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Abstract 

Background:  Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, 
whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically 
target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an 
approach to systematically infer genetic interactions from viability screens is missing.

Methods:  Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to iden-
tify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with 
genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map.

Results:  Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. 
We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phos-
phorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS 
inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the 
aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential 
therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2.

Conclusions:  PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in 
improving cancer therapy with increased availability of cancer genomics data.
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licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Synthetic lethality occurs when simultaneous perturba-
tion in two or more genes leads to cell death, whereas 
individual inactivation of single genes is still compatible 
with cell survival [1]. This phenomenon, first described 
in Drosophila melanogaster [2, 3], has been used as an 
approach in cancer therapy to exploit vulnerabilities of 

cancer cells by identifying druggable targets that when 
ablated or inhibited would selectively impact the viability 
of aberrant cancer cells [4]. The first successful therapy 
based on this approach is the use of Poly-ADP-ribose 
polymerase 1 (PARP1) inhibitors in patients deficient in 
homologous recombination pathway [5]. This discovery 
promoted the search for additional synthetic lethal (SL) 
targets in cancer research.

Studies in human cancer cell lines have accumulated 
multiple layers of genetic information that can be used to 
study SL interactions. This includes CRISPR/Cas9-based 
KO screens, RNAi and drug screens together with gene 
expression, mutation and copy number variation data. 
For instance, data from the Achilles project (part of the 
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DepMap consortium [6]), based on both CRISPR-Cas9 
and shRNA screens, have been exploited to uncover 
new potential SL interactions and several computational 
approaches have been developed for this purpose [7–13]. 
In addition, prioritization of cancer therapeutic targets 
has been proposed [14] based on a priority score derived 
from experimental evidence, the significance of fitness 
deficiency, target gene expression, target mutational 
status and evidence for other fitness genes in the same 
pathway. Based on these efforts, recently the Werner syn-
drome helicase (WRN) was found as a promising SL tar-
get in microsatellite instable cancers [14–17]. Despite the 
depth of information acquired on individual cancer cell 
lines only a few potential SL interactions have been iden-
tified so far. Due to their genomic complexity, it has been 
challenging to disentangle the genetic dependencies of 
tumor cell lines. Several of the approaches used to infer 
SL interactions are based on the assumptions of gene 
co-inactivation, mutual exclusivity and/or co-expression 
and are generally tested on mutational or gene expression 
data with traditional statistics (e.g. Wilcoxon rank sum 
test) or restricted to certain tissues [7, 8, 11].

Most of the current approaches for SL predictions are 
based on a massive number of multiple univariate statis-
tical tests. This can lead to high number of false positives 
or after multiple-testing correction, to high number of 
false negatives. These models also do not address multi-
collinearity, a phenomenon in which the multiple predic-
tors are highly correlated. For this reason, they may fail 
to predict potential feature associations by testing genetic 
interactions individually and they are not designed to 
find non-linear correlations. A major challenge is that 
the omics data are often composed of a relatively small 
number of samples and a high number of variables (often 
referred to as features or predictors). This type of data 
is also referred to as “big-p, little-n” (p >  > n), presents a 
problem of high dimensionality. A good strategy to tackle 
this problem is to reduce the number of dimensions 
through feature selection. By grouping similar features 
or filtering redundant ones, direct relationships between 
the response and the predictor can be readily identi-
fied. Feature selection methods can be grouped into (i) 
minimal-optimal methods that aim to find the minimal 
optimal subset of features to maximize the accuracy of 
the model, and (ii) all-relevant methods, that find all the 
relevant features to describe the outcome variable [18]. If 
the first ones often drop redundant (collinear) variables 
and suffer from inherent bias, the latter ones are able to 
capture all the important features to explain a phenome-
non and have been successfully applied in bioinformatics, 
e.g. gene and single nucleotide polymorphism selection 
[19]. Random Forest (RF) algorithms are thus very suit-
able for p >  > n datasets, they require minimal tuning, no 

transformation of variables and they are robust to noise 
[20].

In particular, the robustness of the RF methods has 
been previously tested with gene expression datasets, 
whereby they showed high reliability in terms of post-
selection classification accuracy and consistency.

Previous methods [7–13] provided very important 
steps towards the identification of targetable genetic 
interactions. For instance, Jerby-Arnon, L. et  al. devel-
oped an approach (DAISY- data mining synthetic lethal-
ity identification pipeline) that led to the discovery of SL 
partners for the tumor suppressor VHL. Sinha, S. et  al. 
presented MiSL (Mining Synthetic Lethals), an algorithm 
to identify mutation-specific SL partners in cancers and 
identified a SL interaction between the isocitrate dehy-
drogenase 1 (IDH1) mutation and the acetyl-CoA car-
boxylase 1 (ACACA). Apaolaza, I. et  al. employed the 
concept of genetic minimal cut sets and gene expression 
data to predict metabolic vulnerabilities in cancer and 
study the ribonucleotide reductase catalytic subunit M1 
(RRM1) inhibition in myeloma cell lines. Lee, J. S. et al. 
developed an algorithm for identification of clinically rel-
evant SL interactions (ISLE) using The Cancer Genome 
Atlas (TCGA) data. Despite these advances, an algorithm 
that can address the importance of each individual gene 
deficiency in explaining the dependencies observed in 
cancer cells in a tissue-independent manner is still miss-
ing. Here we present PAn-canceR Inferred Synthetic 
lethalities (PARIS), a machine learning approach that can 
predict potential vulnerabilities in cancer. The core of 
the workflow is a feature selection step, performed with 
RF algorithms that assign an importance score to each 
genomic feature based on the measured effect of knock-
ing out a specific gene across hundreds of cancer cell 
lines. We initially established and tested PARIS to iden-
tify SL interactions among known DNA damage response 
(DDR) genes. We then expanded our search space and 
investigated the vulnerabilities of the DDR genes with 
the rest of the genome. We identified and confirmed two 
previously uncharacterized SL interactions. To allow 
straightforward exploration of the entire dataset, we gen-
erated an interactive web application. In summary, PARIS 
can be used as a platform to directly link certain genetic 
features to the viability data obtained after knocking out 
a specific gene and to uncover the meaningful relation-
ships that represent potential cancer vulnerabilities.

Results
PARIS methodology
We developed PARIS as a computational approach 
to infer vulnerabilities in cancer cells. The core of the 
pipeline is based on the RF algorithms to assess impor-
tance of each independent variables (mutation or 
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gene expression) with respect to the response vari-
able (dependency scores). As the response variable, 
we retrieved gene dependency score data based on the 
CERES pipeline that can estimate the gene essentiality 
levels from CRISPR-Cas9 screen results correcting for 
the gRNA activity and the copy-number effect [21]. Addi-
tionally, we retrieved the mutation and expression data 
from the Cancer Cell Line Encyclopedia (CCLE), part of 
the DepMap consortium. In order to filter for relevant 
mutations, we only considered pathogenic mutations 
based on the FATHMM (Functional Analysis through 
Hidden Markov Models) predictions [22], hotspot muta-
tions reported in TCGA or mutations that are already 
annotated as damaging. Using these data, we applied 
a feature selection step, based on a machine learning 

algorithm that aims to explain certain gene dependen-
cies from the CRISPR-Cas9 screens by mutation or mis-
regulation of genes across hundreds of cancer cell lines 
(Fig. 1a). For this purpose, we selected the Boruta algo-
rithm [23] due to its robustness and adaptability to omics 
data [24]. This algorithm uses the RF importance scores 
and iteratively removes any features that are found to be 
significantly less relevant (i.e. show a lower importance 
score) than random probes (Fig. 1b).

To benchmark PARIS, we initially compared two 
importance measures to select significant features:

i) the mean decrease of impurity (Gini importance), 
obtained summing the total nodes impurity reduction 
where the variable appears, and ii) the mean decrease 
of accuracy (raw permutation importance), measuring 

Fig. 1  Workflow of PARIS (Pan cAnceR Inferred Synthetic lethalities). a The PARIS pipeline uses data retrieved from the DepMap consortium. 
Dependency scores from the CRISPR-Cas9 screens and mutation/expression data were used as response variables and as independent variables, 
respectively. Only damaging mutations, TCGA hotspots and predicted pathogenic (coding score from FATHMM > 0.7) mutations were considered. 
The RF feature selection step assigns important scores to each feature (mutations and expression independently) to describe the dependency 
scores of a particular gene. The significant-selected pairs are optionally filtered based on the direction of the relationship: positive for mutations/
dependencies and negative for expression/dependencies. Candidates for SL gene pairs are ranked based on their importance scores. b The RF 
feature selection is based on the Boruta algorithm, which selects significant features with importance scores higher than the maximum importance 
score obtained by random probes during the iteration process (shadowMax). In the example WRN dependency is explained by multiple genes 
belonging to the mismatch repair pathway that have significantly higher importance scores than the random probes. c Examples of dependency/
selected features correlations. Scatterplots show the negative correlation between WRN dependency/MLH1 expression and the positive correlation 
between ARID1B dependency/ARID1A mutation status
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accuracy reduction on out-of-bags samples when the val-
ues of the variable are randomly permuted.

Quality assessment of the importance scores
As a proof of concept, we initially focused on known 
DDR-related genes due to their relevance as potential 
targets in cancer treatment. We manually curated a list 
of 549 genes [25, 26] for which we used the depend-
ency scores across 625 cancer cell lines as response 
variables, as well as the mutational and expression 
data as features/predictors. We then selected patho-
genically mutated or misregulated genes that can 
explain the dependencies of each genetic target in the 
CRISPR-Cas9 screens using the Boruta algorithm. We 
extracted the selected pairs of genes along with the 
importance scores retrieved from the feature-selection 
step (Fig.  1b). For instance, we found that MLH1 was 
one of the most significant features to explain WRN 
dependency, as previously described [14–17]. In order 
to identify interactions that could represent potential 
SL interactions or vulnerabilities in cancer cell lines, we 
focused on positive relationships in the case of depend-
ency/mutation pairs and on negative relationships for 
dependency/expression pairs, using the Pearson corre-
lation coefficient (PCC) score to retrieve the direction 
of the relationship. We used PCC due to its well suit-
ability for data with high class imbalances such as the 
gene dependencies in cancer cells, whereby the depend-
ent group is much smaller than the non-dependent 
group. For example, the WRN dependency scores nega-
tively correlated with MLH1 expression and ARID1B 
dependency score positively correlated with ARID1A 
mutation status, as expected from previous reports [27, 
28], demonstrating the capability of PARIS to detect 
SL interactions (Fig. 1c). We selected all the significant 
importance scores and subsequently, we scaled the 
importance scores between 0 and 1 within each group, 
where the most significant interaction was scaled to 
1. We next investigated the concordance between the 
importance scores derived from different algorithms.

Considering only the interactions selected by both 
algorithms, the two scaled importance scores showed a 
strong correlation (R = 0.84, PCC) for predictions with 
mutations, however a moderate (R = 0.58, PCC) correla-
tion for the expression-based predictions (Fig.  2a). We 
reasoned that these differences may stem from the fact 
that the expression data allow many more splitting points 
during the tree construction process implemented by 
PARIS compared to the mutation-based data. Since the 
Gini metrics can be prone to assign higher scores on pre-
dictions based on the expression data, we hypothesized 
that it may introduce biases. For this reason, we applied 
an additional RF algorithm using a corrected impu-
rity (corrected Gini) importance score [29] to improve 
the feature selection step (Fig. 2a). This metric is able to 
reduce biases in the measurement and is suggested to be 
as accurate as the raw permutation one with the advan-
tage of reduced computational time (see Methods).

The scaled importance scores of the selected pairs of 
genes from the RF feature selection step showed long-
tailed distributions in all the groups (Supplementary 
Fig.  1a) indicating that most of the interactions were 
inferred with low importance scores and fewer relation-
ships were assigned high scores. To select gene pairs with 
the highest confidence, we defined classes of importance 
scores based on the head/tail breaks clustering method, 
which is a clustering algorithm well suited for data with 
heavy-tailed distributions (see Methods, Fig. 2b and Sup-
plementary Fig. 1a).

For example, using the raw permutation method in the 
expression dataset, out of 5865 gene pairs that passed 
the P value threshold (P < 0.01), 14 gene pairs had scaled 
importance score of more than 0.25. On the other hand, 
the corrected Gini method identified less gene pairs that 
passed the P value cutoff, however more gene pairs were 
identified with higher importance scores (Fig. 2c).

Based on these analyses, we considered the last break 
point of the head/tail breaks clustering method as the 
threshold for identifying the gene pairs with the highest 
confidence. We then investigated the robustness of the 

(See figure on next page.)
Fig. 2  Importance score quality assessment and potential synthetic lethal interactions among DDR genes. a Comparisons of importance score 
calculation methods on commonly selected DDR gene pairs. Gini—raw permutation scaled importance scores correlation using mutation features 
(green) and Gini/Gini corrected—raw permutation scaled importance scores correlation with expression features (blue). b Density distribution 
of the raw permutation scaled importance scores with superimposed breaks obtained by the Head/Tail breaks algorithm using raw permutation 
(yellow lines) and Gini corrected (dotted red lines) importance score methods. c Number of selected gene pairs above different scaled importance 
score cutoffs based on expression (blue) or mutation (green) features. d STRINGdb combined scores of interacting gene pairs selected with high 
confidence (scaled importance score > 0.4) by the three approaches and with low confidence (scaled importance score < 0.4) by all of the methods. 
e Percentage of interacting gene pairs over the selected ones in the four described groups. f Network of predicted SLs among DDR genes based 
on the raw permutation importance score. Each node represents a gene and each edge a relationship; the arrow starts from the mutated (green) 
or dysregulated gene (blue) and arrives to the gene showing an associated increased dependency score. The width is proportional to the absolute 
value of the Pearson correlation coefficient. The color of the node shows the median of the dependency score of the gene in a grey scale. Different 
arrow shapes show three levels of confidence scores based on the scaled importance scores
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Fig. 2  (See legend on previous page.)
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raw permutation, Gini and corrected Gini methods to 
identify interacting genes with high confidence (scaled 
importance score more than 0.4). For this we retrieved 
the interaction information from the STRING database 
[30], whenever available, as a proxy for the strength of 
the genetic interactions. In addition, we considered a 
fourth group including all the pairs selected with low 
confidence (scaled importance score less than 0.4) by all 
of the three approaches (Supplementary Fig. 1b). We first 
investigated the gene pairs identified from the expres-
sion-based data and compared the combined scores 
from the STRING database indicating the likelihood of 
protein–protein interactions. We observed higher com-
bined scores in the groups belonging to the corrected 
Gini and the raw permutation scores than to the Gini and 
the “low confidence” groups (Fig. 2d). When we consid-
ered only the experiment-based interaction score, as the 
most stringent source of evidence, the raw permutation 
high confidence-selected pairs showed highest scores. 
However, in general, the percentage of interacting pro-
tein pairs was much higher in both the corrected Gini 
and raw permutation groups (Fig.  2e). As expected, we 
did not observe any differences among the three “high 
confidence” groups when we used the mutation data. 
Nonetheless, only the “low confidence” group showed 
lower values in terms of combined scores, experiment-
based interaction score and percentage of interactions 
(Supplementary Fig. 2a, b). Based on these observations, 
we concluded that the raw permutation method is very 
robust in identifying gene pairs with high confidence and 
the corrected Gini method can drastically improve the 
confidence of selection, in particular when the expression 
data are used as independent variables. In addition, we 
demonstrated that the scaled importance scores can be 
an effective measure for the confidence of the predicted 
SL interactions by PARIS.

Prediction of synthetic lethal interactions among DDR 
genes
For intuitive data browsing and visualization we built an 
R shiny [31] app based on PARIS results. In this app, the 
selected gene pairs are represented as a directed graph, 
in which the arrows point to the dependent genes of the 
pairs starting from the deficient ones (mutated or dys-
regulated). Users can apply different filters, e.g. to the 
scaled importance scores and type of features to explore 
the interactions and export the results as data tables (see 
Methods for details and Additional file  1 for the com-
plete table). In the context of the DDR genes, to select 
and investigate the pairs inferred with highest confi-
dence, we used scaled importance score thresholds of 0.4 
and 0.5 for expression and mutation-based predictions, 
respectively. Several of the gene pairs identified from this 

cohort are paralogs and function in protein complexes 
that are intrinsically related and more likely to show SL 
interactions (Supplementary Fig. 2c). As previously sug-
gested, the buffering relationships between paralog pairs 
can explain a significant higher probability to display syn-
thetic lethality, in agreement with our results in which the 
top high score pair group mostly consists of paralog pairs 
[32]. In addition, among others, notable examples of high 
confidence SL predictions based on mutation data were 
ARID1B-ARID1A, STAG1-STAG2 and TYMS-CDK2NA. 
When considering the expression data, we again 
observed a high confidence interaction between STAG1-
STAG2 in addition to a bidirectional interaction between 
SMARCA2 and SMARCA4 (Fig.  2f, Supplementary 
Fig. 3a, b). Interestingly, the combination of deficiencies 
of the genes ARID1B-ARID1A and SMARCA2-SMARC4/ 
SMARCA4-SMARCA2, all belonging to the SWI/SNF 
chromatin remodeling complex, has already been dem-
onstrated to show SL interactions [27, 28, 33–35]. Addi-
tionally, the SL interaction between STAG1-STAG2 has 
previously been described [36].

PARIS predicts TYMS dependency of cancer cell lines
Having established that PARIS can identify high confi-
dence SL interactions, we next focused on the previously 
uncharacterized TYMS-CDKN2A vulnerability identi-
fied in our analysis. PARIS predicted cells with CDKN2A 
damaging mutations to show sensitivity to TYMS knock-
out (Fig.  2f, and Fig.  3a). The cyclin dependent kinase 
inhibitor 2A (CDKN2A) is a ubiquitously expressed 
tumor suppressor gene. It encodes two proteins, p14Arf 
and p16INKA, also referred to as p14 and p16, respectively. 
Both proteins act as tumor suppressors and are involved 
in cell cycle regulation. In the case of inactivating ger-
mline mutations, CDKN2A is one of the DDR-related 
genes associated with inherited/familial predisposi-
tion for melanoma, glioblastoma multiforme and pan-
creatic cancer. In addition, CDKN2A is also frequently 
somatically mutated in various cancers [25]. The roles of 
CDKN2A in cell cycle pathways make it crucial for main-
taining genomic stability and as a result, aberrations of it 
leads to defects in cell cycle regulation and senescence, 
contributing to tumorigenesis and poor disease prog-
nosis [37]. Thymidylate Synthase (TYMS) is the enzyme 
that converts deoxyuridine monophosphate (dUMP) 
into deoxythymidine monophosphate (dTMP). This step 
is followed by the phosphorylation of dTMP to dTTP, 
which is in turn incorporated into DNA during DNA 
synthesis. TYMS plays an important role in replenish-
ing the nucleotide pool for replication. Due to its pivotal 
role in the de novo synthesis of pyrimidines, TYMS is 
an established drug target for cancer treatment [38]. For 
instance, a new generation of antifolates targeting TYMS 
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such as Pemetrexed (PMX) or Raltitrexed (RTX) are used 
for the treatment of squamous cell carcinomas of the 
lung and mesotheliomas among many other tumors [39, 
40]. In addition, overexpression of TYMS is associated 
with resistance to PMX. However, how TYMS levels are 
regulated in cancer is not yet well understood [41, 42].

To confirm the PARIS predictions and test the sensitiv-
ity of cancer cells to TYMS inhibition, we treated a panel 
of cell lines with different CDKN2A genetic backgrounds 
with increasing doses of PMX (ranging from 10  nM to 
15 μM) and measured cell viability as a readout for syn-
thetic lethality. Even though the PARIS predictions were 
based on pathogenic mutations of CDKN2A, we observed 
pronounced PMX sensitivity not only in cell lines that 
carry a nonsense mutation in the CDKN2A gene (e.g. 
CAL27) but also in cell lines that have a homozygous 
CDKN2A deletion (e.g. H292), whereas this effect was not 
observed in any CDKN2A-proficient cell lines (Fig. 3b,c). 
Importantly, the IC50 values derived from these assays 
varied significantly between the CDKN2A proficient 
and deficient cells with a median IC50 of 51.77  μM for 
CDKN2A-proficient cells and 0.59  μM for CDKN2A-
deficient cells (P = 0.004, Mann–Whitney U test). To 
better understand the response of CDKN2A mutant 
or deleted cancer cell lines to PMX we next performed 
immunoblots of the proteins involved in the thymidine 

nucleotide metabolism pathway, including TYMS, Thy-
midine phosphorylase (TYMP), thymidine kinase 1 
(TK1), glycinamide ribonucleotide formyltransferase 
(GART) and dihydrofolate reductase (DHFR) as well as 
cleaved PARP1, and p-CHK1 as markers of apoptosis and 
DNA damage checkpoint activation, respectively. Upon 
PMX treatment, irrespective of their CDKN2A status, we 
observed that cells upregulated TYMS, TK1 and DHFR 
protein levels at least by twofold (Fig. 3d and Additional 
file 2). TYMS, TK1 and DHFR levels are known to be reg-
ulated during cell cycle [43–45] and the increase in their 
protein levels is possibly due to accumulation of cells in 
S phase upon PMX, since we observed increased nuclear 
CyclinA levels following PMX treatment (Supplementary 
Fig. 4a). Interestingly, we observed higher baseline GART 
levels in CDKN2A- proficient cells (Fig.  3d, Additional 
file  2). Consistent with the viability results, CDKN2A-
deficient cells that are most affected by PMX treatment 
such as CAL27, CAL62 and NCI-H292, strongly induced 
apoptosis upon PMX treatment (Fig.  3d). Importantly, 
sensitivity to either low (50 nM) or high doses (5 μM) of 
PMX in these cells was rescued by thymidine supplemen-
tation, as previously suggested [39] (Fig. 3e, Supplemen-
tary Fig. 4b). Thymidine can be converted into dTMP by 
both the cytosolic and mitochondrial enzymes thymidine 
kinases (TK1 and TK2, respectively) [46], thus strongly 

Fig. 3  Synthetic Lethal interaction between CDKN2A and TYMP with TYMS.a Violin plot showing TYMS dependency (0 lowest, 1 highest) with 
respect to mutation status of CDKN2A in DepMap data. Each point represents corresponding cell line and dependency value. P-value was 
calculated using Mann–Whitney U test. b A panel of cancer cell lines carrying wildtype CDKN2A: MDA-MB-157, HCC1937, missense mutant: DU-145, 
NCI-H1703, nonsense mutant: CAL27, deleted for CDKN2A locus: CAL62, HOP62, NCI-H292, KYSE-140, KYSE-70, KYSE-450, splice site mutant: M14, 
were tested with increasing concentrations of PMX (0, 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 5 and 15 μM). Cell viability was measured with CellTiter 
Glo after incubation of the cells with PMX for 96 h. Drug response curves were generated and IC50 values shown in brackets (μM) next to each 
cell line were calculated from at least 3 biological and 9 technical repeats. c Heatmap showing CDKN2A mutation status (red box = nonsense 
mutation, green boxes = missense mutation, white boxes = WT); CDKN2A, TYMP, TYMS, GART, DHFR expression status for cell lines used in this study. 
Color scale corresponds to (log2(TPM) + 1) values based on RNA-Seq. d Cancer cell lines were treated with PBS or 5 μM PMX for 48 h. Western 
blot was performed for the proteins involved in Thymidine nucleotide metabolism (DHFR, GART, TYMS, TK1 and TYMP), DNA damage checkpoint 
marker (phospho-CHK1 (S345)) and apoptosis marker (cleaved-PARP1). VINCULIN served as a loading control. Cell lines labeled with red color are 
CDKN2A-deficient and show sensitivity to PMX in (b). Quantification of these blots are available in Additional file 2. e PMX-sensitive cancer cell 
lines were supplemented with PBS or 50 μM of thymidine to the media during PMX (50 nM or 5 μM) treatment. Cell viability was measured using 
live-cell protease (CellTiter Fluor) and % viability was calculated compared to the control treatment. Boxplots were generated from data from at 
least 3 biological and technical repeats. In the boxplots, centerlines mark the medians, box limits indicate the 25th and 75th percentiles, and whiskers 
extend to 5th and 95th percentiles. P-values were calculated using Mann–Whitney U test. f CAL27 and CAL62 cells were transfected with gRNA 
targeting TYMP. Five days post transfection, control or TYMP KO cells were treated with increasing doses of PMX (0, 0,25, 0.5, 1, 5 and 15 μM) for 
96 h. Drug response curves were generated using data from 8 and 2 biological replicates, respectively. (Right) Western blot analysis of the indicated 
proteins 5 days post gRNA transfection. g MDA-MB-157 cells were transfected with gRNA targeting TYMP, CDKN2A or both genes. Five days post 
transfection, control or KO cells were treated as described in (f ). Drug response curves were generated from at least 3 biological replicates. (Right) 
Western blot analysis of the indicated proteins 5 days post gRNA transfection. h RPE1 TP53−/−; CMYC, RPE1 TP53−/−; CMYC;CDKN2A−/−, RPE1 TP53−/−; CMYC; TYMP, 
RPE1 TP53−/−; CMYC; TYMP;CDKN2A−/−,cells were transfected with two different gRNA against TYMS and viability were measured 7 days using CellTiter Glo. 
Values were normalized to scrambled gRNA transfection and were plotted from at least 9 biological replicates. In the boxplots, centerlines mark the 
medians, box limits indicate the 25th and 75th percentiles, and whiskers extend to 5th and 95th percentiles. P-values were calculated using a Mann–
Whitney U test. (Right) Western blot analysis of the generated RPE-1 cell lines. i Prediction of TYMS dependency by different genetic backgrounds. 
DepMap cancer cell lines grouped by their CDKN2A mutation and TYMP expression status. In each group the ratios of the percentage of TYMS 
dependent/TYMS independent cell lines were calculated and plotted. j TYMS dependency distribution is shown as boxplots. Cell lines are grouped 
by their CDKN2A and TYMP expression status. CDKN2A deficiency/proficiency is defined by the presence of a mutation or copy number loss and 
TYMP status is defined by tissue as high and low expressed using the median as a cut-off

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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suggesting that the cell death occurs due to the depletion 
of dTMP through the predicted SL interaction.

Notably, TYMP overexpression was observed in some 
of the cell lines that show increased sensitivity to PMX, 
such as CAL27 and CAL62, which carry either a non-
sense mutation in the CDKN2A gene or a deletion of 
the CDKN2A locus, respectively (Fig.  3c). It has been 
reported that cells overexpressing TYMP are more sen-
sitive to TYMS depletion [47]. TYMP functions within 
the pyrimidine salvage pathway by converting thymidine 
into thymine, thus it plays a key role in regulating thy-
midine levels and dTMP production [48]. Since PARIS 
also predicted that TYMP overexpression is linked to 
TYMS dependency (Supplementary Fig. 4c-f ), we tested 
the direct involvement of TYMP overexpression in 
PMX sensitivity in the CAL27 and CAL62 cell lines that 
are CDKN2A-deficient. Transfection of gRNAs target-
ing TYMP in CAL27 or CAL62 cells stably expressing 
Cas9 did not lead to any changes in PMX sensitivity as 
compared to the control (scrambled) gRNA transfected 
cells, suggesting that TYMP expression alone is not suf-
ficient to control TYMS dependency (Fig. 3f ). To deline-
ate the involvement of TYMP and p14/p16 in regulating 
PMX sensitivity, we used the MDA-MB-157 cell line, in 
which we observed sufficiently high levels of p14/p16 
and TYMP and transfected gRNAs targeting TYMP and 
CDKN2A. While depletion of TYMP showed no addi-
tional sensitization to PMX, depletion of CDKN2A dra-
matically increased the sensitivity of these cells to PMX. 
This could be due to misincorporation of deoxyuridine 
during DNA synthesis and apoptosis upon PMX treatment 
or replication stress due to dTTP depletion as indicated by 
increased cleavage of PARP-1 and accumulation of cells in S 
phase (Fig. 3g, Supplementary Fig. 4 g, h). Strikingly, knock-
out (KO) of TYMP in CDKN2A-deleted MDA-MB-157 
cells rescued their sensitivity to PMX and decreased apop-
tosis, suggesting a genetic interaction between TYMP and 
CDKN2A (Fig. 3g, Supplementary Fig. 4 g).

While PMX’s known primary target is TYMS, at 
higher concentrations it is also known to inhibit addi-
tional enzymes such as DHFR and to a lesser extent 

GART. To study the relative contributions of TYMP and 
CDKN2A without PMX in a stable genetic background, 
we established a model cell line that resembles tumori-
genic growth based on retinal pigment epithelial-1 (RPE-
1) cells by stable overexpression of c-myc and generated 
isogenic cell lines with CDKN2A deletion and/or TYMP 
overexpression. In these cell lines we then tested the 
effects of TYMS knockout on cell viability. In CDKN2A 
KO cells gRNAs targeting TYMS led to a mild but sig-
nificant decrease in cell viability. The negative effect on 
cell viability was also observed by TYMP overexpression 
and was significantly exacerbated by combined over-
expression of TYMP and CDKN2A deficiency (Fig.  3h, 
Supplementary Fig.  4i). Collectively, these results point 
to an effect of CDKN2A depletion on PMX sensitiv-
ity together with TYMP. Indeed, categorizing DepMap 
data into 4 groups based on the CDKN2A status and 
TYMP gene expression levels, combination of CDKN2A 
deficiency and high TYMP expression best explains the 
TYMS sensitivity (Fig.  3i). However, it is possible that 
in different cell types, relative contributions of TYMP 
and CDKN2A to PMX sensitivity vary. Consistent with 
this idea, upon grouping the DepMap cancer cell lines 
according to tissue origin, we noted that CDKN2A sta-
tus and TYMP expression have varying effects on con-
trolling TYMS dependency in different tumor types. For 
instance, in bone cancer cell lines, deficiency of CDKN2A 
alone can explain the dependency to TYMS. On the other 
hand, dependency to TYMS in CDKN2A-mutant pan-
creatic cancer lines correlates with TYMP expression 
levels, while in esophageal cancer cell lines both TYMP 
expression levels and CDKN2A status together can bet-
ter explain TYMS sensitivity (Fig.  3j, Supplementary 
Fig. 5 and 6). A notable exception was observed in lung 
tumor cell lines in which neither TYMP expression nor 
CDKN2A status affected the dependence of the cells to 
TYMS depletion (Supplementary Fig.  5 and 6). In sum-
mary, we propose that cells with CDKN2A deficiency 
and TYMP overexpression together contribute to TYMS 
sensitivity and that these dependencies can be cell-type 
specific.

(See figure on next page.)
Fig. 4  Vulnerabilities of DDR related genes. a Network of predicted SLs between DDR genes and the genome based on the raw permutation 
importance score. Each node represents a gene and each edge a relationship; the arrow starts from the mutated (green) or dysregulated gene 
(blue) and arrives to the dependent gene. The width is proportional to the absolute value of the Pearson correlation coefficient. The color of the 
node shows the median of the dependency score of the gene in a grey scale. Different arrow shapes show three levels of confidence based on the 
scaled importance score. b Scaled raw permutation importance score distributions of selected gene pairs divided into paralogs or not in the two 
cohorts (expression and mutation). c Bar plots showing examples of high-confidence predicted SL gene pairs using expression features. The ranked 
bars show the dependency scores (mean centered) of one gene across the cancer cell lines and the color gradient shows the expression level of 
the second gene. d Scatterplots showing the gene expression levels (based on RNA-Seq) of BRIP1 and ALDH2 in matched tumor (TCGA) and normal 
(GTEX) breast, lung and brain tissues. e Top altered pathways in the enrichment analysis of differentially expressed genes in TCGA cc  samples 
expressing high or low ALDH2. f Heatmap showing expression levels (mean centered) of the main Fanconi anemia genes in TCGA breast cancer 
samples expressing high or low ALDH2. g Scatterplots indicating the correlation between the expression levels of ALDH2 and BRIP1 gene effect 
together with the promoter methylation levels of ALDH2 in breast cancer cell lines
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Prediction of vulnerabilities of DDR genes 
across the genome by PARIS
To demonstrate the ability of PARIS to select SL interac-
tions in larger cohorts and to reveal interesting potential 
vulnerabilities among DDR and other genes, we extended 
the features of the dataset (both for mutation and expres-
sion) to all the available genes (~ 18,000) (Additional 
file  3). In this case, the Boruta algorithm with the raw 
permutation score was used to select the high-confidence 
pairs due to its reliability, as described above. Overall, 
the importance scores derived from the two cohorts’ 
predictions were consistent (Supplementary Fig.  7). For 
instance, ARID1B-ARID1A, SMARCA2-SMARCA4 and 
STAG1-STAG2 were also found as high-confidence pre-
dicted SLs in this larger cohort (Fig.  4a). Moreover, we 
identified well-known vulnerabilities in cancer, such 
as MAPK1 dependency in BRAF mutated cells [49]. In 
agreement with the analysis performed within the DDR 
cohort, several of the predicted SL interactions are par-
alog genes (Fig.  4b), for instance CDK4-CDK6 [50]. 
Besides these paralog pairs, PARIS also predicted with 
high-confidence recently identified SL interactions such 
as the one between the anti-apoptotic genes MCL1 and 
BCL2L1 [51–54] (Fig. 4c). In general, and consistent with 
earlier results, we predicted more SL interactions based 
on the expression data, suggesting that expression is a 
better predictor to explain the dependency scores from 
the CRISPR-Cas9 screens [55].

Among these high-confidence SL pairs, we identi-
fied a potential new vulnerability between ALDH2 
and BRIP1 (Fig.  4c). The aldehyde dehydrogenase 
2 (ALDH2) gene encodes a mitochondrial enzyme 
mainly involved in the detoxification of acetaldehyde 
[56]. BRCA1 interacting protein C-terminal helicase 1 
(BRIP1) encodes a DNA helicase, also known as Fan-
coni Anemia group J protein (FANCJ), which plays a 
role within the Fanconi Anemia (FA) DNA repair path-
way and has overall a broader function in maintaining 
genome stability by resolving DNA secondary struc-
tures [57]. The FA pathway is responsible for repair-
ing interstrand crosslink (ICL) DNA damage, a type 
of lesion represented by a covalent bond between two 
complementary DNA strands. Such crosslinks cause 
genomic instability by interfering with the function of 
the replication machinery [58]. Acetaldehyde (ACE) is a 
highly reactive molecule produced from either exogenous 
sources, such as alcohol, cigarette smoke, environmen-
tal pollutants, or endogenous ones, such as intracellu-
lar metabolic reaction [59] and it represents a potential 
source of ICL formation [60, 61].

It has been shown that in hematopoietic stem cells, 
ALDH2 and the FA pathway provide two layers of pro-
tection against ACE-induced DNA damage [62–65], 

demonstrating an interesting link between the two 
pathways in the stem cell pool. However, the interplay 
between ALDH2 and BRIP1 or other components of the 
FA pathway in human tumors is less investigated. Based 
on the PARIS prediction, cancer cell lines that express 
low levels of ALDH2 become dependent on BRIP1, pos-
sibly to balance a harmful increase in genomic instabil-
ity. To understand how ALDH2 and BRIP1 levels are 
regulated in human tumors, we looked at cancer gene 
expression data obtained from the TCGA and compared 
them to those found in the normal tissue controls derived 
from the Genotype-Tissue Expression (GTEx) database. 
We found ALDH2 to be downregulated in several tumor 
types. Moreover, we observed, particularly in breast, 
brain and lung cancer cohorts, a strong negative corre-
lation between ALDH2 and BRIP1 (Fig.  4d). These data 
suggested a potential upregulation of BRIP1 in ALDH2-
low expressing tumor samples. Indeed, when we divided 
tumor samples based on their ALDH2 expression levels 
and performed differential gene expression analysis, the 
FA pathway was one of the highly upregulated pathways 
among these two groups (Fig. 4e, Supplementary Fig. 8a, 
b), and the FA pathway components BRIP1, FANCD2 and 
FANCI were consistently upregulated across different 
tumor types (Fig. 4f, Supplementary Fig. 8c, d) and inde-
pendently of tumor stage (Supplementary Fig. 8e). These 
results suggest that the ALDH2-BRIP1 vulnerability is 
important for a variety of tissue-specific cancers.

To further validate this prediction, we selected a panel 
of breast cancer cell lines to test the vulnerability of low 
ALDH2 expressing cells. Interestingly, several of the 
breast cancer cell lines showed promoter hypermethyla-
tion of ALDH2, suggesting an epigenetic control on the 
expression levels of ALDH2 (Fig.  4g). To confirm these 
data, we assessed by RT-qPCR the expression of both 
BRIP1 and ALDH2 in 9 breast cancer cell lines repre-
senting different breast tumor subgroups [66] (Supple-
mentary Fig.  9a). In 7 out of 9 cell lines, we measured 
low to undetectable levels of ALDH2 mRNA, along with 
increased BRIP1 expression, recapitulating the inverse 
pattern of expression highlighted by PARIS. Consist-
ent with the gene expression analysis, we observed high 
ALDH2 protein levels in SK-BR-3 and MDA-MB-468 
and almost undetectable levels in MCF-7, HCC1954, 
and HCC1937 (Fig.  5a). Conversely, cell lines with low 
ALDH2 protein levels show increased BRIP1 protein as 
compared to SK-BR-3 and MDA-MB-468 (Fig. 5a).

To investigate if the predicted dependency on BRIP1 in 
the absence of ALDH2 expression represents a potential 
tumor vulnerability, we divided breast cancer cell lines 
into two groups: i) defined as the “control group”, com-
prises SK-BR-3 and MDA-MB-468, which express high 
levels of ALDH2; ii) defined as the “dependency group”, 
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comprises MCF-7, HCC1954, and HCC1937, which show 
low levels of ALDH2 (and an inverse pattern of BRIP1 
expression). Next, we tested the capability of our model 
cell lines to form colonies upon transfection of two inde-
pendent gRNAs targeting BRIP1, both of which showed 
consistent downregulation of BRIP1 protein levels. We 
did not apply exogenous ACE as additional stress since 
the predicted data were retrieved from CRISPR-Cas9 
screens performed in the absence of drug treatments and 
endogenously-produced ACE can provide a sufficient 
stimulus to trigger DNA damage [63, 65]. Consistent 
with our prediction, we observed a significant reduc-
tion (p ≤ 0.01, Mann–Whitney U test) in the number of 
colonies upon BRIP1 KO in the three cell lines belong-
ing to the dependency group, while mild or no effects 
were observed in the control group cell lines (Fig. 5b, c, 
Supplementary Fig. 9b, c). In addition, knockout of both 
BRIP1 and ALDH2 genes in the control cell lines SK-BR-3 
and MDA-MB-468 led to a reduction in colony number 
comparable to the effect observed in the dependency cell 
lines, whereas no difference was observed when only one 
of the targets was ablated (Fig.  5d). These data further 
confirmed that the phenotypic effects observed upon 
genetic inhibition of BRIP1 are dependent on ALDH2 
levels.

Both BRIP1 and ALDH2 are involved in protecting 
cells from ACE-induced DNA damage, resulting in DNA 
double-strand breaks (DSBs) if not properly resolved. 
We hypothesized that inhibiting both protective axes 
could lead to an unsustainable increase in DSB forma-
tion, explaining the observed phenotypic effect. Of note, 
except for SK-BR-3, the tested cancer cell lines are char-
acterized by heterozygous mutations with unknown 
impact in genes encoding different components of the FA 
pathway (Supplementary Fig.  9d). Therefore, to directly 
test the interaction of the ALDH2- BRIP1 dependency 

without potential confounding factors due to the can-
cer cell genetic background, we used the genetically sta-
ble RPE-1 TP53−/− cells as a model. We modeled ALDH2 
deficiency by generating an ALDH2 knock-out cell line 
(Supplementary Fig. 10a). To assess the effects of BRIP1 
and potentially other components of the FA complex 
on the fitness of ALDH2 KO cells in an unbiased man-
ner, we performed a CRISPR-Cas9 screen using a custom 
designed pooled library that mainly targets DDR-related 
genes (Fig.  5e). In addition, we tested sensitivity of 
RPE-1 TP53−/− cells to exogenous ACE by performing 
these screens in the presence of 1  mM ACE (Fig.  5f ). 
Consistent with the results from the cancer cell lines, 
targeting BRIP1 as well as several other components of 
the FA pathway, such as FANCD2 and FANCI, signifi-
cantly impaired the fitness of ALDH2 KO cells as com-
pared to the WT (Fig. 5e). These effects were exacerbated 
by the ACE treatment especially for BRIP1 (Fig.  5f ). 
Consistently, and independent of the pooled screens, 
colony formation assays showed that simultaneous tar-
geting of ALDH2 and BRIP1 leads to a mild but signifi-
cant decrease in the number of colonies (Supplementary 
Fig. 10b-d). Confluence analysis performed over a period 
of 72 h confirmed that cell proliferation was reduced in 
the double KO (Supplementary Fig. 10e). In addition, we 
tested the impact of single or combined KOs on the sen-
sitivity of RPE-1 TP53−/− cells to exogenous ACE on col-
ony formation. BRIP1 KO, but not ALDH2 KO, increased 
cell sensitivity to ACE and this effect was mildly elevated 
by the double KO (Supplementary Fig. 10f). These results 
indicate that BRIP1 is a major determinant of ACE sensi-
tivity, consistent with the observation that the FA pathway 
mainly counteracts the genotoxic effects of ACE in mature, 
differentiated cells, while ALDH2 is dispensable [63].

Next, we explored the DSB response in RPE-
1TP53−/− cells upon single or combined KO. As proxy, 

Fig. 5  Validation of the dependency of low-ALDH2 expressing cells on BRIP1 expression. a Western blot of BRIP1 and ALDH2 in the indicated breast 
cancer cell lines. The lower migrating band corresponds to ALDH2. RPE-1 = RPE-1TP53−/− hTERT cells. Data are representative of 3 independent 
experiments. b Colony formation assay images of the indicated cell lines stably expressing Cas9 and transfected with a scrambled gRNA or 
2 independent gRNAs targeting BRIP1. Colonies were stained with crystal violet 15 days post-transfection. Images are representative of ≥ 3 
independent experiments. c Colony formation assay quantification in the control or dependency cell lines. The scrambled KO colony area is used 
for normalization. In the boxplots, centerlines mark the medians, box limits indicate the 25th and 75th percentiles, and whiskers extend to 5th and 
95th percentiles. P-values are calculated based on Mann–Whitney U test (** p  ≤ 0.01). d Colony formation assay quantification in MDA-MB-468 and 
SK-BR-3 stably expressing Cas9 and transfected with the indicated gRNAs. Bars represent normalized mean + standard deviation of 4 (SK-BR-3) or 
3 (MDA-MB-468) independent experiments. The scrambled KO colony number is used for normalization. P-values are calculated with a one-way 
ANOVA test. Significant p-values are indicated. e, f Pooled CRISPR screen results. The beta scores differences between RPETP53−/−,ALDH2−/− and 
RPETP53−/− are showed as ranked plots, both in mock ( e) and ACE ( f) treatments conditions. Gene names with a negative beta score difference 
2.5 bigger than the standard deviation are showed in light blue, top 10 gene names with a positive beta score difference are shown in light red. 
g Representative immunofluorescence images of RPE-1TP53−/− cells stably expressing Cas9 and transfected with the indicated gRNAs. Cell images 
were acquired 6 days post-transfection. Nuclei are pseudocolored in gray; the yellow dots mark γ-H2AX foci. Scale bar = 20 μm. h Quantification 
of γ-H2AX foci formation in RPE-1TP53−/− under the indicated conditions. Each dot indicates the number of foci/nucleus in each of the 4 biological 
replicates. P-values are calculated using a one-way ANOVA test. Selected significant p-values are indicated. The complete p-value list in provided in 
Additional file 4

(See figure on next page.)
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we measured the nuclear foci formation of the histone 
variant H2AX phosphorylated at Ser139 (γ-H2AX), a 
well-established marker of DNA damage. Consistent 
with our hypothesis, we detected increased nuclear foci 
count upon combined BRIP1 and ALDH2 KOs, com-
pared to the single ones (Fig. 5g, h). In parallel, we tested 
how the cells respond to the KO of FANCD2, a compo-
nent of the FA pathway whose function is reciprocally 
regulated by BRIP1 [67]. Similar to the effect observed 
upon BRIP1-ALDH2 KO, the combined KO of FANCD2 
and ALDH2 led to an increased formation of γ-H2AX 
nuclear foci (Fig.  5g, h, Additional file  4). Consistent 
with the increased DNA damage measured upon the 
double KOs, the number of cells significantly decreased 
under the same conditions (Supplementary Fig. 10 g). In 
agreement with the decrease in colony forming capac-
ity upon exogenous ACE treatment in BRIP1 KO cells, 
we detected an increase in the number of DNA damage 
foci under the same conditions (Supplementary Fig. 10 h, 
Additional file 4). In summary, our data demonstrate that 
BRIP1 deletion in low-expressing ALDH2 cells triggers a 
dependency, presumably through DNA damage response 
induced by endogenous ACE.

In summary, using machine learning PARIS predicts 
cancer dependencies in an unbiased and scalable manner. 
We exemplified the power of this approach by studying 
the vulnerabilities of DDR-related genes and identified 
and validated two previously uncharacterized SL interac-
tions. Our approach extends the catalog of cancer vulner-
abilities, and provides a simple, rapid and robust way of 
testing additional SL interactions.

Discussion
The increasing availability of multiple datasets combin-
ing the genetic makeup of the cancer cell lines with large-
scale perturbance screens presents new opportunities for 
uncovering cancer vulnerabilities. In recent years, several 
studies presented ways to integrate these data and pre-
dict potential SL interactions computationally [7–13]. In 
this work, we address synthetic lethality prediction as a 
feature selection problem. The RF algorithm, the core of 
PARIS, can capture non-linear relationships and provides 
a robust method suitable for datasets in which the num-
ber of features is higher than the number of observations. 
Importantly, the use of the Boruta algorithm provides 
a way to overcome the multi-comparison error and the 
multicollinearity and overall, reduces the effect of ran-
domness. The presence of highly correlated features is 
common in high throughput gene expression data. For 
this reason, it can be challenging to disentangle the con-
tributions of collinear/co-expressed genes with respect to 
the outcome, in this case the dependency scores obtained 
from the gene knockouts. In multiple regression models 

this could be translated into a reduction of significance of 
coefficients. Often, a subset of those “redundant” features 
is selected to maximize and/or reduce the complexity of 
the final model. Boruta, being an all-relevant RF feature 
selection method, in the presence of collinear features, 
all well-related with the outcome, selects all of them and 
assigns them importance scores. This prevents removal 
of potentially important predictors and generates rank-
based scores, therefore presents an overall better under-
standing of the contribution of each feature in explaining 
the outcome.

We provided a comparison of two types of impor-
tance score methods: the Gini and the permutation 
raw. Although the permutation raw method has a much 
higher computational cost, it generated the most unbi-
ased and stable results with all the tested datasets. In 
addition, we showed how the use of a traditional RF algo-
rithm with the corrected Gini importance score method 
can be adequate in terms of computational time and 
reliability. We suggest, however, to employ the Boruta 
algorithm with the permutation raw importance score 
method for final validations.

Here, we first applied PARIS to discover cancer vul-
nerabilities among known DDR-related genes and then 
searched for new SL pairs in the entire genome. In addi-
tion to providing the most robust SL pairs based on the 
importance scores, we also built a shiny app that allows 
the user to easily browse through the precomputed syn-
thetic lethality network and to set custom filters. One 
advantage of our approach is that the pipeline can be 
applied to any set of genes and theoretically, to all the 
genes for which the dependency scores, expression and 
mutational status are available. However, we note that 
expression data is a better predictor than mutation data 
to explain the dependencies from the CRISPR-Cas9 
screens as previously reported [55]. Results from expres-
sion datasets showed strong consistencies using different 
RF algorithms and cohorts. Contrary, mutation data led 
to more variable results although known SL interactions 
were correctly selected with high scores. It is likely that 
mutation-based data suffer from the weak predictability 
of their functional impact.

Searching for SL interactions among known DDR and 
related genes, we identified a previously uncharacter-
ized vulnerability of CDKN2A-deficient cells to TYMS 
depletion. A possible direct role of CDKN2A p16 on 
nucleotide synthesis regulation has been proposed 
[68]. Particularly, p16 knockdown was shown to acti-
vate mTORC1 and to increase nucleotide synthesis in 
an RB-independent manner. TYMS plays an essential 
role in the de novo thymidine nucleotide synthesis [69]. 
Because of its indispensable role, it is commonly tar-
geted in combination with platinum-based drugs for the 
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treatment of various cancers such as non-small cell lung 
cancer and mesothelioma [70, 71]. The most widely used 
agent, 5-fluorouracil (5-FU) has been used in the clinic 
for decades, however, concerns regarding its lack of sen-
sitivity to TYMS led to the design of anti-folates such as 
RTX or PMX [39]. In this work, we used cancer cell lines 
from lung, breast, thyroid, and head and neck cancers 
that carry nonsense mutations or CDKN2A deletions. 
Depending on the tissue type and expression levels of 
CDKN2A, TYMS, and TYMP, cells responded to phar-
macological TYMS inhibition to different extents. Resist-
ance to PMX can occur through several mechanisms 
such as TYMS expression levels, or multidrug resistance 
genes [72–76]. It was reported that TYMP overexpres-
sion correlates with TYMS KO sensitivity in cell lines 
and antifolate treatment in triple negative breast cancer 
patients [77]. In addition, TYMP promotes tumor growth 
and metastasis by preventing apoptosis and inducing 
angiogenesis [78]. Our results suggest that CDKN2A 
status also contribute to the sensitivity of TYMS inhibi-
tion. Thus, we suggest that both TYMP expression and 
CDKN2A status should be monitored in order to better 
predict PMX sensitivity. Indeed, using cancer cell lines to 
confirm the TYMS dependency predicted by PARIS, we 
discovered that the most robust effects can be observed 
in those lines where TYMP is expressed at high levels and 
CDKN2A is mutated or deleted. We note, however, that 
these effects can be more complex, and tissue type spe-
cific. For instance, based on DepMap data we observed 
a significant cooperation between TYMS and CDKN2A 
in esophageal cancer cell lines. However, in lung tumors 
neither TYMP levels nor CDKN2A status was able to 
explain TYMS KO sensitivity. In the future it might be 
interesting to understand if additional players (e.g. other 
components of the thymidine salvage pathway) can con-
tribute to TYMS sensitivity in these tumors. On the other 
hand, our results may help to better stratify patients 
affected by esophageal tumors for which PMX use has 
been tested in clinical trials however, only showing lim-
ited success [79]. With the growing understanding of 
anti-folate sensitivity, better stratification of patients that 
can benefit from existing TYMS inhibitors may improve 
therapeutic outcome.

Analysis of the dependency scores between the DDR 
gene cohort and the whole genome revealed a depend-
ency on BRIP1 for cells expressing low ALDH2 lev-
els. Decreased ALDH2 expression is commonly found 
in human tumors (http://​gent2.​appex.​kr/​gent2/) and 
is associated with poor cancer prognosis. Silencing 
of the ALDH2 locus by DNA methylation has been 
reported as a mechanism of ALDH2 downregulation in 
lung adenocarcinoma [80–82]. Consistently, we found 
ALDH2 promoter is hypermethylated in the panel of 

low-ALDH2 expressing breast cancer cell lines used in 
this study.

Upregulation of FA pathway genes is frequently 
observed in tumors and found to be associated with 
chemo-resistance [83]. Previous studies have demon-
strated that genetic loss of FA pathway components 
exacerbates ACE-mediated genotoxicity in mouse 
hematopoietic stem cells [62, 63, 65]. These studies pro-
vided important evidence for understanding the impact 
of ACE-induced DNA damage and the protective role 
of ALDH2 in the context of FA, a genetic disease lead-
ing to bone marrow failure and developmental disorders. 
Here we show that loss of ALDH2 induces a depend-
ency on BRIP1. We observed mild but consistent effects 
in both cancer cell lines and genetically stable epithelial 
cells. While BRIP1 represented the highest confidence 
hit predicted by PARIS, analysis of human tumor sam-
ples highlighted a consistent upregulation of FA genes 
in a low-ALDH2 expression background. Accordingly, 
the combined inhibition of FANCD2 and ALDH2 in 
RPE-1 cells allowed us to recapitulate the same effects on 
decreased colony formation and elevated DNA damage 
that we observed upon BRIP1-ALDH2 KO. Therefore, 
our results help strengthen the connection between the 
function of the FA pathway and the role of ALDH2, also 
consistent with a recent study in Acute Myeloid Leuke-
mia [84]. Overall, we suggest that in a cancer context, low 
ALDH2 expression can be used as a parameter to predict 
treatment outcome of drugs targeting the FA pathway, 
which can be potentially developed for clinical use [83–
86]. Specifically, we propose that our results represent 
the basis for future investigations of the role of BRIP1 as 
a potential cancer therapeutic target in an in vivo setting. 
Although BRIP1 inhibitors are not currently available, 
there is increased recognition of the therapeutic role of 
DNA helicases [87], and a deeper understanding of indi-
vidual helicases’ structure and property may pave the way 
for the development of specific drugs. In conclusion, our 
results shed light on a cancer dependency that may help 
establishing personalized therapeutic approaches.

Conclusions
We present a computational pipeline to infer SL inter-
actions and vulnerabilities in cancers based on RF fea-
ture selection algorithms. The main advantage of PARIS 
is the ability to select all the relevant features to explain 
the observed dependency after a gene knockout and to 
assign them an importance score. We demonstrated how 
this score is proportional to the likelihood of observ-
ing a strong gene interaction and, ultimately, a synthetic 
lethality. Beyond the main aim to retrieve “one to one” SL 
relationships, PARIS, due to its nature, can provide addi-
tional hints for cases in which multiple factors contribute 

http://gent2.appex.kr/gent2/
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to the increased sensitivity to a specific gene (e.g. TYMS 
and WRN), thus it can also uncover multifactorial vulner-
abilities. While we illustrated PARIS’ capacity to predict 
dozens of already well-studied SL interactions as well as 
to uncover previously undescribed ones, some aspects 
of our approach can be further improved in the future. 
For instance, a different implementation of the pipeline 
may reduce the computational runtime or additional per-
turbation screen data can be integrated for more robust 
analyses. Importantly, since the PARIS pipeline is easy to 
implement, updated versions can be continuously built 
thanks to the continuous and rapid expansion of available 
omics data and CRISPR/Cas9-based screens. This will 
become increasingly important to spot additional vulner-
abilities in cases where more observations, i.e. cell lines 
carrying a particular deficiency, are required to obtain 
meaningful results. Overall, our approach offers an origi-
nal and reliable solution to inference of vulnerabilities in 
cancer.

Methods
PARIS bioinformatic pipeline
The CRISPR-Cas9 screens dependency scores, expres-
sion and mutation data were downloaded from the 
DepMap consortium website (version DepMap19Q3). 
Single nucleotide variants pathogenicity was predicted 
with FATHMM-MKL and only mutations with a cod-
ing score higher than 0.7 or annotated as damaging or 
TCGA hotspots were labeled as pathogenic. The pres-
ence of a pathogenic mutated gene for each cell lines was 
coded like 0 = not mutated and 1 = mutated. RNAseq 
log2(TPM + 1) gene expression for protein coding genes 
was used.

In order to select mutated genes and gene expression 
explaining the gene dependency across all the cell lines, a 
RF-based feature selection step was performed. Particu-
larly, for each gene in the CRISPR-Cas9 screen the Boruta 
algorithm was run four times, using alternatively the Gini 
or the raw permutation importance scores and the muta-
tion or the expression data as independent variables. The 
maximum number of iterations of the Boruta algorithm 
was set to 500. As a third feature selection approach, a 
RF algorithm was used with the corrected impurity (cor-
rected Gini) as importance score.

In each loop Boruta assigns a hit (+ 1) to each feature 
showing an importance score higher than shadowMax. 
For each feature, hits are counted until they become 
either significantly higher or lower than what expected by 
random attempts (estimated as the cumulative distribu-
tion function of a binomial distribution with a probability 
of success by a chance of 0.5). In the first case, the fea-
ture is confirmed and in the second one is rejected and 
removed. The p-values are adjusted with the Bonferroni 

method and a p-value cut-off of 0.01 is used. Non-signifi-
cant features that are neither confirmed nor rejected, are 
tested again in the next iteration.

The features selected as important to explain the 
dependency score were extracted and the Pearson cor-
relation coefficient was calculated for each pair of genes 
to understand the direction of the relationship. Positive 
correlations were selected from the mutation-depend-
ency pairs and negative correlation from the expression-
dependency one. Self-pairs were also removed.

The importance scores were scaled by group between 0 
and 1, where 1 was the higher score in the group.

The pipeline was run on a 64 bit Ubuntu (version 16.04) 
system, with Intel® Xeon® Gold 6152 CPU @ 2.10 GHz 
and 1.47 TB memory. For the DDR vs DDR cohort, the 
computational time for each gene model was ~ 2  min 
with the permutation raw as importance score method 
and ~ 15 s with the Gini one. For the DDR vs ALL cohort, 
each gene model required ~ 15  min with the permuta-
tion raw and ~ 3  min with the Gini method. The total 
time needed to complete the entire DDR vs ALL cohort 
(4 models for each gene; expression/mutation and two 
importance score methods) was ~ 13 days.

Except for FATHMM-MKL, all the steps were per-
formed in R. Boruta (version 7.0.0) and ranger (version 
0.12.1) packages were used for the RF feature selection 
step.

Analysis of gene pairs
The scaled importance scores of the selected gene pairs 
were plotted as a density distribution and as a histo-
gram grouped by scoring methods (Gini, permutation 
raw and corrected Gini) and features cohorts (expression 
or mutation). To set a threshold of confidence, we pro-
ceeded as follow. The head/tail breaks algorithm is specif-
ically applied to cluster long tailed distributions. Briefly, 
the data values, the scaled importance scores in this case, 
are divided into greater (head) or less (tail) than the mean 
and the first subset is used as next distribution and the 
new mean is computed. The process is recursively applied 
until the head is not a minority of the distribution any-
more (length (head)/length (tail) <  = 40%). This last break 
point is used as a threshold to identify high-confidence 
pairs.

In order to compare the different importance scores 
methods only the gene pairs selected by all the three 
approaches were used in the next analysis.

Each selected gene pair was labeled as “high-con-
fidence” if its scaled importance score was above the 
threshold for any of the methods and as “low-confidence” 
if its scaled importance score was below the threshold for 
all of the methods.
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For each selected gene pair, the combined score from 
STRING database was retrieved if the interaction 
between the two genes was available. The frequency of 
interacting genes over the total selected in the different 
groups was also calculated.

Potential SL interactions were prioritized as follows: 
gene pairs above the mentioned cutoff were ranked 
based on their scaled raw permutation importance score. 
Additionally, genes with a coefficient of variation of the 
dependency score distribution lower than 0.3 were con-
sidered essential and filtered out.

R shiny app
The selected gene pairs out from the feature selection 
step were saved into a.csv file reporting: the two gene 
names, the Pearson correlation coefficient, the impor-
tance score from the RF feature selection, the importance 
score methods and the features source as group and the 
scaled importance score. A.csv file containing the gene 
name, the median, coefficient of variation, standard devi-
ation and range of the dependency scores of all screened 
genes was also generated.

An R shiny app was built to allow easy visualiza-
tion. The data were represented as an interactive 
directed graph in which each node represent a gene 
and each edge a relationship; the arrow starts from 
the mutated or dysregulated gene and arrives to the 
dependent gene. The color of the edge indicates 
the source of the evidence (mutation or expression) 
whereas the width is proportional to the absolute 
value of the Pearson correlation coefficient. The 
color of the node shows the median of the depend-
ency score of the gene in a grey scale to easily identify 
essential genes.

The shiny app allows users to filter the gene pairs 
selecting one or both the two feature cohorts (muta-
tion and/or expression) and applying independent 
thresholds for them, selecting one of the importance 
score methods (Gini, permutation raw, corrected Gini) 
and applying the filtering step based on the Pearson 
correlation coefficient (only negative correlation for 
expression and only positive correlation for muta-
tion). The network is redrawn in real-time accordingly 
to the selected filters and can be exported as a.png file. 
Cytoscape-compatible network and nodes.csv files can 
be also downloaded.

The filtering step based on the direction of the relation-
ship can be also bypassed to investigate all the possibili-
ties, e.g. to investigate the dependencies in the case of 
oncogenic expression.

The R shiny app was developed in R using the shiny 
(version 1.5.0) and visNetwork (version 2.0.9) packages.

TCGA and GTEX data analysis
TCGA and GTEX BRIP1 and ALDH2 expression data 
were retrieved from the Xena browser (https://​xenab​
rowser.​net/). Correlation was calculated using the Pear-
son coefficient.

TCGA Differential gene expression analysis
TCGA data were retrieved using the TCGAbiolinks R 
package (version 2.14.1). Samples were ranked based 
on their ALDH2 expression level. The top and bottom 
2% of the samples were used as high and low expressing 
ALDH2 groups. The differential gene expression analysis 
was performed with DESeq2 (version 1.26.0). Genes with 
an adjusted pvalue < 0.01 were considered to be differen-
tially expressed. EnrichR (version 2.1) was used for the 
enrichment analysis.

Cell lines and cell culture
Cell lines were maintained in a humified incubator at 
37 °C, 5% CO2. A table of the cell lines used in this study 
and their culturing media is listed in Supplementary 
Table 1.

Generation of stable cell lines
Cas9‑positive cell lines
A table of cell lines and sources used in this study is listed 
in Supplementary Table 1 or detailed in [88]. Briefly, cells 
were infected using hEF1α-TurboGFP-Cas9 Nuclease 
viral particles (Dharmacon VCAS11864), according to 
manufacturer’s specifications. GFP-positive cells were 
sorted using FACS Aria II instrument (BD Biosciences). 
Alternatively, cells were infected using Inducible-
hEF1α-Blast-Cas9 Nuclease viral particles (Dharmacon 
VCAS11864), according to manufacturer’s specifications 
and selected with blasticidin.

TYMP‑positive cell lines
Cells were infected with lentiviral particles expressing 
TYMP-GFP (Twist Biosciences – Supplementary Data). 
GFP-positive cells were sorted using FACS Aria II instru-
ment (BD Biosciences).

ALDH2 and CDKN2A KO
RPE-1TP53−/− cells stably expressing an inducible Cas9 
transgene were transfected with a gRNA targeting 
ALDH2 or CDKN2A (sequence provided in the Supple-
mentary Table 2), in the presence of 1 μg/ml doxycycline. 
Three days post transfection cells were seeded on 96-well 
plates for single clone formation. The KO efficiency of 
selected single cell-derived clones was assessed by West-
ern blot. Two validated KO clones were mixed and used 
for downstream experiments.

https://xenabrowser.net/
https://xenabrowser.net/
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C‑MYC‑positive cell lines
RPE-1TP53−/− or RPE-1TP53−/− CDKN2A−/− Cells were 
infected with lentiviral particles expressing cMYC-BFP 
(Twist Biosciences – Supplementary Data). BFP-positive 
cells were sorted using FACS Aria II instrument (BD 
Biosciences).

Lentivirus generation
Lentiviral plasmids pMD2G (12,259) and psPAX2 
(12,260) were obtained from Addgene. A lentiviral plas-
mid expressing TYMP cDNA was purchased from Twist 
Biosciences. One μg of each plasmid was transfected to 
293FT cells using Lipofectamine 3000 according to man-
ufacturers’ protocol. Viral particles were collected 72  h 
post transfection, filtered using a 0.45  μm low protein 
binding membrane Steriflip HV/PVDF (Millipore) and 
stored at –80 °C.

Transfection of gRNAs
Exponentially proliferating cells at 70–80% confluency 
were transfected with 2.5  pmol gRNA complexes and 
0.3  μl of Lipofectamine RNAiMAX/96 well (Invitrogen 
13,778,150) according to the manufacturer’s protocols. A 
detailed list of gRNAs is provided in the Supplementary 
Table 2.

Pooled CRISPR screens
Custom designed lentiviral library was generated by Cel-
lecta. Lentiviral particles were produced by co-transfect-
ing 293FT cells with 50  μg of custom designed library 
(Cellecta), 50 μg of pMD2.G (Addgene, 12,259), and 75 μg 
of psPAX2 (Addgene, 12,260) using Lipofectamine 3000 
(Thermo Fisher Scientific, L3000001) following manu-
facturer’s specifications. After 60  h, viral supernatant 
was collected and filtered through a 0.45 μm low protein 
binding membrane Steriflip HV/PVDF (Millipore).

Ten million RPETP53−/− and RPETP53−/−,ALDH2−/− cells 
per library and per replicate, aliquoted to 600.000 cells 
per well of a 6-well plate, were spinfected with the lentivi-
ral library at 2,000 rpm, for 2 h at 37 °C, with the addition 
of 8 μg/mL polybrene (Sigma-Aldrich, TR-1003) to reach 
a multiplicity of infection of 0.3. Cells were left to recover 
in fresh medium for 24 h incubated at 37 °C, 5% CO2. The 
infected cells were selected with 10  μg/ml puromycin 
(Thermo Fisher Scientific, A1113803) for 3 days. Follow-
ing puromycin selection, Cas9 was induced with 1 μg/ml 
Doxycycline (Day0). Cells were incubated in a humidi-
fied atmosphere to proliferate for a total of 21 days and 
subdivided to 2 million cells every three days to maintain 
appropriate coverage. ACE treatment was started after 
6  days of Doxycycline induction by addition of 1  mM 
ACE and kept throughout the experiment by replenish-
ing the ACE every time the cells were subdivided.

For preparation of the sequencing libraries, genomic 
DNA was isolated from the initial and final time points 
using QIAamp DNA Blood Kit (Qiagen, 51,106) follow-
ing manufacturer’s protocol. Eight μg DNA was used as 
a template in two separate reactions of 50ul for 12 cycles 
using plasmid-specific primers for the amplification of 
the sgRNA coding sequences. An additional round of 
PCR amplification was run for 10 cycles for the addi-
tion of Illumina adaptors and sample specific barcodes. 
Q5 NEBNext Hot Start polymerase master mix (M0543) 
was used for the PCR reactions according to manufac-
turer’s specifications. The primers used for the reactions 
are depicted in the Supplementary Table 2. PCR reaction 
products of 390 bps were purified using 0.8X Agencourt 
AMPure XP (Beckman Coulter, A63880) and eluted 
in low EDTA TE buffer (Thermo Fisher, 12,090,015). 
All samples were pooled and sequenced using Illu-
mina NextSeq platform (Illumina), using 75 base single 
reads.

The cell fitness is calculated based on the gRNA counts 
at the beginning and at the end of the experiment since 
the selection process may enrich or deplete sgRNAs 
from the cell population. Accordingly, the gRNAs that 
result in loss of cell fitness are expected to be depleted 
from the cell population at the final time point as com-
pared to the first time point. To count the number of 
gRNAs in each library, and to perform downstream 
analyses we used MEMcrispR [89] that enables efficient 
analysis of genome-wide count-based screens based on 
linear mixed-effects regression on the initial and final 
timepoints. For each sample, the sgRNAs were aligned 
and the number of gRNAs were normalized according to 
sequencing depth. Afterwards, comparing the Day 6 and 
Day 21 of each sample, the P-values and beta scores that 
measure the degree of the perturbation effect were calcu-
lated for each gene using the mixed effect model. Finally, 
the beta scores differences between RPETP53-/−,ALDH2−/− 
and RPETP53−/− were calculated for each gene. Genes 
with a positive or a negative beta score differences 
enhance or decrease the RPETP53−/−,ALDH2−/−growth 
compared to RPETP53−/− after being knocked out, respec-
tively. The RankView function from the MAGeCKFlute R 
package was used to plot the results.

Cell viability assays
CellTiter-Glo (Promega) was used to determine cell 
viability, according to the manufacturer’s protocol. Cells 
were seeded on a 96-well white plate with a clear flat bot-
tom (Costart®Assay plate, Corning). The GloMax-Multi 
detection system (Promega) was used as a luminometer 
to quantify the presence of ATP as an indicator of meta-
bolically active cells.
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For thymidine rescue experiments, CellTiter-Fluor (Pro-
mega) was used according to manufacturer’s protocol in 
parallel to CellTiter-Glo experiments as described above.

IC50 values were calculated with a non-linear regres-
sion model using GraphPad PRISM.

Colony formation assay
Three days post gRNA transfection, equal number of 
cells were plated in 6-well plates. After 12–15 days colo-
nies were stained with 0,2% crystal violet (Sigma-Aldrich 
V5265) and scanned with a GelCount Scanner (Oxford 
Optronix). The colony number was quantified using the 
ImageJ software either by manual counting with a multi-
point tool or using a colony area plugin [90].

RNA extraction, cDNA synthesis and RT‑qPCR
RNA was isolated using RNeasy Plus Mini kit (Qiagen), 
according to manufacturer’s instructions. cDNA syn-
thesis was performed using the qScript cDNA Synthe-
sis Kit (VWR International). RT-qPCR was carried out 
using QuantStudio 3 Real-Time PCR System, following 
manufacturer’s instructions. The oligonucleotide list is 
presented in Reagents and Tools Table. 36B4 was used as 
housekeeping gene for internal normalization.

Western blot
Cells were collected in ice-cold PBS. Cell pellets were 
lysed in RIPA buffer (Cell Signaling, 9806S) supple-
mented with 0,2% SDS, PMSF and protease/phosphatase 
inhibitor cocktail (Cell Signaling, 9806S). Twenty μg of 
whole cell lysates was resolved on NuPAGE 4–12% Bis–
Tris Protein Gels (Invitrogen) and transferred onto PVDF 
membranes (neolab Migge GmbH, IPFL00010). Mem-
branes were blocked in 5% BSA and incubated overnight 
with primary antibodies (Reagents and Tools Table). 
Anti-mouse or anti-Rabbit IgG, HRP-linked Antibody 
(Cell signaling, 7076; 7074) were used as secondary anti-
bodies and signals were detected using Vilber FUSION 
FX7 (Vilber Lourmat). VINCULIN and β-ACTIN served 
as loading controls.

Immunofluorescence
Cells were seeded in 96 well glass bottom plates (Cellvis, 
P96-1.5H-N), fixed for 10 min with 4% PFA at room tem-
perature, washed 3 times with D-PBS, permeabilized for 
10  min with 0,25% Triton-X-100 in D-PBS and blocked 
with 10% FBS—0.1% Triton-X100 for 1  h at room tem-
perature. Cells were then stained overnight at 4 degrees 
with γ-H2AX primary antibody (Merck Millipore 
05–636) diluted 1:500 in 3% BSA/D-PBS, washed 3 times 
with D-PBS and stained with secondary antibody (Alexa 
Fluor-594, goat anti mouse, 1:1000) and Hoechst (1:4000) 

in 3% BSA/D-PBS for 1 h. Cells were stored in the dark at 
4 °C until observed under the microscope.

Microscopy
Fluorescent images were acquired on a Nikon Ti-E auto-
mated epifluorescent microscope. The microscope was 
equipped with a DS-Qi2 camera and a Sola nIR LED 
lamp. The filter sets were provided by Nikon for DAPI 
(DAPI-A-2360A), Alexa Fluor 568 (Cy3-A-4040C)) and 
Alexa Fluor 647 (LED-Cy5-5070A). The objectives used 
were P-Fluor 40X, numerical aperture 0.60 (Nikon). We 
used a hardware base autofocusing system called the 
perfect focus system (PFS) from Nikon to automatically 
focus the cells on the field of view. For each replicate, 
we imaged 2 wells per condition with multiple images (a 
minimum of 4 and a maximum of 9) per well.

For quantification of γ-H2AX foci, and CyclinA lev-
els, images were analyzed by ImageJ with custom made 
macros. Briefly, the nuclei were segmented from DAPI 
channel image by automated thresholding and water-
shed procedure to split touching nuclei. For analysis 
of CyclinA levels, the mean intensities of the nuclear 
CyclinA were measured based on the segmented nuclei 
in each image.

For counting γ-H2AX foci, similar nuclear segmen-
tation steps were applied. Based on the segmented 
nuclei in each image then we applied another round 
of thresholding and segmentation for γ-H2AX channel. 
Downstream analyses of the foci counts were performed 
in R.

Live cell imaging
Three days post gRNA transfection, equal number of 
cells were plated in 96-well plates. Cell proliferation 
was monitored over time using the Incucyte S3 scanner. 
Phase contrast images were acquired every 12 h using a 
10 × objective and analyzed using the Incucyte S3 Live-
Cell Analysis System.

Statistical analyses
The applied statistical tests are specified in each figure 
legend.
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