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Abstract

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of 

COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the 

cellular and molecular processes that are affected in the brains of patients with COVID-19 is 

missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid 

plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 

8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS­

CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the 

choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral 

T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated 

with COVID-19 that share features with pathological cell states that have previously been reported 

in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons–

which are evolutionarily expanded in humans7 and linked to cognitive function8–is preferentially 

affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with 

those found in chronic brain disorders and reside in genetic variants associated with cognition, 

schizophrenia and depression. Our findings and public dataset provide a molecular framework to 

understand current observations of COVID-19-related neurological disease, and any such disease 

that may emerge at a later date.

Patients with COVID-19 can suffer neurological and psychiatric symptoms that range from 

loss of smell and headache to encephalitis and stroke1-3,9-11. These symptoms are more 

prevalent in patients who are hospitalized1,12,13 and may persist as ‘long COVID’, which 

consists of ‘brain fog’, difficulty in concentrating and fatigue14,15.

Cellular and molecular approaches are required to understand the neurological changes 

that may contribute to symptoms reported in patients with COVID-19. Neuropathology 

may arise from direct virus neuroinvasion or indirectly from peripheral infection and its 

attendant immune response16. Thus, much attention has been paid to whether SARS-CoV-2 

can be detected in the brain, which has yielded inconsistent results9,17-21. Critically, 

a comprehensive assessment across specific cell types in the brain affected by severe 

COVID-19 is missing. This is in part because the high-quality, fresh-frozen human brain 

tissue from patients with COVID-19 needed for single-cell transcriptomic studies is 

largely inaccessible, and methods to isolate human brain barrier cells have only recently 

emerged22,23.

Here we characterized the transcriptomes of 65,309 nuclei isolated from the brains 

of 14 control individuals and 8 patients with COVID-19 (Fig. 1a, Supplementary 

Table 1). We created an interactive data browser (https://twc-stanford.shinyapps.io/

scRNA_Brain_COVID19) to provide researchers with a comprehensive resource to further 

investigate the molecular mechanisms of the effects of SARS-CoV-2 on the brain.

Cortex and choroid plexus cell types

We generated 38,217 single-nucleus gene-expression profiles from the medial frontal cortex 

(8 control individuals and 8 patients with COVID-19) and detected a median of 1,918 genes 
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per nucleus, consistent with recent studies5,8,24,25 (Fig. 1b, Extended Data Fig. 1a). Our 

sample sizes were similar to or greater than those reported in previous COVID-19 or brain 

single-nucleus RNA-sequencing (snRNA-seq) studies24-26. The samples in the control and 

COVID-19 groups were from individuals between 55 and 91 years of age and matched for 

tissue dissection area, tissue and RNA quality (Extended Data Fig. 1b, c, Supplementary 

Table 1). The cause of death for nearly all patients with COVID-19 or influenza was 

interstitial pneumonia after more than two weeks of mechanical ventilation. Samples were 

not confounded by technical or batch artefacts (Extended Data Fig. 2).

Our unsupervised clustering of nuclear transcriptomes yielded 14 cell types, including 

subtypes of excitatory neurons and interneurons that express previously established marker 

genes (Extended Data Fig. 3) and proportional to previous snRNA-seq data from adult 

human cortex5,8,24,25 (Extended Data Figs. 1-3, Supplementary Table 2).

We collapsed nuclei into 6 broad cell types, and identified 786 unique differentially 

expressed genes (DEGs) that implicated all major cell types (Fig. 1c, Extended Data Fig. 4). 

DEGs strongly correlated with alternative pseudobulk methods (but with greater statistical 

power (Extended Data Fig. 5)); and showed no significant overlap with genes affected by 

post-mortem delay to autopsy27 (Extended Data Fig. 6). Broadly, the strongest effects were 

seen in astrocytes and other glia, marked by inflammatory and dysregulated homeostatic 

pathways (Fig. 1c, Extended Data Fig. 4). The majority of DEGs were perturbed in only 

a single cell type (about 80%) (Fig. 1d). Several DEGs upregulated in one cell type were 

downregulated in others (Supplementary Tables 3, 5). Overall, these data demonstrate that 

all major brain parenchymal cell types are affected in COVID-19.

Recent reports have found SARS-CoV-2 infection of cultured choroid plexus organoids20,21 

but to our knowledge no snRNA-seq study exists on the human choroid plexus, in health or 

disease22. We thus developed a method (Methods) that yielded 27,092 nuclei across 7 major 

epithelial, mesenchymal, immune, ependymal and glial cell types (7 control individuals 

and 7 patients with COVID-19) (Fig. 1e, Extended Data Fig. 3b, Supplementary Table 4). 

With capture of both brain parenchymal and barrier cell types, we assessed the expression 

and disease perturbation of genes related to SARS-CoV-2 entry, docking and defence16. 

Similar to brain vascular cells, choroid barrier cells robustly expressed several genes that are 

relevant to SARS-CoV-2 brain entry (Fig. 1f, Extended Data Fig. 7). We observed a broad 

upregulation of the antiviral defence gene IFITM3 across choroid and glia limitans barrier 

cells in patients with COVID-19, consistent with potential SARS-CoV-2 infection. IFITM3 
serves as the first line of defence against viral infection28 and its upregulation is a marker of 

SARS-CoV-2 infection across public datasets29.

Brain barriers relay inflammation

We observed a broad upregulation of inflammatory genes across various interferon (IFITM3 
and STAT3), complement (C1S, C3 and so on) and related pathways across choroid plexus 

cell types (Fig. 2a). Quantitative PCR with reverse transcription (RT–qPCR) corroborated 

significant differential expression of tested inflammatory genes as well as other genes 

predicted to be upregulated by a similar magnitude in COVID-19 (for example, NQO1 
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and ZFP36) (Fig. 2b). Immunohistochemical staining also confirmed choroid plexus 

inflammation (Extended Data Fig. 8). Together, these data reveal substantial brain barrier 

inflammation in COVID-19 and validate the reliability of the DEGs that we identified in our 

snRNA-seq analysis.

Brain and choroid cell types express several SARS-CoV-2 entry genes (Fig. 1f, 

Extended Data Fig. 7) but claims of neuroinvasion in the literature have thus far been 

inconsistent9,17-20. To detect molecular evidence of SARS-CoV-2, we systematically 

performed four RNA-based and four antibody-based assays across our samples. RNA assays 

included searching for virus-specific reads (Methods) in our snRNA-seq dataset as well 

as in custom-generated bulk RNA-seq datasets with and without viral RNA enrichment. 

In no case did we detect SARS-CoV-2-specific RNA in the brain (Fig. 2c, Extended 

Data Fig. 9a). We confirmed this via qPCR using US Centers for Disease Control and 

Prevention Emergency Use Authorization primers against the N1 and N2 genes of the virus, 

again finding no enrichment in the brains of individuals with COVID-19 (Extended Data 

Fig. 9b). Some of the samples from the control individuals without viral infection have 

high cycle counts (between 37 and 40), which in previous work (without such controls) 

has been interpreted as evidence of neuroinvasion9,18. Finally, with the anti-SARS-CoV-2 

spike (3A2) antibody used for immunohistochemistry (as in previous publications17,18), we 

observed signal across the barrier-forming cortical vasculature, meninges and choroid plexus 

(Extended Data Fig. 9c, d). Specific signal was retained across secondary detection methods 

(Extended Data Fig. 9e, Methods). However, no other antibody–including those also used 

in recent publications9,30–yielded specific signal over controls. Therefore, the 3A2 antibody 

may bind a specific, but non-SARS-CoV-2, antigen.

The inflamed choroid plexus has previously been shown to send inflammatory signals 

into the brain, thereby activating parenchymal glia and impairing cognitive function31. To 

assess whether similar pro-inflammatory relay mechanisms occur in the brains of patients 

with COVID-19, we performed cell–cell communication analysis32. We observed a strong 

increase in the choroid-to-cortex network across key inflammatory pathways, such as 

the CCL and CXCL family of chemokines from the choroid plexus epithelium to brain 

astrocytes, oligodendrocytes, microglia and layer (L) 2/3 and L4 excitatory neurons (Fig. 

2d, Extended Data Fig. 10). Complement pathway signalling from the choroid plexus to 

brain microglia (the resident immune cells of the brain) was also predicted to increase 

in the brains of patients with COVID-19. Excessive complement signalling in microglia 

has previously been linked to premature neuronal synapse pruning in neurodegenerative 

disease33. Together, although we could not specifically detect virus RNA or protein in 

our brain samples, these results suggest that peripheral SARS-CoV-2 infection inflames 

brain-barrier cells such as those of the choroid plexus; and that this inflammation is then 

relayed into the brain parenchyma.

Disease-associated microglia and astrocytes

We thus sought to evaluate the immune landscape of the brain in individuals with 

COVID-19. We first analysed cortical immune cells, which contain mostly microglia but 

also lesser fractions of perivascular macrophages (MRC1+, which encodes macrophage­
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specific mannose receptor CD20634) and T cells (CD247+, which encodes the T 

cell receptor CD3ζ protein). Our unsupervised clustering revealed the presence of a 

subpopulation of immune cells associated with COVID-19 (Fig. 3a), which was significantly 

enriched at both the per-nucleus and per-patient level (Fig. 3b). The emergence of disease­

associated clusters reflects strong perturbations across the transcriptome. Similarly, although 

we did not find cortical T cells in any of our samples from control individuals (without viral 

infection or with terminal influenza), we detected them in all but one of the patients with 

COVID-19 (Fig. 3c). Aberrant T cell infiltration into the mouse brain has previously been 

reported to be sufficient to promote neuroinflammation and impair neurogenesis35.

To study microglia, we focused on the MRC1−CD247− immune cell subset to eliminate 

confounds from perivascular macrophages and T cells. Library quality was not affected 

upon restricting analyses to the MRC1− subset of microglia (Methods). We clustered 

1,814 MRC1− microglia, which revealed a distinct microglial subpopulation associated with 

COVID-19 (Fig. 3d) that was significant at both the per-nucleus and per-patient level (Fig. 

3e). This subpopulation was marked by expression of microglial activation genes previously 

associated with human disease4,5, such as complement C1QC, CD74, FTL and FTH1, and 

downregulation of the homeostatic markers including P2RY12 (Fig. 3d, Supplementary 

Table 6). Trajectory analysis revealed that the microglia cluster associated with COVID-19 

emerged from the parent homeostatic population (Fig. 3f), which further suggests that these 

microglia emerge in response to an increasingly inflamed central nervous system (CNS) 

environment. Our in situ staining confirmed the enriched presence of activated CD68+ 

parenchymal microglia in the brains of patients with COVID-19 as compared to those of 

control individuals (Fig. 3g, Extended Data Fig. 11); at times, these microglia form nodules 

that have previously been linked to viral encephalitis36 and myelin degeneration in ageing 

mice37.

Microglial subclusters that are associated with disease have been identified for various 

neurodegenerative diseases4,5. A fraction of the genes enriched in the COVID-19-associated 

microglia cluster overlap (P = 2.3 × 10−15, hypergeometric test) with those enriched 

in neurodegenerative-disease-associated microglia (Fig. 3h), including C1QC and CD14 
(which mark microglia associated with Alzheimer’s disease). Yet, several genes that 

have been implicated in neuroinflammation38 (such as RIPK1) were seen specifically in 

microglial states associated with COVID-19. Our observations suggest that the microglial 

subpopulation enriched in patients with COVID-19 represents a distinct microglial state 

that shares features with–but is ultimately different from–microglial cell states that have 

previously been reported in human neurodegenerative disease.

In addition to abnormally activated microglia, we uncovered an astrocyte cluster associated 

with COVID-19 that is marked by established inflammation and astrogliosis genes (such as 

IFITM3 and GFAP) and upregulated expression of the secreted neurotoxic factor chitinase 

3-like 1 (CHI3L1)39 (Extended Data Fig. 12a-c). Within this astrocyte cluster, we also 

observed significant dysregulation of genes that support neurotransmission and synaptic 

organization. By contrast, we did not observe any new subpopulations for oligodendrocyte 

lineage cells (Extended Data Fig. 12d-g). Together, we identify the robust emergence 
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of disease-associated microglia and astrocyte subpopulations with distinct transcriptional 

profiles in the brains of individuals with COVID-19.

Links to long-term CNS dysfunction

Given the predicted astrocytic impairments in supporting neurotransmission, we next sought 

to identify the neuronal subtypes that are most affected in COVID-19. Although we captured 

neurons from all cortical layers, we found gene-expression changes linked to synaptic 

deficits particularly in L2/3 excitatory neurons and L2/3-residing VIP interneurons40 (Fig. 

4a, b). Specifically, the downregulation of synaptic genes that mediate neurotransmission 

(for example, VAMP2, SNAP25 and ATP6V0C) in L2/3 excitatory neurons alongside a 

concomitant upregulation in proximal VIP inhibitory neurons suggests dysfunction in upper­

layer cortical circuitry. Such a pattern of dysfunction has previously been reported in an 

snRNA-seq study of autism and correlated with cognitive deficits8. L2/3 excitatory neurons 

are cortico-cortical projecting and already exhibit sparse action potential firing to generate 

a simple and reliable neural code for associative learning41. Thus, this neuronal population 

may be particularly sensitive to deficits in neurotransmission by COVID-19.

To investigate the potential pathologies that underlie reported neurological symptoms of 

long COVID, we analysed the intersection between COVID-19 DEGs across brain cell 

types with those that have previously been described in chronic CNS diseases, such as 

Alzheimer’s disease5, multiple sclerosis26, Huntington’s disease42 and autism spectrum 

disorder8. Although neuronal perturbations in COVID-19 were unique compared to those 

in chronic CNS diseases, the overlap in glial cells was particularly strong (Fig. 4c, 

Supplementary Table 7).

To further determine the enrichment of COVID-19 DEGs within genetic variants associated 

with complex traits and diseases in a cell-type-specific fashion, we obtained genome-wide 

association study (GWAS) summary statistics for neurological and psychiatric disorders and 

neurobehavioural traits43 (Supplementary Table 8). We found a strong enrichment of DEGs 

residing within GWAS hits of neurological disorders and traits, especially in cognition, 

schizophrenia and depression (Fig. 4d). Together, these data suggest that COVID-19 may 

partially recapitulate the pathological processes of various CNS diseases.

Discussion

Previous snRNA-seq studies have begun to elucidate the cell-type-specific perturbations 

and interactions involved in several CNS disorders5,8,25,26,42. Here, by combining 

sequencing of 65,309 nuclei in both the frontal cortex and choroid plexus, along 

with confirmatory immunohistochemistry and RT–qPCR, we reveal several major 

neuropathological mechanisms in severe COVID-19. However, there are limitations to 

consider. Most post-mortem brain tissue from individuals with COVID-19 is inadequately 

preserved or immediately fixed for safety and regulatory reasons, so there is a scarcity 

of high-quality tissue available for molecular studies. Also, although we did not detect 

SARS-CoV-2 in the choroid plexus or cortex, we cannot exclude the possibility of earlier 

neuroinvasion that had subsequently been cleared. Indeed, the mouse choroid plexus 
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has recently been reported to express several SARS-CoV-2 entry factors22, which we 

corroborate in humans (Supplementary Discussion).

There is a precedent for acute viral infections causing long-term inflammation and 

dysfunction that predisposes individuals to neurodegenerative disease44,45, although not at 

the scale of the COVID-19 pandemic. It will be important to study how the molecular 

processes elucidated here contribute to the COVID-19 neurological symptoms and deficits 

of which we are aware now, and to those that may emerge in the years to come.

Methods

No statistical methods were used to predetermine sample size. The experiments were 

not randomized, and investigators were not blinded to allocation during experiments and 

outcome assessment.

Isolation of nuclei from frozen post-mortem medial frontal gyrus

Frozen medial frontal cortex tissue from post-mortem control individuals and patients 

with COVID-19 was obtained from the Stanford/VA/NIA Ageing Clinical Research Center 

(ACRC) and the Saarland University Hospital Institute for Neuropathology, with approval 

from local ethics committees. Group characteristics are presented in Supplementary Table 

1. The protocol for the isolation of nuclei was adapted from previous studies5,25,46-48, and 

performed in a BSL2+ biosafety cabinet wearing personal protective equipment (PPE). 

All procedures were carried out on ice or at 4°C. In brief, 50 mg of post-mortem brain 

tissue was dounce-homogenized in 2 ml of Nuclei EZ Prep Lysis Buffer (Sigma, NUC101) 

spiked with 0.2 U μl−1 RNase inhibitor (Takara, 2313A) and EDTA-free protease inhibitor 

Cocktail (Roche, 11873580001) before incubating on ice for 5 min in a final volume of 

5 ml. Homogenized tissue was filtered through a 100-μm cell strainer (Falcon, 352360), 

mixed with an equal volume of 50% iodixanol density gradient medium in PBS (OptiPrep, 

Sigma-Aldrich, D1556) to make a final concentration of 25% iodixanol. Thirty per cent 

iodixanol was layered underneath the 25% mixture. Similarly, 40% iodixanol was layered 

underneath the 30% iodixanol. In a swinging-bucket centrifuge, nuclei were centrifuged for 

20 min at 3,000 r.c.f. After centrifugation, the nuclei were present at the interface of the 30% 

and 40% iodixanol solutions. Isolated nuclei were resuspended in 1% BSA with 0.2 U μl−1 

RNase inhibitor, filtered twice through a 40-μm strainer (Flowmi) and counted on an TC20 

automated cell counter (Bio-Rad) after the addition of Trypan blue. We did not use statistical 

methods to predetermine sample sizes, but our sample sizes are similar to those reported in 

previous publications24,25,49.

Isolation of nuclei from frozen post-mortem choroid plexus

Frozen choroid plexus tissue was extracted from the lateral ventricles of post-mortem tissue 

obtained from the Stanford University Pathology department and the Saarland University 

Hospital Institute for Neuropathology, with approval from local ethics committees. Group 

characteristics are presented in Supplementary Table 1. All procedures were carried out 

on ice or at 4 °C, and in a BSL2+ biosafety cabinet while wearing PPE. Dounce 

homogenization or enzymatic dissociation resulted in loss of nuclei integrity and low nuclei 
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complexity (<50 median genes per nuclei). We hypothesized that, similar to shaking an 

apple tree, gentle pipetting of choroid plexi tissue in lysis buffer could liberate nuclei 

without needing to physically disintegrate the fibrous choroid matrix–and thus avoid 

collateral physical damage to nuclei. Specifically, 40 mg of choroid plexus tissue was 

thawed in 250 μl of 1% BSA with 0.2 U μl−1 RNase inhibitor until the tissue settled. 

Five ml of lysis buffer (10 mM Tris, 10 mM NaCl, 3 mM MgCl2, 0.1% Nonidet P40 

substitute (Roche/Sigma, 11754599001), 0.2 U μl−1 RNase inhibitor, and protease inhibitor) 

was added and tissue incubated on ice for 10 min with gentle swirling every 2 min. Five 

ml of 1% BSA was added and the tissue triturated 10 times with a 5-ml serological pipette. 

After centrifugation (500g, 5 min), pelleted nuclei were resuspended in 1% BSA with 0.2 

U μl−1 RNase inhibitor, gently triturated 10 times with a 1-ml regular-bore pipette tip and 

filtered twice through a 70-μm and then a 40-μm strainer (Flowmi). Debris was inspected 

on a brightfield microscope and nuclei were counted on an TC20 automated cell counter 

(Bio-Rad) after the addition of Trypan blue.

Droplet-based snRNA-seq

For droplet-based snRNA-seq, libraries were prepared using the Chromium Next GEM 

Single Cell 3′ v.3.1 according to the manufacturer’s protocol (10x Genomics), targeting 

10,000 nuclei per sample after counting with a TC20 Automated Cell Counter (Bio-Rad). 

Thirteen cycles were applied to brain parenchyma samples to generate cDNA, and 15 for 

choroid plexus samples. All samples underwent 15 or 16 cycles for final library generation. 

Generated snRNA-seq libraries were sequenced across two S4 lanes on a NovaSeq 6000 

(150 cycles, Novogene).

snRNA-seq quality control

Raw gene counts were obtained by aligning reads to the hg38 genome (refdata-gex­

GRCh38-2020-A) using CellRanger software (v.4.0.0) (10x Genomics). To account for 

unspliced nuclear transcripts, reads mapping to pre-mRNA were also counted. As previously 

published, a cut-off value of 200 unique molecular identifiers was used to select nuclei 

of sufficient complexity for further analysis5. As initial reference, the entire dataset was 

projected onto two-dimensional space using UMAP on the top 20 principal components50. 

Three approaches were combined for quality control: (1) ambient cell free mRNA 

contamination was removed using SoupX51 for each individual sample; (2) outliers with 

a high ratio of mitochondrial (>5%, <200 features) relative to endogenous RNAs and 

homotypic doublets (>5,000 features) were removed in Seurat 3.2.152; and (3) after 

scTransform normalization and integration, doublets and multiplets were filtered out using 

DoubletFinder with subsequent manual inspection and filtering on the basis of cell-type­

specific marker genes53. Similarly, genes detected in fewer than four cells were excluded 

from the analysis. The core statistical parameters of DoubletFinder (nExp and pK) used to 

build artificial doublets for true doublet classification were determined automatically using 

recommended settings. The computed nExp and pK values for each sample are provided 

in Supplementary Table 1. After applying these filtering steps, the dataset contained 65,309 

high-quality nuclei.
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Cell annotations

The SCTransform-based integration workflow of Seurat54 was used to align data, using 

default settings. In brief, the integration workflow searches for common gene modules 

(anchors) in cells with similar transcriptomes. Individual samples after undergoing quality 

control (described in ‘snRNA-seq quality control’) are integrated in a step-wise fashion, 

using cellular sequencing depth as a covariate to mitigate technical artefacts. After 

combining the samples into a single dataset or Seurat object, genes were projected into 

principal component space using the principal component analysis (RunPCA). The first 

80 (for global object), 30 (choroid plexus) or 25 (specific cell types) dimensions were 

used as inputs into the FindNeighbours, FindClusters (at 0.2 resolution) and RunUMAP 

functions of Seurat. In brief, a shared-nearest-neighbour graph was constructed on the 

basis of the Euclidean distance metric in principal component space, and cells were 

clustered using the Louvain method. RunUMAP functions with default settings was used 

to calculate 2D UMAP coordinates and search for distinct cell populations. The positive 

differential expression of each cluster against all other clusters (MAST) was used to identify 

marker genes for each cluster55. We annotated cell types using previously published marker 

genes5,8,24,46. To distinguish between confounding (perivascular) macrophages and T cells 

and pure microglia in the larger cortex immune population, we subset the cluster and 

repeated the standard steps of Seurat for dimension reduction and unsupervised clustering. 

Then, to yield pure microglia by requiring the normalized expression of the specific cell­

type markers MRC1 and CD247 to be strictly less than 1. As choosing a threshold involves 

a sensitivity–specificity trade-off, we sought to set strict cut-offs as to yield pure microglia 

at a high specificity. The MRC1+ cell population did not form separate clusters in an 

unsupervised clustering of the larger immune population and was not associated with better 

or lower library quality scores, as assessed through the number of detected unique molecular 

identifiers, number of detected RNAs (genes) and percentage of mitochondrial reads.

Differential gene expression and subcluster analysis

Differential gene expression of genes comparing control individuals and patients with 

COVID-19–or comparing cell-type subcluster markers–was done using the MAST55 

algorithm (v.1.12.0), which implements a two-part hurdle model, and has demonstrated 

superior type-I error control without significantly sacrificing sensitivity56-59. First, we 

ensured that our data did not exhibit signs of confounding effects (Extended Data Fig. 

2). For example, although sex imbalance of patient cohorts can influence some genes in 

single-cell analysis and is a general issue in the field, we balanced genders by group, 

mitigating variance due to sex (Extended Data Fig. 2a, Supplementary Tables 3, 5). Default 

Seurat thresholds of log-transformed fold change > 0.25 (absolute value), adjusted P value 

(Bonferroni correction) < 0.05 and expression in greater than 10% of cells were required 

to consider a gene differentially expressed, as similarly done in previous studies of the 

brain5,8,25,26,46,60-63 and COVID-1964-70. Sex and batch were set as latent variables. Our 

sensitivity to detect DEGs for a given cell type was not driven by the number of nuclei 

isolated (Extended Data Fig. 4c).

Cell-quality-associated markers were removed and biological pathway and gene ontology 

enrichment analysis were performed using Enrichr71, Metascape72 or GeneTrail 373 with 
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input species set to Homo sapiens and using standard parameters. Docking, processing 

and viral defence genes relevant to SARS-CoV-2 were chosen on the basis of a previous 

publication16. To identify microglia subcluster markers, differential expression analysis of 

cells grouped in each subcluster was performed against the remaining cells within the 

given cell-type. Markers were defined based on the MAST algorithm using only positive 

values with log-transformed fold change > 0.25 (absolute value) and adjusted P value 

(Bonferroni correction) < 0.05. Enrichment or over-representation of the overlap between 

markers defining the COVID-19 microglia 2 cluster and the Mathys5 Alzheimer’s disease 

Mic1 cluster followed the hypergeometric probability, using the set of 17,926 protein-coding 

genes as background. To assess alternative differential expression approaches, raw gene 

counts were aggregated for each sample and cell-type cluster separately. For the subsequent 

pseudobulk analysis, we used the pbDS function of the muscat package74 with limma­

voom75 selected as differential state method, and the parameters min_cells, and filter set to 

20 and gene, respectively, where we configured sample sex and batch as latent variables in 

the design matrix. All other parameters were kept as default.

RT–qPCR validation of snRNA-seq differential gene expression

For RT–qPCR validation of our snRNA-seq DEG analysis, we focused on choroid plexus 

tissue because of its relative homogeneity compared to cortex: epithelium and mesenchymal 

cells form over 90% of all nuclei and, hence, DEGs in those cell types can be assessed 

even in bulk choroid plexus mRNA samples with only an approximately 10% potential 

confound from other cell types. This is not the case with cortex samples consisting of 

various cell types and subtypes (for example, neuronal subtypes). In brief, choroid plexus 

nuclei were isolated as in ‘Isolation of nuclei from frozen post-mortem choroid plexus’, 

and bulk mRNA isolated using the RNeasy Micro Kit (Qiagen). cDNA was generated 

using the qScript cDNA SuperMix (Quantabio) and then mixed with SYBR green master 

mix before loading as technical duplicates on a LightCycler 480 (Roche). ΔΔCT values 

normalized to ACTB were used to assess relative gene expression between samples. 

The following validated primer pairs were used (PrimerBank, human)76 to assess major 

inflammatory genes predicted upregulated in COVID-19 as well as other genes predicted 

upregulated at a similar log-transformed fold change to confirm the validity of default 

snRNA-seq DEG MAST thresholds: IFITM3: 5′-CTGGGCTTC ATAGCATTCGCCT-3′ 
(forward) and 5′-AGATGTTCAGGCACTTGGCGGT-3′ (reverse); STAT3: 5′-CAGCA 

GCTTGACACACGGTA-3′ (forward) and 5′-AAACACCAAAGTGGCATGTGA-3′ 
(reverse); C7: 5′-AATGGCTGTACCAAGACTCAGA-3′ 
(forward) and 5′-GCTGATGCACTGACCTGAAAA-3′ 
(reverse); NQO1: 5′-GAAGAGCACTGATCGTACTGGC-3′ 
(forward) and 5′-GGATACTGAAAGTTCGCAGGG-3′ 
(reverse); ZFP36:5′-GACTGAGCTATGTCGGACCTT-3′ (forward) 

and 5′-GAGTTCCGTCTTGTATTTGGGG-3′ (reverse); SDC4:5′­

GGACCTCCTAGAAGGCCGATA-3′ (forward) and 5′-AGGGCCGATCATGGAGTCTT-3′ 
(reverse); ACTB: 5′-CACCATTGGCAATGAGCGGTTC-3′ (forward) and 5′­

AGGTCTTTGCGGATGTCCACGT-3′ (reverse); and (housekeeping performed 

in duplicate): 5′-GGAGAAGAGCTACGAGCTGCCTGAC-3′ (forward) and 5′­

AAGGTAGTTTCGTGGATGCCACAGG-3′ (reverse)
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Monocle trajectory analysis

Monocle3 (v.0.2.1.) was used to generate the pseudotime trajectory analysis in microglia77. 

Cells were reclustered as described in ‘Cell annotations’ and used as input into Monocle 

to infer cluster and lineage relationships within a given cell type. Specifically, UMAP 

embeddings and cell subclusters generated from Seurat were converted to a cell_data_set 

object using SeuratWrappers (v.0.2.0) and then used as input to perform trajectory graph 

learning and pseudotime measurement through reversed graph embedding with Monocle.

Viral transcript analysis

Four RNA-based approaches were applied to systematically probe for the presence of 

SARS-CoV-2 RNA in the brain: analysis by snRNA-seq, bulk RNA-seq after viral isolation 

(QIAamp Viral RNA Mini Kit, Qiagen, manufacturer’s instructions), bulk RNA-seq after 

whole transcriptome isolation and RT–PCR using US Centers of Disease Control and 

Prevention (CDC) Emergency Use Authorization primers against the SARS-CoV-2 N1 and 

N2 genes (IDT 10006770). Both bulk RNA-seq RNA underwent established cDNA and 

library generation: in brief, mRNA was transcribed into full-length cDNA by using the 

Smart-Seq v.4 Ultra-Low-Input RNA kit from Clontech according to the manufacturer’s 

instructions. Samples were validated with an Agilent 2100 Bioanalyzer. Full-length cDNA 

was processed with the Nextera XT kit from Illumina for library preparation according to 

the manufacturer’s protocol. Library quality was verified with an Agilent 2100 Bioanalyzer. 

Sequencing was carried out on a NovaSeq 6000 (150 cycles, Novogene). For RT–PCR 

analysis, bulk choroid whole transcriptome mRNA samples were diluted and mixed with 

SYBR green master mix before loading as technical duplicates on a LightCycler 480 

(Roche) for 40 cycles.

To search for SARS-CoV-2 reads in either the snRNA-seq or bulk RNA-seq datasets, 

raw .fastq files were subjected to read alignment via Viral-Track78, VIRTUS79 or 

centrifuge80 using the human (GRCh38) genome reference. For Viral-Track, both a 

collection of 12,163 consensus virus sequences from Virusite81 (release 2020.3) and 17,133 

curated SARS-CoV-2 genomes from NCBI (downloaded on 29 September 2020) were used. 

For centrifuge, a preprocessed virus index compiled by genexa containing among other 

viruses 138 SARS-CoV-2 genomes was used. We also adopted a complementary approach82 

focusing on SARS-CoV-2 reads, in which barcoded but unmapped BAM reads were aligned 

using STAR to the SARS-CoV-2 reference genome, with a less stringent mapping parameter 

(outFilterMatchNmin 25-30) than the original Viral-Track pipeline.

Cell–cell communication

Cell–cell interactions based on the expression of known ligand–receptor pairs in 

different cell types were inferred using CellChat32 (v.0.02). To identify potential 

cell–cell communication networks perturbed or induced in brains of patients with 

COVID-19, we followed the official workflow and loaded the normalized counts 

into CellChat and applied the preprocessing functions identifyOverExpressedGenes, 

identifyOverExpressedInteractions and projectData with standard parameters set. As 

database, we selected the Secreted Signalling pathways and used the precompiled human 

Protein–protein-Interactions as a priori network information. For the main analyses the core 
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functions computeCommunProb, computeCommunProbPathway and aggregateNet were 

applied using standard parameters and fixed randomization seeds. Finally, to determine the 

senders and receivers in the network, the function netAnalysis_signallingRole was applied 

on the netP data slot.

Overlap with GWAS hits

From the GWAS catalogue43, we obtained GWAS risk genes for neurological disorders 

(Alzheimer’s disease, amyotrophic lateral sclerosis, brain ageing, multiple system atrophy, 

multiple sclerosis, Parkinson’s disease and narcolepsy), psychiatric disorders (attention 

deficit hyperactivity disorder, autism, bipolar disorder, depression, psychosis, post-traumatic 

stress disorder and schizophrenia) and neurobehaviour traits (anxiety, suicidality, insomnia, 

neuroticism, risk behaviour, intelligence and cognitive function). We removed gene 

duplicates and GWAS loci either not reported or in intergenic regions, and used a P < 9 

× 10−6 to identify significant associations25. Then, as GWAS signals can point to multiple 

candidate genes within the same locus, we focused on the ‘Reported Gene(s)’ (genes 

reported as associated by the authors of each GWAS study). Disorders and traits exhibiting 

a significant number of genes that were also perturbed in patients with COVID-19 are 

highlighted. Following gene symbol extraction, we curated the gene set by (1) removing 

unknown or outdated gene names using the HGNChelper package (v.0.8.6), (2) converting 

remaining Ensembl gene identifiers to actual gene names using the packages ensembldb 

(v.2.10.0) and EnsDb. Hsapiens.v86 (v.2.99.0) and (3) removing any remaining duplicates. 

We then calculated the overlap between each set of GWAS genes with the cell-type-specific 

DEGs. Finally, a statistical enrichment of each overlap against background was calculated 

using a hypergeometric test with the total background size set equal to the number of unique 

RNAs mapped in our dataset (29,431). Overlaps between GWAS DEGs and disease GWAS 

genes expressed were calculated separately for each cell type.

Comparison of DEGs in chronic CNS disease

We compiled cell type-specific DEGs reported in published datasets for Alzheimer’s 

disease5, autism spectrum disorder8, Huntington’s disease42 and multiple sclerosis26. Lists 

of gene symbols were curated using the aforementioned approach. COVID-19 DEGs that 

overlap with those found across the selected CNS diseases were called shared, whereas 

those not previously reported were called unique to COVID-19. Statistical significance 

calculations of over-representation in DEG overlaps are based on cumulative hypergeometric 

P values analogous to the procedures described in ‘Differential gene expression and sub­

cluster analysis’ and ‘Overlap with GWAS hits’, with the total background size set equal to 

the number of unique RNAs mapped in our dataset (29,431). Using the smaller set of 17,926 

protein-coding genes as background does not change the qualitative statistical significance 

of the overlaps. Similar to the analysis of GWAS hits, we determined the overlap and tested 

its significance for each cell type separately.

Principal variance component and principal component analyses

In brief, to conduct the principal variance component analysis (PVCA), we aggregated 

the SoupX corrected raw counts for each gene and each biological sample using the 

aggregateData function of the muscat package (v.1.2.1)74. The resulting matrix was 
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normalized by dividing each feature of a sample by the total counts from that sample, 

multiplied by 100,000 and scaling the result using the function log(x + 1). As variables 

we considered the sample annotation fields ‘Sample-ID’, ‘Patient-ID’, ‘Sex’, ‘Brain-region’, 

‘Disease’, ‘ageBin’, ‘nNucleiBin’ and ‘Batch’. As PVCA is designed to support factors, 

we assigned the values for numeric variables into ordered bins, more specifically, into six 

half-open (left-closed) intervals of size 1,000 starting at 1,000 for the number of nuclei 

and five similarly defined intervals of size 10 starting at 51 for the age. We set the cut-off 

for the minimal variance out of the total variance being explained to be 95%. For each 

single annotation variable, or first higher-order combinations of such, a cut-off of 0.005 was 

applied to consider them explanatory. All variables (or combinations of such) not passing 

the threshold were summarized as Other in the analysis. The residual was then defined as 

the remaining proportion of variance not being associated with any of the variables that are 

explanatory nor informative to a minor proportion. To conduct principal component analysis, 

we aggregated the log-normalized cell counts from Seurat for each gene and sample using 

the aggregateData function from muscat and centred the gene expression vectors before 

computing eigenvectors.

Computational analysis, statistics and schematics

Analysis of the data was performed with the statistical programming language R (v.3.6.3) 

using the following general-purpose package for loading, saving and manipulating data, as 

well as generating plots, and fitting statistical models: dplyr (v.1.0.0), ggplot2 (v.3.2.2.), 

patchwork (v.1.0.1), openxlsx (v.4.1.5), bioconductor-scater (v.1.14.6)83, bioconductor­

dropletutils (v1.6.1)84,85, bioconductor-complexheatmap (v.2.2.0)86, tidyverse (v.1.3.0)87 

and lsa (v.0.73.2). All other tasks were performed on an x86_64-based Ubuntu (4.15.0-55­

generic kernel) server cluster. We did not use statistical methods to predetermine sample 

sizes, but they are similar to those reported in previous publications24,25,49. Data in graphs 

are always presented as mean ± s.e.m. Statistical tests used for group or cluster comparisons 

in bulk or single-nucleus RNA-seq experiment analysis are specified in the respective 

sections in Methods. Schematic diagrams were created with BioRender.com.

Immunohistochemistry

Paraffin-embedded human brain tissue (medial frontal cortex, meninges and choroid plexus) 

adjacent to tissue processed for snRNA-seq was subjected to immunohistochemistry.

After deparaffinization and rehydration of 1–3-μm sections, peroxidases were blocked 

by incubation in 1% H2O2 for 15 min at room temperature. Heat antigen retrieval 

was performed by steaming at 98 °C in target retrieval solution pH 6.1 (Dako, no. 

S1699) for 30 min. Sections were allowed to cool down at room temperature. Following 

antigen retrieval, sections were incubated for 45 min at room temperature with the 

anti-SARS spike glycoprotein antibody 3A2 (rabbit, Abcam ab272420, 1:100), which 

has been used in previous publications17,18, anti-SARS-CoV-2 spike antibody (mouse, 

GeneTex GTX632604, 1A9 clone, 1:100) used in a previous publication19, anti-SARS­

CoV-2 spike antibody (rabbit, Sino Biological 40150-T62-CoV2, 1:100), anti-SARS-CoV-2 

nucleoprotein antibody (rabbit, Sino Biological 40143-T62, 1:100) used in a previous 

publication30, and anti-human CD68 (mouse, Dako M0876, PG-M1 clone, 1:100) for 
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determining microglial reactivity. Both antibodies were diluted in Dako REAL antibody 

diluent no. S2022. After three washes with wash buffer (Dako no. S3006), the Dako REAL 

EnVision HRP kit (no. K5007) or alkaline phosphatase/RED kit (no. K500511) was used 

for the visualization of the antibody reaction according to the manufacturer’s instructions. 

Sections were counterstained with Mayer’s haemalum (Sigma-Aldrich no. 1.09249). After 

dehydration, coverslips were mounted with Entellan (Merck no. 1.07961). Images were 

acquired with an Olympus BX 40 microscope, equipped with an Olympus SC30 digital 

microscope camera using the Olympus cellSens software. To assess disease-associated 

innate immune activation in brains of individuals with COVID-19, slides were screened at 

low magnification and areas with the most pronounced changes were used for quantification. 

Spatial context was used to determine the myeloid cell type–for example, the meninges 

are evident in a brain slice, enabling confident identification of resident CD68+ cells as 

meningeal, and likewise for the brain vasculature. A semiquantitative categorization for 

activation, as typical in pathology, was used: mild = detectable microgliosis, atypical 

for healthy tissue; moderate = a pathological process typical of pathological changes; 

severe=a marked pathological process. Several clusters of microglia or macrophages were 

characterized as excessive beyond the severe category.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.

Data availability

Raw sequencing data are deposited under NCBI Gene Expression Omnibus (GEO) 

GSE159812. Normalized count data are also available for download at https://twc­

stanford.shinyapps.io/scRNA_Brain_COVID19. Any other relevant data are available from 

the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

All analyses have been carried out using freely available software packages. Custom code 

used to analyse the RNA-seq data and datasets generated and/or processed in the current 

study is available from the corresponding authors upon request.
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Extended Data

Extended Data Fig. 1 ∣. Characterization of human cortical and choroid plexi nuclei sequenced.
a, Total number of nuclei and median number of genes of each human sample sequenced 

in medial frontal cortex and choroid plexus. b, c, Quantification of the median number of 

genes detected per nuclei (b) and patient ages (c) in control (non-viral and influenza) and 

COVID-19 samples in medial frontal cortex (n = 8 control; n = 8 COVID-19, two-sided 

Mann-Whitey t-test; mean ± s.e.m.) and choroid plexus (n = 7 control; n = 7 COVID-19, 

two-sided Mann-Whitey t-test; mean ± s.e.m.). d, e, Bar graph presenting frequency of 

nuclei for control and COVID-19 medial frontal cortex (d) and choroid plexus (e) sample 

groups.
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Extended Data Fig. 2 ∣. Gene expression variance analysis.
a, PVCA, displaying the gene expression variance explained by residuals (biological and 

technical noise) or experimental factors such as brain region, age, sex and respective 

combinations. n = 30 samples. b, Principal component (PC) analysis visualization of all 

samples, based on unscaled counts. c, UMAP projections of nuclei isolated from the medial 

frontal cortex (top) or choroid plexus (bottom), and split by disease group, showing no 

systematic batch effects.
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Extended Data Fig. 3 ∣. Human brain cell-type markers.
a, Top cell-type-specific genes across the types of cells captured in the human cortex. The 

colour bar indicates gene expression from low (blue) to high (yellow). b, Example of top 

cell-type-specific genes across the types of cells captured in the human choroid plexus. 

Violin plots are centred around the median, with their shape representing cell distribution.
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Extended Data Fig. 4 ∣. Cell-type-specific changes in gene expression and intercellular signalling 
in the brain of individuals with COVID-19.
a, Heat map displaying the number of significant biological pathways among the set of 

DEGs in each cell type (FDR < 0.05, Benjamini–Hochberg adjustment, hypergeometric 

test). Number of significant pathways is indicated in graded black (low) to yellow (high). 

b, Example upregulation of inflammatory and dysregulation of homeostatic genes in 

COVID-19 astrocytes. c, Comparison of the number of nuclei isolated per cell type and the 

number of predicted DEGs. Two-sided P-value indicates the significance of the correlation 

(Pearson, not significant).
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Extended Data Fig. 5 ∣. Overlap between alternative snRNA-seq differential expression analysis 
methods.
a, b, Scatter plots demonstrating the strong correlation between the calculated effect 

sizes of two differential gene expression analysis methods (MAST55 (used here) and 

pseudobulk74,75) across cell types in the human medial frontal cortex (a) and choroid plexus 

(b). Orange line denotes the trend line fitted with a generalized linear model, surrounded 

by a 95% confidence interval in purple. Spearman correlation is shown along with the 

significance by two-sided P-values.
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Extended Data Fig. 6 ∣. DEGs in the brains of individuals with COVID-19 show no significant 
overlap with brain PMI-sensitive genes.
a, Comparison of post-mortem interval (PMI)-sensitive genes (left column, from a previous 

publication27) and COVID-19 DEGs (all other columns). No statistically significant overlap 

is observed (Fisher’s exact test). b, The previous study27 categorized PMI-sensitive genes 

in two categories: glial genes upregulated and neural genes downregulated. Minimal overlap 

is seen with COVID-19 changes of the same category (for example, glial genes upregulated 

in COVID-19 versus glial genes upregulated with extended PMI). c, Heat map showing that 

PMI-sensitive genes are not the DEGs in COVID-19 and thus not driving the DEG-based 

findings of our study.

Yang et al. Page 20

Nature. Author manuscript; available in PMC 2021 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 7 ∣. Expression of SARS-CoV-2 virus entry genes across cell types.
a, b, Expression of SARS-CoV-2 entry receptors, established and putative, across cell types 

in the human medial frontal cortex (a) and choroid plexus (b). Violin plots are centred 

around the median, with their shape representing cell distribution.
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Extended Data Fig. 8 ∣. Choroid plexus inflammation in COVID-19.
Immunohistochemical staining for the macrophage activation marker CD68 (brown) in 

the choroid plexus of patients with COVID-19 and control individuals. Haematoxylin 

counterstain (blue). Scale bars, 20 μm.
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Extended Data Fig. 9 ∣. No conclusive detection of SARS-CoV-2 neuroinvasion.
a, Summary of RNA-based assays to detect SARS-CoV-2 in the human cortex and choroid 

plexus. Aside from the 3A2 antibody, no other anti-SARS-CoV-2 antibody detected viral 

protein antigen in the brain or choroid plexus. b, qPCR detection of the SARS-CoV-2 

genes N1 and N2 via CDC Emergency Use Authorization primers on choroid plexus 

samples (n = 6 non-viral control, n = 7 COVID-19; two-sided Mann–Whitney t-test; mean 

± s.e.m.). c, Aberrant anti-SARS-CoV-2 spike (3A2) antibody reactivity (brown) in the 

frontal medial cortex of two patients with COVID-19 in tissue immediately adjacent to 

that used for snRNA-seq. Haematoxylin counterstain (purple). Scale bar, 20 μm. d, As in 
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c, but for the choroid plexus and meninges in two patients with COVID-19. Scale bar, 20 

μm. e, As in c, but using a different secondary antibody detection method (biotin–alkaline 

phosphatase (red)), recapitulating the specific vascular-localized signal. Scale bar, 20 μm. 

Immunohistochemical stains are representative of at least two independent experiments.

Extended Data Fig. 10 ∣. Cell communication analysis results for integrated choroid plexus and 
brain parenchyma cell types.
Circle plot showing the number of statistically significant intercellular signalling interactions 

for total signalling (over 30 ligand–receptor pathways) and the complement family of 

molecules in control individuals (non-viral and influenza) compared to patients with 

COVID-19 (permutation test, CellChat34; n = 8 control, including influenza; n = 8 

COVID-19 for cortex; and n = 7 control, including influenza; n = 7 COVID-19 for choroid 

plexus). Each circle (colour) represents one cell type, and edges connecting circles represent 

significant intercellular signalling inferred between those cell types. Circles and edges were 
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normalized and scaled to display relative sizes, with the former proportional to the number 

of cells from a given cell type and the latter according to the inferred strength of signalling. 

Cell type labels correspond to signalling pathway increased in COVID-19.

Extended Data Fig. 11 ∣. Activation of parenchymal microglia and perivascular macrophages in 
COVID-19.
Immunohistochemical staining of microglia and macrophages by an antibody against 

the pro-inflammatory marker CD6888 (immunoreaction in brown). Counterstained with 

haematoxylin for cell nuclei in blue. a, The frontal medial gyrus of patients with COVID-19 

immediately adjacent to that used for snRNA-seq. A cluster of activated microglia up to 

single macrophages is immunostained in the parenchyma of the gyrus (subcortical white 

Yang et al. Page 25

Nature. Author manuscript; available in PMC 2021 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matter). Scale bar, 20 μm. b, A vessel of the medial frontal gyrus is surrounded by 

activated perivascular macrophages. Scale bar, 20 μm. c, The cortical surface is shown. 

The upper third of the figure contains the leptomeninges that cover the cortex. A dense 

infiltration by brown stained macrophages into the leptomeninges is visible. Scale bar, 20 

μm. d, Summary of innate immune reactivity across eight patients with COVID-19, typically 

not observed in healthy brains at these levels, colour-coded and labelled by severity. A 

semiquantitative categorization for changes, as usual in the field of pathology, is used: mild 

= detectable microgliosis, atypical for healthy tissue; moderate = a pathological process 

typical of pathological changes; severe = a marked pathological process. Several clusters 

of microglia or macrophages were characterized as excessive beyond the severe category. 

Immunohistochemical stains are representative of at least two independent experiments.
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Extended Data Fig. 12 ∣. Evaluation of COVID-19-enriched subpopulations in other 
parenchymal glia.
a, UMAP of astrocytes captured in the human frontal cortex, split by control individuals 

(including influenza, n = 8) and patients with COVID-19 (n = 8). Cells are coloured by 

cell-type subcluster. Genes upregulated in the COVID-19-enriched astrocyte cluster are 

labelled in green. b, Quantification of astrocyte cluster 1 as a proportion of total astrocytes 

(n = 8 control, including influenza; n = 8 COVID-19, two-sided Mann–Whitney t-test 

P = 0.0041; mean ± s.e.m.). Example genes upregulated in the COVID-19-associated 

astrocyte cluster are shown. c, Enriched biological pathways (Metascape54) amongst 

upregulated gene markers of COVID-19 astrocytes. Enrichment is based on FDR-corrected 
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cumulative hypergeometric P values (Bonferroni correction FDR < 0.05; MAST with default 

thresholds). d, UMAP projection of OPCs and trending but not significant emergence 

of a COVID-19-enriched subcluster. e, Quantification of the frequency of the COVID-19­

enriched OPC subcluster as a proportion of all OPCs (n = 8 control, including 1 influenza 

and n = 8 COVID-19, two-sided Mann–Whitney t-test, P = 0.083; mean ± s.e.m., not 

significant). f, g, As in d, e, respectively, but for mature oligodendrocytes with P = 0.9591.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Overview of diverse brain and choroid plexus cell types captured from post-mortem 
tissue from patients with COVID-19.
a, Study design. Coloured triangles denote the brain regions that were studied for each 

patient. IHC, immunohistochemistry. b, Uniform manifold approximation and projection 

(UMAP) of 38,217 nuclei from the medial frontal cortex of 8 control individuals (including 

1 patient with influenza) and 8 patients with COVID-19. As in previous reports5,25,46, 

the ‘endothelial’ cluster also exhibits vascular mural cell markers and perivascular cells 

(perivascular fibroblast-like cells and perivascular macrophages) are not efficiently captured. 

exc., excitatory; in., inhibitory; OPC, oligodendrocyte precursor cell. c, Examples of DEGs 

in COVID-19 (n = 7 control individuals (without viral infection); n = 8 patients with 

COVID-19; MAST with default settings): excitatory neurons (exc. n.), inhibitory neurons 
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(in. n.), astrocytes (ast.), oligodendrocytes (oli.), OPCs, and microglia and macrophages 

(mic./mac.). DEGs defined as log-transformed fold change > 0.25 (absolute value) and 

adjusted P value < 0.05 (Bonferroni correction). d, Cell-type specificity of cortical DEGs. 

UpSet plot showing a matrix layout of DEGs shared across and specific to each cell type. 

Each matrix column represents either DEGs specific to a cell type (single circle with no 

vertical lines) or DEGs shared between cell types, with the vertical line indicating the cell 

types that share that given DEG. Top, bar graph displays the number of DEGs in each 

combination of cell types. Right, bar graph displays the total number of DEGs for a given 

cell type. e, UMAP of 27,092 nuclei from the lateral choroid plexus of 14 individuals (n = 7 

control individuals (including 1 patient with influenza); n = 7 patients with COVID-19; 

MAST with default settings). f, Expression profiles (counts per million reads mapped 

(CPM)) (circle size) and differential expression in patients with COVID-19 (average log­

transformed fold change (avg log FC)) (colour) for genes relevant to SARS-CoV-2 entry 

into the brain16. The highlighted region indicates the consistent upregulation of the antiviral 

defence gene IFITM3 in choroid and glia limitans brain-barrier cells.
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Fig. 2 ∣. Brain-barrier inflammation in patients with COVID-19 does not require direct 
replicative infection.
a, Examples of inflammation-related DEGs in the choroid plexus of patients with 

COVID-19 (n = 6 control individuals (without viral infection); n = 7 patients with 

COVID-19; MAST with default settings). DEGs defined as log-transformed fold change 

> 0.25 (absolute value) and adjusted P value < 0.05 (Bonferroni correction). b, Validation 

of predicted choroid plexus DEGs by RT–qPCR (n = 6 control individuals (without viral 

infection), n = 7 patients with COVID-19; two-sided Mann–Whitney t-test; mean ± s.e.m.). 

Genes chosen for validation are either immediately related to SARS-CoV-2 (IFITM3) or 

genes with log-transformed fold changes similar to those of IFITM3 (NQO1), to assess the 

robustness of snRNA-seq thresholds. P values P = 0.0023 (IFITM3), 0.0484 (C7), 0.0350 

(STAT3), 0.0140 (NQO1), 0.0082 (ZFP36) and 0.0734 (SDC4). c, snRNA-seq (left) or bulk 

RNA-seq (right) of choroid plexus and cortex from control individuals or patients with 

COVID-19 (no reads). snRNA-seq, n = 7 control, n = 7 COVID-19 (choroid plexus); n = 7 

control, n = 7 COVID-19 (cortex). Bulk RNA-seq (after viral RNA isolation): n = 7 control, 

n = 4 COVID-19 (choroid plexus); n = 5 control, n = 4 COVID-19 (cortex). d, Circle plot 
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showing the number of statistically significant intercellular signalling interactions for the 

CXCL and CCL pathway family of molecules in control individuals compared to patients 

with COVID-19 (permutation test, CellChat32; n = 8 control individuals (including patients 

with influenza); n = 8 patients with COVID-19 (cortex); and n = 7 control individuals 

(including patients with influenza); n = 7 patients with COVID-19 (choroid plexus)). 

Each circle (colour) represents one cell type; edges connecting circles represent significant 

intercellular signalling inferred between those cell types. Circles and edges are normalized 

to the number of cells for a given cell type and inferred strength of signalling, respectively. 

Cell types labelled on the right correspond to signalling pathways increased in COVID-19. 

Endo., endothelial; epen., ependymal; epi., epithelial; mes., mesenchymal.
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Fig. 3 ∣. A neuroinflammatory COVID-19 milieu marked by disease-associated microglia.
a, UMAP of immune cells captured in the human frontal cortex, split by control individuals 

(including a patient with influenza) (n = 8) (red) and patients with COVID-19 (n = 8) 

(light blue). Cells are coloured by cell-type subcluster (red cluster defined by homeostatic 

markers; light blue cluster defined by activation markers). b, Quantification of immune 

cell cluster 1 as a proportion of total immune cells (n = 8 control individuals (including 

a patient with influenza (circle marked as ‘flu’)); n = 8 patients with COVID-19, two­

sided Mann–Whitney t-test P = 0.0098; mean ± s.e.m.). c, As in b, but for T cells. 

P=0.0003. d, e, As in a, b, respectively, but for MRC1− parenchymal microglia. P = 

0.0343. Unlike macrophages, microglia express low levels of MRC1 (CD206)34. Examples 

of genes that are upregulated in the microglial cluster associated with COVID-19 are 

shown in light blue. f, Pseudotime trajectory (Methods) indicated in graded purple (low) to 
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yellow (high), plotting the emergence of the microglial cluster associated with COVID-19. 

Numbers indicate original source population (1) and the newly emerged population in 

COVID-19 (2). g, Immunohistochemical staining for the microglial activation marker 

CD68 (brown) in the frontal medial cortex of a patient with COVID-19, immediately 

adjacent to that used for snRNA-seq. Haematoxylin counterstain (blue). Scale bars, 20 

μm. Immunohistochemical stains are representative of at least two independent experiments. 

h, Overlap (hypergeometric test) between marker genes of Alzheimer’s-disease-associated 

microglia (DAM, ARM and Mic1)4-6 and genes that are upregulated in the microglial cluster 

associated with COVID-19.
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Fig. 4 ∣. Molecular dysfunction in upper-layer neurons and links to long-term symptoms.
a, Dot plot showing downregulation of synaptic vesicle components, especially in L2/3 

excitatory neurons in patients with COVID-19 (n = 7 control individuals (without viral 

infection); n = 8 patients with COVID-19; MAST with default settings). FC, fold change. 

b, Diagram of cortical neurons captured in this study that have known layer localization. 

Neuron labels are colour-coded by layer localization as shaded in a. Figure layout adapted 

with permission from ref. 8. c, Overlap between COVID-19 DEGs and those in chronic 

CNS diseases (Methods). Dotted line indicates statistical significance (adjusted P value < 

0.05, false-discovery rate (FDR) correction, cumulative hypergeometric test). d, Heat map 

showing the number of DEGs per cell type that overlap as GWAS risk variants across 

psychiatric and neurological diseases and traits from the GWAS catalogue (NHGRI-EBI)43. 
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Significance of overlap is based on FDR-corrected cumulative hypergeometric P values 

(Benjamini–Hochberg correction) < 0.05; MAST with default thresholds). AD, Alzheimer’s 

disease; ADHD, attention deficit hyperactivity disorder; ALS, amyotrophic lateral sclerosis; 

MS, multiple sclerosis; MSA, multiple system atrophy; PD, Parkinson’s disease; PTSD, 

post-traumatic stress disorder.
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