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Abstract

Purpose: Quantitative myocardial perfusion mapping has advantages over qualitative 

assessment, including the ability to detect global flow reduction. However, it is not clinically 

available and remains a research tool. Building upon the previously described imaging sequence, 

this study presents algorithm and implementation of an automated solution for inline perfusion 

flow mapping with step by step performance characterization.

Methods: Proposed workflow consists of motion correction (MOCO), arterial input function 

blood detection, intensity to gadolinium concentration conversion, and pixel-wise mapping. A 

distributed kinetics model, blood-tissue exchange model, is implemented, computing pixel-wise 

maps of myocardial blood flow (mL/min/g), permeability-surface-area product (mL/min/g), blood 

volume (mL/g), and interstitial volume (mL/g).

Results: Thirty healthy subjects (11 men; 26.4 ± 10.4 years) were recruited and underwent 

adenosine stress perfusion cardiovascular MR. Mean MOCO quality score was 3.6 ± 0.4 for stress 

and 3.7 ± 0.4 for rest. Myocardial Dice similarity coefficients after MOCO were significantly 
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improved (P < 1e-6), 0.87 ± 0.05 for stress and 0.86 ± 0.06 for rest. Arterial input function peak 

gadolinium concentration was 4.4 ± 1.3 mmol/L at stress and 5.2 ± 1.5 mmol/L at rest. Mean 

myocardial blood flow at stress and rest were 2.82 ± 0.47 mL/min/g and 0.68 ± 0.16 mL/min/g, 

respectively. The permeability-surface-area product was 1.32 ± 0.26 mL/min/g at stress and 1.09 ± 

0.21 mL/min/g at rest (P < 1e-3). Blood volume was 12.0 ± 0.8 mL/100 g at stress and 9.7 ± 1.0 

mL/100 g at rest (P < 1e-9), indicating good adenosine vasodilation response. Interstitial volume 

was 20.8 ± 2.5 mL/100 g at stress and 20.3 ± 2.9 mL/100 g at rest (P = 0.50).

Conclusions: An inline perfusion flow mapping workflow is proposed and demonstrated on 

normal volunteers. Initial evaluation demonstrates this fully automated solution for the respiratory 

MOCO, arterial input function left ventricle mask detection, and pixel-wise mapping, from free­

breathing myocardial perfusion imaging.

Keywords

blood-tissue exchange model; Gadgetron; motion correction; myocardial perfusion; perfusion 
quantification

1 ∣ INTRODUCTION

Myocardial perfusion can be evaluated with dynamic cardiovascular MR (CMR) during 

the passage of a contrast agent bolus. Most commonly, perfusion images are evaluated 

qualitatively, while quantitative evaluation would be more desirable. The potential benefits 

of quantification include: objective assessment, simpler and faster analysis, and the ability 

to detect disease with a global reduction in flow such as balanced multi-vessel obstruction 

or microvascular disease. The desired output of a quantitative perfusion study is a map of 

myocardial blood flow (MBF) in units of mL/min/g.

Quantification of myocardial perfusion using CMR was first proposed over 20 years ago,1,2 

yet qualitative interpretation of images remains the primary means available to clinicians. 

At the same time, there has been considerable technical development in methods for 

quantifying myocardial perfusion. The kinetics of gadolinium (Gd) contrast agent have 

been studied,3-5 and a number of models of myocardial tissue have been proposed. In the 

category of compartmental models, the exponential,6 constrained Fermi function (Fermi),7 

or BSpline-based model free deconvolution8 have been applied to myocardial perfusion. 

More comprehensive distributed parameter (DP) models have been applied to the estimate of 

MBF in MRI9-13 and in positron emission tomography (PET)14-16 based on modeling of the 

underlying physiology.

As illustrated in prior publications,6,11,17-24 the assumption behind the simpler 

compartmental models is that Gd delivery to the myocardial interstitial space from the 

vascular space is flow limited, at least at the low flow scenario. In this case, estimates of 

MBF are well approximated using deconvolution methods. On the other hand, additional 

studies9,12,13 have suggested that Gd delivery to the myocardium may not always be flow 

limited, especially under the stress condition. Since the compartmental model assumes a 

spatially invariant distribution or instantaneous mixing of Gd concentration [Gd]6,11 and 

does not explicitly estimate the influence of Gd extracted from the vascular space into the 
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interstitial space,25 more general DP models may be preferable and have attracted interests 

in recent years.12,13,26

Additional to the estimation of MBF (mL/min/g), distributed models9,12,13 offer estimation 

of other parameters, including permeability-surface-area product (PS, mL/min/g), blood 

volume (Vb, mL/g) or plasma volume (Vp, mL/g), and interstitial volume (Visf, mL/g). 

Additional parameters such as extraction fraction E6 and capillary transit time Tc (s)27 

may be derived from these model parameters. These additional parameters characterize 

myocardial microvascular structures and may have potential diagnostic value.28

Accuracy of perfusion quantification highly depends on the correct measurement of the 

arterial input function (AIF). Since longer saturation time (TS) leads to saturated signal 

intensities in perfusion imaging during the contrast uptake, either “dual-bolus”29 or “dual­

sequence”30 techniques have been proposed for more accurate AIF estimation. The former 

relies on injecting a separate low dose contrast bolus for AIF estimation and assumes signal 

linearity between contrast concentration and signal intensity at this dose. The latter modifies 

the saturation recovery (SR) sequence to acquire low resolution images (so-called AIF 

images) with both very short TS and echo time, reducing signal saturation.

Several important studies have proven the utility of perfusion quantification using the 

“dual-bolus” method.31 The “dual-sequence” technique requires only one contrast bolus 

injection and, therefore, simplifies the clinical workflow. Using the dual-sequence method, 

the assumption of signal linearity to [Gd] can be removed by converting the signal intensity 

of AIF and perfusion images to [Gd] (mmol/L). This strategy was previously proposed with 

fast low angle shot (FLASH) perfusion imaging sequences.32,33 Our recent development of 

the dual-sequence technique34 further extended AIF imaging to acquire two echoes during 

every readout and correcting for the signal loss due to the shortened T2* at high contrast 

concentrations.

Previously reported implementations of perfusion quantification8,19,35 have been off-line 

and time consuming, which limits the application of quantitative perfusion in a clinical 

setting. As a result, quantitative perfusion CMR has remained a research tool. To overcome 

this limitation, we developed and evaluated a fully automated, in-line solution for pixel-wise 

mapping of MBF based on our previously described optimized dual sequence method, which 

can be integrated into a clinical workflow.34

Several technical challenges have to be overcome to achieve reliable automated perfusion 

flow mapping. A typical perfusion scan often lasts 60 or more heart beats. For this 

long period, patients are unable to hold their breath. Respiratory motion, therefore, 

must be corrected to allow pixel-wise flow mapping. Other automated processing steps 

include segmentation of the left ventricular blood pool to estimate the AIF, surface coil 

inhomogeneity correction, and perfusion mapping based on pixel-wise fitting to a tissue 

model. Our solution includes: (a) automated respiratory motion correction (MOCO) for both 

AIF and perfusion image series, (b) conversion from image intensities to [Gd] units, (c) 

AIF left ventricle (LV) blood-pool mask detection to compute the input function, and (d) 

pixel-wise perfusion mapping to estimate MBF and other parameters.

Xue et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2021 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because distributed perfusion models better approximate myocardial capillary physiology 

and do not assume complete Gd extraction, a distributed kinetics perfusion model, called the 

blood-tissue exchange model (BTEX)36,37 was implemented in this study. The solution was 

implemented in C++ by means of the Gadgetron streaming image reconstruction software 

framework,38 which provides a flexible system for creating streaming data processing 

pipelines where data pass through a series of modules or “Gadgets” from raw data to 

reconstructed images. These reconstructed images are reinserted into the scanner image 

reconstruction pipeline, allowing seamless integration of the proposed solution on the MR 

scanner. As a result, the image reconstruction, AIF signal estimation, respiratory motion 

corrected perfusion images, and MBF maps were calculated without any user interaction at 

the completion of the perfusion MR scan. Our proposed method has recently been compared 

against PET and demonstrated very good agreement.39

The imaging sequence used in this study was previously published in Kellman et al.34 

This early publication also presented conversion from image intensity to [Gd] conversion 

supported by Gd phantom calibration experiments. With the focus on imaging sequence 

and experimental setup, the previous paper did not present the full algorithm to compute 

pixel-wise perfusion maps from [Gd] signals. This paper presents algorithms for each 

processing step with additional validation results: (1) MOCO using iterative scheme based 

on KL transform, (2) AIF blood detection using k-means clustering, and (3) pixel-wise 

perfusion mapping using a coarse-to-fine computational scheme for implementing the partial 

differential equation (PDE) -based BTEX model. Perfusion mapping is performed on 30 

normal healthy volunteers, and histograms of each parameter estimates are examined.

2 ∣ METHODS

2.1 ∣ Overview of inline perfusion mapping

The inline perfusion mapping proposed in this paper used the dual-sequence single-bolus 

injection for simplified clinical workflow.34 Figure 1 is an overview of the main processing 

steps, with each step explained in this section. Low resolution AIF and higher resolution 

myocardial images were acquired using a 2D multi-slice SR sequence. Images were 

acquired during free-breathing; therefore, MOCO was used to correct in-plane motion. 

The AIF sequence used 2 echoes in order to measure and correct for T2* loss during 

the first pass. To convert signal intensity to units of contrast agent concentration [Gd] for 

both AIF and myocardial images, proton density (PD) images were acquired before the SR 

readouts and used to correct surface coil inhomogeneity and to normalize signal intensity 

thereby enabling LUT (look-up table) conversion.34 The [Gd] signals for the AIF and 

myocardium were temporally resampled to 0.5 s per sample using linear interpolation which 

also corrected for missed triggers resulting in a fixed sampling corresponding to a heart rate 

(HR) of 120 bpm, which are then input to the pixel-wise calculation of MBF. This also 

allowed calculation of MBF to delay the AIF in 0.5 s steps in estimating the arterial delay. 

It was empirically determined that 0.5 s step size was adequate by viewing the mean square 

error function vs arterial delay.
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2.2 ∣ Image acquisition and reconstruction

The sequence parameters for the dual sequence myocardial perfusion imaging used in this 

study were as previously described34 where detailed imaging parameters may be found. 

Some key imaging parameters are: field of view = 360 × 270 mm2, for myocardial perfusion 

imaging, matrix size 192 × 111, interleaved acceleration R = 3, Flash readout, repetition 

time = 2.1 ms, slice thickness 8 mm, trigger delay (saturation recovery delay time [TD]) = 

72 ms. For AIF, matrix size 64 × 34, interleaved acceleration R = 2, Flash readout, repetition 

time = 2.45 ms, slice thickness 10 mm, and TD = 2.8 ms. For the perfusion imaging, 

linear phase encoding order was used with the truncated lines of k-space in latter half. The 

slice order is from base to apex with the AIF slice for basal slice acquired following the 

R-wave trigger (TD = 2.8 ms). Total imaging duration including SR preparation and delay 

was 143 ms per slice, which allowed imaging the AIF and 3 slices up to high HR of 120 

bpm. A chemical shift fat saturation was used for the myocardial imaging slices. The total 

number of measurements including 3 PD weighted frames was typically 60. The bolus was 

administered at approximately 8 heart beats after the start of the scan to ensure an adequate 

number of baseline images prior to contrast arrival. The study was performed using the 3T 

MAGNETOM Prisma (Siemens AG Healthcare, Erlangen, Germany) and used a FLASH 

protocol.34

Image reconstruction and processing was implemented using the Gadgetron software 

framework.38,40,41 Multichannel data were acquired with temporally interleaved sampling 

and were noise prewhitened using prescan noise. Parallel imaging reconstruction was 

performed using TGRAPPA.42 For the AIF images, parallel imaging kernels are computed 

on the first echo and applied to both echoes. Raw filtering was used to suppress Gibb’s 

ringing.34,43 A Gaussian raw filter truncated at 1.5 standard deviations (SDs) was used. The 

loss in spatial resolution was 18% compared to uniform weighting, and 1st sidelobe was 

suppressed by >12:1. Signal-to-noise ratio (SNR) unit reconstruction44 was used throughout 

all processing steps. This ensures optimal SNR in reconstruction after noise prewhitening 

and identical scaling ratio was applied to both SR and PD images. Therefore, the normalized 

SR/PD images can be correctly computed for image intensity to [Gd] conversion. SNR 

scaling facilitates threshold-based noise masking.

2.3 ∣ MOCO

Free-breathing perfusion images were corrected for respiratory motion using MOCO. This 

step utilized nonrigid image registration45,46 applied in an iterative manner. To cope with 

significant image contrast variation during the contrast bolus passage, instead of directly 

registering perfusion images against each other, synthetic perfusion series were derived from 

a Karhunen-Loève (KL) transform which computed principal eigen-images with similar 

contrast (KL transform, when applied to discrete random vectors, is computed by principal 

component analysis). MOCO was achieved by registering perfusion images pairwise with 

KL series.

As shown in Figure 2, the KL transform was computed over a sliding temporal window 

with variable width. Suppose the number of perfusion images was N, the initial temporal 

window width of KL transform was N/3. To gradually bring back perfusion contrast, this 
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process was iteratively repeated. At each iteration, the synthetic images were recomputed 

from the registered perfusion series with a decreased window width. This approach can deal 

with significant contrast changes during the bolus passage, which had been shown to be a 

major challenge for myocardial perfusion MOCO.47 This algorithm iterated nonrigid image 

registration and KL transform-based model image estimation to decouple perfusion contrast 

changes from respiratory motion. One example of this iterative MOCO is shown in Figure 3. 

This algorithm was applied to both perfusion and AIF series. By using nonrigid registration, 

the iterative MOCO was applied to the entire image without need to crop out the heart 

region. More details are given in the Appendices.

2.4 ∣ AIF LV blood detection

The motion corrected low resolution AIF image series was used to extract the AIF. Figure 

4 illustrates the processing steps for automatically detecting the AIF LV blood pool. First, 

the AIF PD image was used to detect the noise background. Since the noise SD was unity 

after the SNR unit reconstruction, a simple threshold of 3 SDs was used. For all foreground 

pixels as determined by the noise mask, the time intensity curves were analyzed and foot and 

peak time points were determined using a scale-space–based detector.48 The foot time point 

was defined as the moment of contrast arrival and the time of peak was the moment where 

contrast concentration reached its maximum value (illustrated in Figure 4).

To achieve robust detection in the presence of additive noise, the scale-space detector first 

creates multiple smoothed AIF curves, filtered with a Gaussian kernel with different values 

of sigma as “scale.” If a feature, such as the AIF peak point, can be detected on the set 

of smoothed curves across all scales, it was considered a consistent feature. That is, this 

strategy achieved detection in both temporal and scale dimension. If a feature point existed 

in the smaller scale and vanished in the larger scale, it was not a stable feature, but rather 

a local signal change or noise-caused feature. After detecting the foot and peak time points, 

the upslope, area-under-curve (AUC), and peak time were computed for every foreground 

pixel. The blood pool has very strong contrast uptake and, therefore, high upslope and AUC 

value. Pixels with values in both the top 10% upslope and top 10% AUC were picked as the 

candidates for LV blood pool mask.

A secondary classification of all candidate pixels was based on the k-means algorithm49 

with 2 initial clusters. The 2 initial clusters were classified as right ventricle and LV based 

on arrival time, and the LV cluster was re-clustered using k-means with 4 clusters. The LV 

cluster was selected as the one with the highest correlation coefficient between the centroid 

signal of each candidate cluster with the original LV cluster (Figure 4). The AIF image, due 

to its lower spatial resolution, is more vulnerable for partial volume effects. Edge pixels can 

often have reduced intensity values due to partial volume with adjacent tissue and limited 

spatial resolution. The final LV blood pool mask was calculated using a further erosion step 

based on keeping the top 15% percentile values.

2.5 ∣ Conversion from signal intensity to [Gd]

The dual-echo AIF signals were extracted from the blood pool mask and used to correct the 

T2* signal loss, as proposed in Kellman et al.34 Both the AIF and the myocardial images 
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were corrected for surface coil intensity variation using the initial PD frames, which had 

been co-registered with the SR images. To convert signal intensity to [Gd], the measured 

AIF and myocardial perfusion SR images were normalized by the intensity of PD images 

to get the SR/PD value as input to the LUT. As described in Kellman et al,34 a Bloch 

simulation was performed to compute the readout magnetization of SR and PD images. 

Note that the results varied slightly from previously reported34 due to improved modeling 

of the slice profile introduced more recently. The previous study used a simple uniform 

slice profile for readout pulse, whereas in this paper, the improved software incorporated 

the actual Hanning weighted sinc radiofrequency pulse into the Bloch equations. The inline 

mapping software extracted all necessary parameters on the fly from the actual imaging 

protocol, such as SR delay time (TD), number of phase encodes, acceleration factor, readout 

sequence type (FLASH or steady-state free precession) and flip angles, etc. A LUT was 

constructed with the horizontal axis being the [Gd] (0 to 20 mmol/L with step size of 0.01 

mmol/L), and the vertical axis being the normalized intensity SR/PD (SR signal intensity 

normalized by PD signal intensity). Separate LUTs were constructed for the low resolution 

AIF and the higher resolution myocardial imaging protocols.

2.6 ∣ Perfusion mapping

Perfusion Gd images and AIF Gd curve were input into the distributed blood tissue 

exchange (BTEX) model36,50 for the estimation of MBF and other parameters. For every 

pixel in the heart region, BTEX model solved 2 partial differential equations:

∂Cp
∂t = −FpL

V p
⋅ ∂Cp

∂x + PS
V p

⋅ (Cisf − Cp) + Dp ⋅ ∂2Cp
∂x2 (1)

∂Cisf
∂t = − PS

V isf
⋅ (Cisf − Cp) + Disf ⋅ ∂2Cisf

∂x2 (2)

where subscripts p and isf corresponded to plasma and interstitial fluid space, respectively. C 
was contrast agent concentration. Four parameters to be estimated were: F, blood flow; PS; 

and Vp and Visf, plasma and interstitial volume. Dp and Disf were the Gd molecular diffusion 

coefficients within the vascular and interstitial space, set to be fixed at 1e-5 cm2/s and 1e-6 

cm2/s.37,51 L was the capillary length, fixed to be 1 mm, as suggested in Bassingthwaighte 

et al.36 The total length L was divided into a finite number of steps (30 steps were used) and 

PDEs were solved on the grid. The hematocrit (HCT) was required to convert blood [Gd] to 

plasma concentration for AIF and used in calculating final blood flow and blood volume:

Cp(t) = Cb(t)
1 − HCT , Fb = Fp

1 − HCT , V b = V p
1 − HCT (3)

A fixed value of HCT = 0.42 was assumed for the tested normal subjects, and sensitivity to 

this HCT parameter was analyzed later in the results. Myocardial density used in this study 

was 1.05 g/mL.52
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Pixel-wise BTEX model fitting was solved iteratively, as illustrated in Figure 5. The fitting 

process starts with an initial guess of model parameters. The BTEX model parameters 

were then solved for using the AIF [Gd] curve as the driving input function. The resulting 

Gd residual signal for each set of parameters was compared with the measured perfusion 

[Gd] curve and the parameter estimate used the mean squared error (L2 norm) as the 

goodness-of-fit measure. Model parameters were then adjusted in an optimization step until 

convergence. More details for BTEX modeling are given in Appendices.

2.7 ∣ Inline integration

To deploy the proposed solution in a clinical setting, all processing steps were fully 

automated. Software was implemented using C++ on the Gadgetron framework.38,40 

Gadgetron software may be run using several configurations including: on the scanner image 

reconstruction computer, on a networked computer, or using cloud computing.40 In this 

study, an external networked personal computer (PC) was used, and all raw data were saved 

to enable retrospective analysis. Raw data were converted to the ISMRMRD standard,41 

which was de-identified and sent to Gadgetron for processing. All processing steps including 

parallel image reconstruction, MOCO, and pixel-wise flow mapping were performed with 

OpenMP-based multi-threading. Reconstructed perfusion images in intensity and [Gd] units, 

AIF [Gd] curve plots, and MBF maps were sent back to the scanner host from the Gadgetron 

computer without any user interaction and all series were saved into the Dicom database. 

This scanner integration was demonstrated in Figure 6A, which shows the actual screenshot 

of the scanner. This figure illustrated a scan using the proposed inline quantitative perfusion 

mapping. In addition to the flow maps and the MOCO images, the AIF signals and measured 

HR during acquisition were also sent back to scanner as plots (Figure 6B). Parametric maps 

were displayed with custom colormaps. A version that ran directly on the scanner’s image 

reconstruction computer was also tested and reconstruction times were measured for both 

external PC and using scanner computer hardware.

2.8 ∣ In vivo imaging experiments

The proposed inline perfusion flow mapping technique was implemented and deployed at 

Leeds Teaching Hospitals, United Kingdom, using a 3T clinical MR scanner (Magnetom 

PRISMA, Siemens, software version VE11C). Identical cardiac perfusion imaging protocols 

were used for stress and rest. The study was approved by the respective local institutional 

review board and ethics committee, and all subjects gave written informed consent. 

Anonymized data were analyzed at National Institutes of Health (NIH) with approval by 

the NIH Office of Human Subjects Research (Exemption #13156). The Gadgetron-based 

imaging reconstruction was used to compute pixel-wise perfusion flow maps using a 

networked Linux PC-based configuration.

Thirty healthy normal volunteers (11 men and 19 women; mean age, 26.4 ± 10.4 years) 

were recruited to receive stress and rest perfusion scans. The recruited volunteers had no 

medical history of diabetes, hypertension, hypercholesterolemia, or bradycardia (<45 heart 

beat per min) and had systolic blood pressure ≥ 90 mmHg. All subjects were instructed 

not to take in caffeine within 24 h before the examination. Gd contrast agent (Gadovist, 

Bayer Schering Pharma AG) was administered as a bolus of 0.05 mmol/kg at 5 mL/s with 
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20-mL saline flush using a power injector (Medrad MRXperion Injection System, Bayer). 

For stress perfusion, adenosine was administered by continuous intravenous infusion for 

4 min at a dose of 140 μg/kg/min before contrast injection. Blood pressure and HR were 

recorded during adenosine infusion to monitor hemodynamic response, and symptoms were 

recorded. Stress images were reviewed for the presence of splenic switch-off to ensure 

adequate adenosine response.53

All scans used the FLASH perfusion readouts. The stress perfusion was performed first, and 

the rest images were acquired after ~15 min. All perfusion studies acquired 3 short axis 

slices (basal, medial, and apical) for every heartbeat. A total of 60 heart beats were imaged. 

Imaging experiments were conducted completely with free breathing.

2.9 ∣ AIF LV blood detection

The AIF LV blood detection step was validated against manual delineation. For manual 

delineation, an experienced operator (H.X., 9 years of experience) drew a region of interest 

(ROI) in the LV blood pool of the AIF images. Resulting dual-echo time intensity curves 

went through the same percentile-based filtering step and T2* correction as the automated 

algorithm and was finally converted into [Gd] units. To validate the accuracy of LV blood 

pool detection, the AIF curves derived from automatic detection was compared to the results 

using the manually drawn ROI. AIF peak [Gd], first-pass duration (from foot to valley; 

Figure 4), and AUC during first-pass was computed for both auto and manual curves. The 

automated AIF Gd curves were used to compute flow maps which was compared to maps 

computed with manual curves. We further visually inspected the masks to evaluate whether 

the LV was correctly selected in all cases.

2.10 ∣ MOCO

MOCO performance was validated by visual assessment (H.X., with 9 years of experiences 

in perfusion imaging and MOCO) using a score between 1 and 4 (0.5 increment). All motion 

corrected perfusion series were converted to movie files and viewed in random order. A 

score of 1 indicated the worst quality and a score of 4 was the best. Specifically, a score of 

4 (excellent) was given if MOCO removed all discernible motion and the heart was perfectly 

still. A score of 3 (good) was given for images with a small amount of residual motion, but 

still suitable for whole myocardium perfusion quantification. A score of 2 (fair) was given 

to images with borderline MOCO, which could still be used to quantify blood flow in part 

of the myocardium. A score of 1 (poor) meant insufficient image quality to perform flow 

mapping for all myocardium with visible stretching and other MOCO failures.

To quantify the performance of MOCO, myocardium was further manually delineated for 

these subjects at peak inspiration and expiration. After MOCO, the segmented myocardium 

was propagated to the corrected images using the deformation fields. An ideal MOCO 

should lead to perfect overlap between segmented myocardium from 2 frames. Therefore, 

the overlap rate before and after MOCO was computed as the Dice similarity coefficient 

(Dice).54 For 2 segmented regions A and B, the Dice is defined as 2 × area(A∩B)/(area(A)

+area(B)). This value will be 1 for a perfect overlap and 0 for nonoverlap.
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In addition, the false positive (FP) and false negative (FN) errors were computed. FP was 

defined as the percentage area of segmented myocardium in the first frame that was not 

labeled in the second and FN was defined as the percentage area of myocardium in the 

second that was not labeled in the first. Because the cardiac motion can be nonrigid in its 

nature, the myocardium boundary errors (MBE), which was defined as the mean distance 

between endocardial and epicardial contours of 2 frames, were computed for all series 

as well. The binary mask of myocardium was upsampled by 2×, and all boundary pixels 

were used to compute MBE. While Dice ratio will capture the bulk motion due to failed 

breath-holding, MBE could highlight the local myocardial deformation. For a perfusion 

series, these 4 measures (Dice, FP, FN, and MBE) were computed.

2.11 ∣ Perfusion flow mapping

Pixel-wise maps were analyzed for each slice at both stress and rest with the whole 

myocardium segmented manually. Endocardial and epicardial borders were drawn, 

excluding papillary muscles. Where the left ventricular outflow tract was included, or partial 

volume effect meant the myocardium was too thin to contour, these data were excluded from 

further analysis.

To study the influence of actual HCT on perfusion flow values, the HCT used in the BTEX 

flow mapping was varied from 0.3 to 0.6 in steps of 0.05 and the resulting flow estimates 

were compared to the flow values for the normal subjects using the nominal HCT.

2.12 ∣ Statistical analysis

The resulting values were presented as mean ± SD. The paired t-test was used when 

appropriate, e.g., to compare MBF values from stress and rest studies for the same subject. 

A P-value less than 0.05 was considered statistically significant. Histograms were calculated 

for parameter values across 30 subjects.

3 ∣ RESULTS

For the cohort of N = 30 normal subjects, the rest scans were performed 15.5 ± 3.1 min 

after stress. The HR was 94 ± 13 bpm for stress and 63 ± 8 bpm for rest. The rate pressure 

product was 10,776 ± 2296 for stress and 7235 ± 1453 for rest. Perfusion images were 

visually checked for splenic cutoff to confirm stress response. All MBF maps were first 

visually inspected to confirm good quality for all subjects. Results of processing steps are 

reported in following paragraphs.

3.1 ∣ MOCO

Figure 7 demonstrates typical performance of MOCO (also in Supporting Information 

Videos S2, S3, which are available online). Given the complete free-breathing acquisition, 

the automated MOCO “froze” the heart so that the tissue appears stationary (Figure 7A,B), 

therefore enabling pixel-wise flow mapping. An example of dual-echo MOCO results for 

AIF images are shown in Supporting Information Video S4.
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The KL-based MOCO algorithm was robust in both stress and rest scans to handle contrast 

changes during the Gd uptake. Mean quality score for MOCO was 3.6 ± 0.4 for the stress 

and 3.7 ± 0.4 for the rest. To illustrate the performance of the MOCO processing step, 

Supporting Information Videos S5 and S6 give examples with scores being 4.0 and 3.0. 

The MOCO example in Supporting Information Video S6 was challenging due to significant 

respiratory motion where the diaphragm experienced large anatomical deformation between 

frames. The MOCO algorithm is optimized to correct respiratory motion for the heart 

region, and for this case, it was not as effective in aligning the diaphragm where there 

is drastic through-plane motion. Although the heart was better aligned, there is still some 

residual motion visible in the video.

For the stress, the Dice coefficients were significantly improved after the MOCO processing 

step (before: 0.67 ± 0.16; after: 0.87 ± 0.05; P < 1e-6). The MBEs were significantly 

reduced from 2.28 ± 0.93 mm to 0.88 ± 0.19 mm (P < 1e-6). Same improvements were 

found for both FP (before: 0.33 ± 0.17; after: 0.12 ± 0.06; P < 1e-6) and FN (before: 0.33 

± 0.16; after: 0.13 ± 0.06; P < 1e-6). For the rest, before and after the MOCO, Dice was 

0.66 ± 0.17 and 0.86 ± 0.06; FPs were 0.34 ± 0.18 and 0.13 ± 0.07; and FNs were 0.35 ± 

0.17 and 0.15 ± 0.07. The MBEs were 2.11 ± 0.94 mm and reduced to 0.89 ± 0.33 mm. 

All improvements were significant (P < 1e-6). Given the acquired spatial resolution of 360 

mm/192 = 1.875 mm, the residual MBEs were under half pixel.

3.2 ∣ AIF [Gd]

Using the automated AIF blood masking, the AIF peak [Gd] was 4.4 ± 1.3 mmol/L at stress 

and 5.2 ± 1.5 mmol/L at rest. The duration of contrast first pass (from foot to valley of 

AIF time-Gd curve; Figure 4) was 10.2 ± 1.6 s at stress and 13.9 ± 2.5 s at rest. The T2* 

in LV blood pool at peak concentration of bolus arrival was 14.7 ± 3.2 ms and 10.6 ± 

2.0 ms for stress and rest peak [Gd], respectively. Without T2* correction, AIF peak [Gd] 

decreased to 4.0 ± 1.1 mmol/L (P < 1e-3) at stress and 4.7 ± 1.2 mmol/L (P < 1e-3) at 

rest. The pixel-wise MBF maps were computed using both the T2* corrected AIF and the 

first echo signal curve without T2* correction for comparison. Lack of T2* correction led to 

significant overestimation of MBF of 9.1% (P < 1e-6), because of the reduction of AIF [Gd] 

signal.

3.3 ∣ AIF blood detection

Visual inspection verified the auto-generated AIF masks properly detected the LV blood 

pool for all scans. The manual masking of AIF blood pool gave an AIF peak Gd of 4.2 ± 

1.2 mmol/L at stress and 5.2 ± 1.6 mmol/L at rest. First pass duration was 11.0 ± 2.3 and 

14.9 ± 3.2 s at stress and rest, respectively. AUC was 17.2 ± 2.8 mmol·s/L and 30.1 ± 4.1 

mmol·s/L for stress and rest. No significant differences were found against automated results 

(AIF peak Gd; P = 0.71 for stress and 0.94 for rest; first-pass duration, P = 0.52 for stress 

and 0.84 for rest; AUC, P = 0.67 for stress and 0.86 for rest). The manually generated AIF 

[Gd] curves were used to compute perfusion MBF maps. No significant differences were 

found between flow values computed with manual and automated masks (P = 0.52 for stress 

and 0.65 for rest).
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3.4 ∣ Perfusion flow mapping

The adenosine stress was found to induce a significant increase in MBF. Mean flow at stress 

and rest were 2.82 ± 0.47 mL/min/g and 0.68 ± 0.16 mL/min/g, respectively. PS at stress 

was 1.32 ± 0.26 mL/min/g and significantly decreased to 1.09 ± 0.21 mL/min/g at rest (P 
< 1e-3). Blood volume was 12.0 ± 0.8 mL/100 g at stress and 9.7 ± 1.0 mL/100 g at rest 

(P < 1e-9), indicating good adenosine vasodilation response. Visf was 20.8 ± 2.5 mL/100 g 

(equivalent to 19.8 ± 2.4% volume fraction) at stress and 20.3 ± 2.9 mL/100 g (19.3 ± 2.8%) 

at rest (BTEX Visf, stress versus rest: P = 0.50). The equivalent extracellular volume fraction 

in percentage with BTEX model (computed as 100 × (Visf + Vp)/1.05) was 26.2 ± 2.3% for 

stress and 24.7 ± 3.2% for rest, in good agreement with previously reported values using 

T1-mapping methods.55

The extraction fraction (E) computed from PS and F using the BTEX model was 0.87 ± 0.08 

at rest and dropped to 0.55 ± 0.05 at stress. Figure 8 shows an example of pixel-wise maps 

of BTEX model for stress and rest acquisition. Supporting Information Figure S1 provides 

the histogram plot of all parameters of all cases within the ROI. The cohort mean of MBF 

SD across myocardium was 0.45 ± 0.04 mL/min/g for stress and 0.13 ± 0.04 mL/min/g for 

rest, corresponding to coefficient of variation (CV) of 16% for stress and 19% for rest.

3.5 ∣ Sensitivity to HCT

Sensitivity of flow estimates to HCT was illustrated by performing the flow mapping with 

fixed HCT from 0.3 to 0.6 in steps of 0.05 and a nominal value of 0.42. Figure 9 plots 

the MBF estimated with fixed HCT versus the nominal value. The mean percentage error 

(Figure 9) was from −3.8% at HCT = 0.3 to 2.5% at HCT = 0.6.

3.6 ∣ Processing time

The time for image reconstruction and flow mapping was measured for the typical protocol 

which acquired the AIF and 3 slices for 60 heartbeats. Typical processing times were 

119 ± 9 s using an external networked Linux PC computer with 16 physical cores (Intel 

Xeon CPUE5-2640v3 @ 2.50 GHz, 128 GB RAM). This time was measured from the 

end of MR data acquisition to the moment when all maps were received by the scanner 

host computer. The processing time was also measured to be ~3 min using the scanner’s 

image reconstruction computer. For the specific MR scanner used in this study, the image 

reconstruction computer had 16 cores with Ubuntu 12.04 (Intel Xeon E5-2658 @ 2.10 GHz, 

64 GB RAM).

4 ∣ DISCUSSION

4.1 ∣ In-line implementation of automated workflow

The potential benefits of quantitative perfusion for the diagnosis of cardiovascular diseases 

have long been recognized, but its accessibility is still limited, partly due to the lack of 

a standardized and practical technical solution. The proposed inline perfusion mapping 

computed MBF maps and sent them back to scanner at the end of perfusion data acquisition. 

This eliminated the need to perform off-line analysis and simplified clinical workflow for 

perfusion quantification. Typical ranges of absolute MBF values may be established for 
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different gender, age, or pathological conditions. The ability to deploy identical software 

solutions on multiple sites is also helpful to establish and conduct cohort studies for 

different diseases and patient groups. This will favor the clinical acceptance of perfusion 

quantification and establish it as a valid diagnostic tool in the toolkit of cardiac MRI. The 

ability to generate perfusion maps inline on the scanner may allow timely refinement of an 

ongoing study while patients are still in the scanner.

The present study was performed on a 3T scanner using the SIEMENS PRISMA model, 

but has also been used at 1.5T with the SIEMENS AERA34 and AVANTO FIT, and 

older generation 3T models such as SIEMENS SKYRA56-58 and SKYRA FIT. While the 

Gadgetron software is independent of vendor, the current sequence has been developed on 

the SIEMENS platform.

4.2 ∣ MOCO

MOCO is an essential step to achieve fully automated inline flow mapping. The majority of 

proposed techniques to align perfusion images are based on image registration, for example, 

either rigid body59,60 or nonrigid.61-64 It is recognized the rapid contrast change during the 

bolus passage makes robust image registration difficult.61 To overcome this issue, different 

strategies were proposed, including progressively applying registration on consecutive 

perfusion images,48 detecting image features and tissue boundaries for registration,65 and 

estimating model image to minimize contrast change.61,62,64 Among the latest category to 

which the proposed algorithm belongs, independent component analysis was used in Milles 

et al64 to separate LV, right ventricle, and myocardium and derive a motion-free reference.

Principle component analysis was used by Scannell et al,62 where the registration was 

formulated as a 2-step process. First, the rigid body registration was used to remove 

the bulk motion, and a nonrigid refinement step was added to align myocardium. This 

method required manually cropping an ROI around the heart to start the bulk MOCO step. 

Another model-based method used the 2-compartment kinetic model66 to estimate perfusion 

response, and MOCO was performed between estimate response image series and acquired 

images. There is no consensus at this moment as to the best approach. The proposed method, 

as compared to that of Scannell et al,62 has the advantage of being fully automated and 

did not require a rigid body registration step, because iterative model computation gradually 

removes large respiratory motion. Its disadvantage is the elevated computational cost. As a 

limitation of this study, proposed MOCO algorithm was not compared to other published 

methods. Instead, the focus of this paper was on the inline processing workflow and its 

overall performance.

4.3 ∣ Comparison of CMR perfusion quantification with PET

An independent comparison of our inline solution with BTEX model has been reported in 

Engblom et al.39 This study compared perfusion flow mapping with 13N-NH3 cardiac PET 

as a clinically accepted technique. Twenty-one patients were enrolled and underwent both 

CMR and PET perfusion scans on the same day. Excellent agreement between our CMR 

myocardial perfusion mapping method and PET perfusion was found for MBF (r = 0.92 for 
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global and r = 0.83 for regional MBF) as well as global and regional myocardial perfusion 

reserve.

Repeatability of the proposed CMR myocardial perfusion mapping was tested and reported 

in Brown et al.67 Forty-two volunteers underwent repeated adenosine stress and rest 

perfusion CMR on the same day and again after a minimum interval of 7 days. There 

were no significant differences in intra- and inter-study stress and rest MBF or myocardial 

perfusion reserve. Within subject coefficient of variation was 8% for rest and 11% for stress 

within the same day, and 11% for rest and 12% for stress for studies repeated after 7 days. 

These values are comparable to those in the PET literature.

4.4 ∣ Models and E

The principle to estimate MBF from [Gd] utilizes the dynamics of Gd transport across 

the capillary membrane from the vascular space to the interstitial space. An in-depth 

review of this topic can be found in Sourbron and Buckley.11 Several models with varying 

complexity have been proposed to estimate MBF13,25,50,68-70 and have been compared 

in several studies.9,19 Models in these studies have included single compartment, such 

as exponential,5 Fermi,7 model-free,8 and 2-compartment exponential6 and 2-compartment 

Fermi,71 and DPs.9,11,13 The basic concept of MBF estimation is to find the best fit model 

parameters such that, when the forward model is applied to the AIF, the resulting myocardial 

signal will agree best with the signal in the least squares sense. An important distinction 

between models is their treatment of blood flow from the capillaries to the interstitium, 

also known as extravasation. Simpler models that estimate flow by deconvolution measure 

the unidirectional influx perfusion constant rate of Gd from blood space to the interstitial 

space, known as Ki or also as Ktrans. Rest perfusion has lower myocardial flow with higher 

extraction of Gd to interstitium. In this flow limited regime, Ki is a good estimate of flow. 

Under adenosine stress condition, the E is significantly reduced, and Ki underestimates the 

MBF. Distributed models explicitly estimate additional parameters, including the PS, that 

allow calculation of the E. Distributed models also may estimate the interstitial volume and 

myocardial blood volume (MBV), which may potentially have additional diagnostic value.

There is not a current consensus in the literature on perfusion models or the best strategy 

for quantifying MBF. Our previous study34 presented comparison of BTEX to Fermi model, 

showing the latter gave slightly lower estimates of MBF. Because this study is to present 

an algorithmic method of inline processing, detailed model comparison is out of the scope 

here. On the other hand, although only the BTEX method was implemented and tested in 

this study, the proposed inline mapping solution can act as an easy-to-use testing platform 

for different models, because prior processing steps, such as MOCO, Gd conversion, and 

surface coil inhomogeneity correction are already built into the workflow. It is possible to 

use the exported Gd images to test new flow models as well. This will allow a more rigorous 

comparison among different models by feeding them identical input data.

Results show stress flow had increased variation compared to the rest. This finding is 

consistent with myocardial flow quantification using PET,72 where 23 published PET studies 

were summarized for a total of 363 healthy volunteers. Some compounding factors may 

contribute to this increased variation. The imaging was more challenging for stress condition 
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with elevated HR. Stronger breathing can lead to more through-plane motion and fluctuation 

of perfusion signal intensity. The sensitivity of perfusion flow modeling may decrease as 

the flow goes higher. This may lead to reduced accuracy of parameter estimation. Further 

analysis of these contributing factors remains an important research topic for perfusion flow 

quantification.

4.5 ∣ Dependence on HCT

The implemented BTEX model and other distributed models11 require knowledge of the 

HCT. The models are nonlinear in nature; therefore, the MBF estimate does not scale 

linearly with input concentration, [Gd], which depends on the value of HCT. In this study, 

we varied the assumed HCT and compared results to the MBF estimated with nominal HCT. 

For the normal subjects, the range of actual HCT was small and led to insignificant changes 

in estimate of blood flow when using an assumed nominal value of 0.42. Although it is 

possible to modify the workflow to enter the measured HCT, this is not always available at 

the time of scanning.

The estimate of interstitial blood volume (similar to extracellular volume fraction) depends 

linearly on HCT; therefore, an estimate of the actual HCT is required to output this variable. 

An alternative strategy to directly measuring the HCT is to measure the precontrast T1 

values of LV blood pool and estimate the HCT using the linear relationship of longitudinal 

blood relaxivity to the blood HCT, which has been demonstrated for synthetic extracellular 

volume fraction mapping.73 Implementing this in-line without entering measurements from 

previous imaging would require a sequence modification to integrate a T1 measurement at 

the start of scan with longer trigger delay (TD) suitable for native blood T1.

The influence of HCT was shown to be limited for the MBF parameter. The reason lies in 

Equation 5, where the AIF [Gd] is scaled up to be plasma concentration. The scaled AIF 

signal is input into the model to estimate plasma flow. The resulting plasma flow is scaled 

again for myocardial flow. The effect of 2 scaling steps tends to cancel, but not perfectly 

due to the nonlinear nature of model. The same effect happens for blood volume, which is 

less influenced by HCT. Other parameters, PS and interstitial volume, are more vulnerable to 

change in HCT, because of AIF input is scaled directly.

This study used the nominal HCT for the BTEX modeling, which is equivalent to assuming 

that the myocardium capillary HCT is the same as AIF blood. This simplifying assumption 

was used in previous publications6,9,11,74 and also adopted here. The HCT of the capillary 

blood can be 63-75% of HCT in large vessels75,76 and difficult to measure in vivo. This 

study showed MBF is not very sensitive to HCT, with the error being less than 5% for a 

wide range of supplied HCT values.

4.6 ∣ Imaging technique: Variation and limitation

The dual-sequence implementation used in this study was designed to support both balanced 

steady-state free precession and Flash readouts. This study utilized the Flash readout at 

3T, while balanced steady-state free precession is commonly used at 1.5T to improve the 

SNR. The inline processing was implemented for both sequence types. The current imaging 

protocol acquires 3 slices which does not provide good coverage of the apex. Greater 
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coverage would be highly desirable. One approach to achieving this is to image every other 

heartbeat, allowing 6 slices to be imaged.56 Importantly, the dual-sequence samples the AIF 

every heartbeat. This approach required reliable electrocardiograph gating.

This study utilized multi-slice 2D imaging with single-shot readout. The method is 

robust against arrhythmia and benefits from excellent SR.34 One limitation is the lack of 

ability to capture through-plane motion. While nonrigid MOCO can correct respiratory 

motion, significant through-plane motion cannot be easily corrected in the current scheme. 

Therefore, good slice planning is needed. To this end, 3D perfusion imaging may be 

desirable,77 or use of a navigator with slice tracking for prospective MOCO. There are 

remaining technical problems to be solved for quantifying 3D perfusion imaging, including 

fast and robust 3D MOCO, intensity to [Gd] conversion, and pixel-wise flow mapping for 

large 3D volume.

4.7 ∣ Validation

Evaluation results were presented in this paper to verify the effectiveness of proposed 

technical algorithms. Quantitative results were presented for MOCO, AIF detection, and 

pixel-wise flow mapping, with validation on imaging sequence and intensity to [Gd] 

conversion presented in Kellman et al.34 Based on the proposed inline solution, there is a 

comparison study with PET cardiac perfusion,39 showing good agreement between MR flow 

measurement and commercial PET MBF software. While all these results positively support 

the proposed inline solution, the need for clinical validation of perfusion flow mapping 

remains for different disease conditions, clinical settings, and multi-center trials. This paper 

is intended to serve as a technical starting point of introduction of inline flow mapping. The 

proposed fully automated solution may facilitate the clinical validation of perfusion flow 

mapping on a larger data cohort.

5 ∣ CONCLUSIONS

We propose an automated workflow for inline quantitative perfusion flow mapping. The 

proposed solution allows free-breathing perfusion imaging and automated generation of 

myocardial flow maps without any user interaction. A DP Gd kinetics model (BTEX) 

was implemented in the proposed solution and tested on normal volunteers. This initial 

evaluation demonstrates the fully automated nature of the proposed solution and serves as 

the basis for further clinical validation.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

ALGORITHM OF MOTION CORRECTION

MOCO used nonrigid image registration45,46 applied in an iterative fashion. Source images 

were registered pairwise with target images derived from a KL transform, which computed 

principal eigen-images with similar contrast. The KL transform was computed over a sliding 

temporal window. At each stage of the iteration, the target images were recomputed from the 

registered images with a decreased window width. This approach can deal with significant 

contrast changes during the bolus passage which has been shown to be a major challenge 

for myocardial perfusion MOCO.47 As shown in Figure 2, this algorithm iterates nonrigid 

image registration and KL transform-based model image estimation to decouple perfusion 

contrast changes from respiratory motion.

KL MODEL IMAGE ESTIMATION

Given a temporal window width 2W + 1, a KL model image series can be derived from 

the perfusion image series. Assume a series of perfusion images as f(i,t), where i = 0, 1, 

…, NxNy and t = 0, 1, …, Nt. Nx and Ny are number of image pixels along readout and 

phase encoding direction. Nt is the number of perfusion frames acquired in the scan. For a 

perfusion frame ∈ [0, Nt], a data matrix ft can be assembled to include all frames from [t – 

W, t + W]:

ft =

f(0, t − W ) f(0, t − W + 1) … f(0, t + W )
f(1, t − W ) f(1, t − W + 1) … f(1, t + W )

… … … …
… … … …

f(NxNy, t − W ) f(NxNy, t − W + 1) … f(NxNy, t + W )

(A1)

A KL eigenimage can be computed by multiplying the leading eigenvector corresponding 

to the maximal eigen-value offt. This process was repeated for all Nt frames in a sliding 

manner, to create a KL model image series M. Unlike the simple averaging across the 

sliding window W or other low pass filter, the KL eigenimage is the optimal low-rank 

approximation of data matrix using the minimal least-squares criteria. It keeps the most 

prominent image information corresponding to the first eigenmode and filters out the 

respiratory motion which is assumed to be continuous and sampled sufficiently within 

the temporal window. Since the perfusion images are usually acquired every 1 or 2 

heart beats, the respiratory motion is sampled with sufficient temporal resolution to fulfill 

this requirement. As demonstrated in Supporting Information Video 1, the model images 

with wider temporal window kept less temporal information, but filters out respiratory 

motion. The output of the first iteration removed bulk respiratory motion, but some residual 

motion remained. As the model window is narrower, more temporal contrast changes were 

preserved in the model series. An updated series of model images at each iteration was 

computed from the previous MOCO output, so more residual motion can be corrected after 

each iteration.
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NONRIGID IMAGE REGISTRATION AND ITERATIVE MOCO

The original perfusion series was registered to the KL model image series in a frame-by­

frame manner. Because of the nonrigid nature of motion presented in the field of view, a 

nonrigid registration algorithm was applied45,46 to maximizing local cross-correlation as the 

registration cost function. The outcome of this algorithm is the pixel-wise deformation field 

indicating the motion vector of every image pixel. This algorithm is based on variational 

theory and modeled the deformation field as an unknown functional to maximize the image 

similarity measure between KL model and perfusion images. The classic gradient descent 

method was used to solve the corresponding Euler equation for the optimal functional. To 

maximize the capture range and improve the robustness, a multi-scale image pyramid was 

constructed by downsampling the images (4 levels in all experiments with 2× downsampling 

at each level). The deformation fields estimated on the coarse scale were used to initialize 

the finer level, until the original image resolution was achieved. A maximum of 64 

iterations were performed on every scale level until the image similarity measure reaches its 

maximum. The local cross correlation ratio45 is selected as the image similarity measure, 

as its explicit derivative can be effectively calculated, which is used in gradient descent 

optimization, and is still general enough to handle image noise and the remaining intensity 

changes between the KLT model images and the perfusion images series.

As shown in Figure 3, during the first iteration, the KL model images (M0) were estimated 

with a wide window W0 and registration was performed between this model series M0 

and perfusion images f. f was warped with the resulting deformation fields, leading to a 

new image series with less respiratory motion. This process was repeated by computing 

the new KL model image series M1 on the warped perfusion images with a narrower 

sliding window W1 = W0 / 2 until reaching the narrowest window Wmin. W0 = Nt / 3 and 

Wmin = 3 were experimentally chosen and found to give very robust MOCO results. For a 

perfusion acquisition lasting 60 heart beats, this led to a total of 4 iterations for KL model 

series estimation and nonrigid image registration. This scheme of iterative MOCO setup 

provides an empirically good capture range for nonrigid registration and can adapt to longer 

acquisitions. Co-registration between model series and perfusion series was performed 

frame by frame since the model frame had approximately the same image contrast as the 

target perfusion images. Since at each iteration all image pairs were processed independently 

from each other this avoided error propagation and permitted utilizing multi-threading in the 

Gadgetron framework to speed up computation.

This MOCO algorithm was applied to both the AIF and higher resolution myocardial 

perfusion images. In the case of the AIF, MOCO was applied to the first echo AIF image 

series and the resulting deformation fields were used to correct the second echo images. 

After the perfusion image series were aligned, the last 6 images were averaged as a reference 

to further align the PD images.

PERFUSION MAPPING

Pixel-wise perfusion flow mapping is calculated by fitting the distributed blood 

tissue exchange (BTEX) model36,50 to the measured myocardial perfusion [Gd] signal 
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independently for each pixel in the heart region. In this study, a numerical PDE solver78 was 

implemented to compute the Cp(t, x) and Cisf (t, x). The evaluated capillary length ranges 

from 0 to L (set to be 1 mm as in Bassingthwaighte et al37 and the evaluated temporal 

duration is the full duration from arrival of Gd bolus to LV (detected foot time) through 

the end of imaging acquisition. The initial conditions are Cp (0, 0) = 0 and Cisf (0, 0) = 0 

and the boundary condition is set as the AIF input Cp (t, 0) = Ca(t). The residual Gd over 

time Q(t) = Fp ⋅ ∫0
t Ca(s) − Cp(t, L) ds is the accumulated contrast agent in the system. As 

suggested in Bassingthwaighte et al,37,51 we choose to vary Fp (mL/min/g), PS (mL/min/g), 

Vp (mL/g) and Visf (mL/g).

Figure 5 demonstrates the iterative process for BTEX modeling. The fitting process starts 

with an initial guess of model parameters. The corresponding partial differential equations 

in BTEX model are solved with the AIF [Gd] curve as the driving input function. The 

resulting Gd residual signal is compared to the measured perfusion [Gd] curve for the 

computation of the mean squared error (L2 norm) as the goodness-of-fit measure. The 

BTEX parameters are then adjusted in the optimization step. This process iterates until the 

convergence. The step that is computationally expensive is applying the PDEs to the AIF 

which is the forward model. Parameter estimation is done in coarse and fine steps. The 

coarse step does a brute force search over the full parameter range with relatively coarse 

steps (Fp, from 0.1 to 3 mL/min/g with 0.05 step size; PS, from 0.4 to 1.8 mL/min/g with 

0.1 step size; Visf, from 0.15 to 0.65 mL/g with 0.025 step size; Vp, from 0.035 to 0.08 

mL/g with 0.005 step size; Note the plasma flow and volume is used here, i.e., without 

HCT). The parameter search ranges were selected to cover the expected full span for the 

myocardium.9,79,80 In this step, the PDE is applied to the AIF for all searching parameters 

sets (185,850 sets in total). The computed myocardial [Gd] response signal was stored and 

compared to the measured signal for every pixel. The coarse search setup finds its answer by 

picking the parameters corresponding to closest [Gd] response signal to the measured one in 

the minimum least-square-error sense. This is followed by a fine search step with an iterative 

optimization initialized by the coarse search setup. Since computing analytical derivatives 

of BTEX model to its parameters is nontrivial and evaluating numerical derivatives is 

also computationally expensive, the downhill simplex minimization algorithm proposed by 

Nelder and Mead81 is used for the final optimization step, as it is more robust for nonsmooth 

cost function and does not require evaluation of parameter derivatives. The coarse/fine 

parameter estimation strategy is diagrammed in Figure A1.

Since the AIF signal is measured in the LV blood pool (at the most basal slice of 

perfusion imaging stack), there is an unknown time delay for the contrast agent to reach 

the myocardium. Different approaches have been proposed to compensate for this effect, 

including fitting time delay as an extra parameter71 or assuming a constant wash-in time.9,19 

In this study, we adopted a multi-fitting approach that fits at multiple values of delay in 0.5 

s increments and chose the delay with best fit. A maximal delay of 3.0 s was allowed. The 

estimate of delay was done independently for each pixel. The incremental delay range was 

picked empirically to balance computational cost and fitting accuracy.
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FIGURE A1. 
A flow chart for the coarse/fine parameter estimation strategy. The BTEX model fitting 

starts by a brute force search over the full parameter range with relatively coarse steps. An 

optimal starting point is found in the coarse step and used to initialize the fine search
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FIGURE 1. 
Overview of the proposed workflow for automated inline perfusion flow mapping. After raw 

k-space data are reconstructed, resulting low resolution AIF and high-resolution perfusion 

images go through the MOCO step, which allows the free-breathing acquisition. The AIF 

image series was inputted to LV blood pool detection and resulting signals were corrected 

for T2* signal loss. The surface coil inhomogeneity was corrected by normalized perfusion 

series with PD images. Both T2* corrected AIF signal and normalized MOCO perfusion 

images are converted into [Gd] unit by a LUT conversion. Finally, AIF Gd curve and 

perfusion Gd images are inputted into flow mapping step for pixel-wise myocardial flow 

mapping

Xue et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2021 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
A flow chart of perfusion MOCO scheme with iterative KL transform-based model 

image estimation. Starting with a wider temporal window, this algorithm iterates KL 

model estimation and pairwise image registration between model and original series. This 

decouples image contrast changes from respiratory MOCO. This MOCO scheme is applied 

to both AIF and perfusion images and generate motion corrected image series
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FIGURE 3. 
An example of KL-based MOCO. The original free-breathing perfusion series are shown on 

the top row. The first and third iterations of KL-based MOCO are also shown for model 

series (M0 and M2) and MOCO outputs (f0 and f2). Respiratory motion is recovered with 

narrower temporal window after MOCO iterations (corresponding Supporting Information 

Video S1)
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FIGURE 4. 
An illustration of AIF LV blood pool detection. The LV blood pool is detected by first 

thresholding the upslope and AUC maps to find a rough mask of heart. The LV blood pool is 

delineated by a 2-stage clustering process to compute arterial input signal
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FIGURE 5. 
An illustration of iterative pixel-wise perfusion flow mapping. Inputs to this fitting process 

are the AIF Gd signal and perfusion Gd images. By iteratively solving the BTEX equations, 

the model parameters are adjusted to reduce the discrepancy between the estimated and 

the measured Gd signals. This fitting process is performed for every pixel and resulting 

perfusion flow maps are computed
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FIGURE 6. 
Proposed perfusion flow mapping was integrated on the scanner. A, A screenshot of inline 

perfusion flow mapping scan for a patient with obstructive epicardial coronary artery disease 

for illustration of the method. The pixel-wise MBF map, AIF figures and perfusion MOCO 

images are sent back to scanner without any user interaction. B, Example AIF plots for 

stress and rest scans. The AIF intensity curves of dual-echo acquisition are shown as the first 

column. The second column is the AIF curve in Gd unit
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FIGURE 7. 
An example to demonstrate typical performance of MOCO. Original perfusion series of 

stress (A) and rest scan (B) is acquired under free-breathing. (C, D) Temporal profiles before 

MOCO show respiratory motion across different images (Supporting Information Video S2). 

After the MOCO (E, F), the heart is aligned during the contrast uptake, which allows the 

pixel-wise flow mapping (S 3). The temporal profile after MOCO (G, H) shows the removal 

of heart motion due to respiratory
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FIGURE 8. 
An example of perfusion flow mapping. Pixel-wise maps for all 4 parameter and E are 

computed by the proposed automated workflow. The stress flow and blood volume are 

significantly increased compared to rest. The extraction is higher at rest and lower at 

stress, indicating the stress myocardium is not flow-limited. Given the ROI drawn in the 

myocardium, histograms of all parameters for entire cohort are given for stress and rest 

mapping in the Supporting Information Figure S1
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FIGURE 9. 
Influence of HCT on the MBF estimation. The MBF estimated with fixed HCT is compared 

to those estimated with the nominal HCT 0.42. For a range of HCT from 0.3 to 0.6, the 

mean variation of MBF is less than 4%
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