops | [3] |
| cLoops | Local background | DBSCAN | Loop detection with less computational resource | [134] |
| Automated identification of stripes | Local background | Local enrichment | Specifically designed to identify architectural stripes | [135] |