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Abstract: In wireless rechargeable sensor networks (WRSNs), a mobile charger (MC) moves around
to compensate for sensor nodes’ energy via a wireless medium. In such a context, designing a
charging strategy that optimally prolongs the network lifetime is challenging. This work aims to
solve the challenges by introducing a novel, on-demand charging algorithm for MC that attempts to
maximize the network lifetime, where the term “network lifetime” is defined by the interval from
when the network starts till the first target is not monitored by any sensor. The algorithm, named
Fuzzy Q-charging, optimizes both the time and location in which the MC performs its charging tasks.
Fuzzy Q-charging uses Fuzzy logic to determine the optimal charging-energy amounts for sensors.
From that, we propose a method to find the optimal charging time at each charging location. Fuzzy
Q-charging leverages Q-learning to determine the next charging location for maximizing the network
lifetime. To this end, Q-charging prioritizes the sensor nodes following their roles and selects a
suitable charging location where MC provides sufficient power for the prioritized sensors. We have
extensively evaluated the effectiveness of Fuzzy Q-charging in comparison to the related works. The
evaluation results show that Fuzzy Q-charging outperforms the others. First, Fuzzy Q-charging
can guarantee an infinite lifetime in the WSRNs, which have a sufficient large sensor number or a
commensurate target number. Second, in other cases, Fuzzy Q-charging can extend the time until
the first target is not monitored by 6.8 times on average and 33.9 times in the best case, compared to
existing algorithms.

Keywords: WRSN; Q-learning; on-demand charging algorithm; target coverage; connectivity

1. Introduction

Wireless Sensor Networks (WSNs) have found various applications, such as air quality
monitoring, environmental management, etc., [1,2]. A WSN typically includes many
battery-powered sensor nodes, monitoring several targets, and sending sensed data to
a base station for further processing. In the WSNs, it is necessary to provide sufficient
monitoring quality surrounding the targets (i.e., guaranteeing target coverage). Moreover,
the WSNs need to have an adequate capacity for the communication between the sensors
and base station (i.e., ensuring connectivity) [3–5]. The target coverage and connectivity
are severely affected by the depletion of the battery on sensor nodes. When a node runs
out of battery, it becomes a dead node without sensing and communication capability,
damaging the whole network in consequence. Wireless Rechargeable Sensor Networks
(WRSNs) leverages the advantages of wireless power transferring technology to solve that
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critical issue in WSNs. A WRSN uses a mobile charger (MC) to wirelessly compensate for a
rechargeable battery’s energy consumption on a sensor node, aiming to guarantee both the
target coverage and connectivity.

In a normal operation, the MC moves around the networks and performs charging
strategies, which can be classified into periodic [6–10] or on-demand charging [11–17]. In
the former, the MC, with a predefined trajectory, stops at charging locations to charge
the nearby sensors’ batteries. In the latter, the MC will move and charge upon receiving
requests from the sensors, which have the remaining energy below a threshold. The periodic
strategy is limited since it cannot adapt to the sensors’ energy consumption rate dynamic.
On the contrary, the on-demand charging approach potentially deals with the uncertainty
of the energy consumption rate. Since a sensor with a draining battery triggers the on-
demand operation, the MC’s charging strategy faces a new time constraint challenge. The
MC needs to handle two crucial issues: deciding the next charging location and the staying
period at the location.

Although there are many, the existing on-demand charging schemes in the literature
face two serious problems. The first one is the consideration of the same role for the sensor
nodes in WRSNs. That is somewhat unrealistic since, intuitively, several sensors, depending
on their locations, significantly impact the target coverage and the connectivity than others.
Hence, the existing charging schemes may enrich unnecessary sensors’ power while letting
necessary ones run out of energy, leading to charging algorithms’ inefficiency. It is of great
importance to take into account the target coverage and connectivity simultaneously. The
second problem is about the MC’s charging amount, which is either a full capacity (of
sensor battery) or a fixed amount of energy. The former case may cause: (1) a long waiting
time of other sensors staying near the charging location; (2) quick exhaustion of the MC’s
energy. In contrast, charging a too small amount to a node may lead to its lack of power to
operate until the next charging round. Therefore, the charging strategy should adjust the
transferred energy level dynamically following the network condition.

Motivated by the above, we propose a novel on-demand charging scheme for WRSN
that assures the target coverage and connectivity and adjusts the energy level charged
to the sensors dynamically. Our proposal, named Fuzzy Q-charging, aims to maximize
the network lifetime, which is the period from when the network starts till the first target
is not monitored by any sensor. A target is considered to be monitored by a sensor if it
is covered by a sensor (i.e., remaining within the sensor’s sensing range) and the sensor
is connected to the base station (i.e., a routing path exists between the sensor and the
base station). To achieve this ultimate goal, Fuzzy Q-charging attempts to extend the
lifetime of the sensors, in which, sensors that contribute more to target monitoring will
be prioritized more. Fuzzy Q-charging combines two techniques: Fuzzy logic and Q-
learning, each of which is designed to accomplish a given task with a certain goal. First,
we exploit Fuzzy logic in an optimization algorithm that determines the optimal charging
time at each charging location. The Fuzzy logic-based algorithm aims at maximizing the
number of alive sensors. Fuzzy logic is used to cope with network dynamics by taking
various network parameters into account during the determination process of the optimal
charging time. Second, given the optimal charging time at every charging location, we
leverage the Q-learning technique to select the next charging location to maximize the
network lifetime. The MC maintains a Q-table containing the charging locations’ Q-values
representing the charging locations’ goodness. The Q-values will be updated in a real-time
manner whenever there is a new charging request from a sensor. We design the Q-value to
prioritize charging locations at which the MC can charge a node depending on its critical
role. After finishing tasks in one place, the MC chooses the next one, which has the highest
Q-value, and determines an optimal charging time. The main contributions of the paper
are as follows.

• We propose a Fuzzy logic-based algorithm that determines the energy level to be
charged to the sensors. The energy level is adjusted dynamically following the
network condition.
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• Based on the above algorithm, we introduce a new method that optimizes the optimal
charging time at each charging location. It considers several parameters (i.e., re-
maining energy, energy consumption rate, sensor-to-charging location’s distance) to
maximize the number of alive sensors.

• We propose Fuzzy Q-charging, which uses Q-learning in its charging scheme to guar-
antee the target coverage and connectivity. Fuzzy Q-charging’s reward function is
designed to maximize the charged amount to essential sensors and the number of
monitored targets.

The remainder of the paper is constructed as follows. Section 3 describes the network
model and Q-learning. We briefly review the related work in Section 2. Section 4 introduces
our proposed algorithm. Section 5 includes the performance evaluation. Finally, Section 6
concludes the paper and shows our future work.

2. Related Work

Initially, we introduce the existing works related to periodic charging in WRSNs. In [6],
the authors leverage PSO and GA to propose a charging path determination algorithm that
minimizes the docking time during which the MC recharges itself at the depot. Ref. [7]
jointly considers charging path planning and depot positioning to minimize the number
of MCs while ensuring no sensor runs out of energy before being recharged. The work
in [8] determines a charging path to maximize the MC’s accumulative charging utility gain
or minimize the MC’s energy consumption during traveling. The authors then propose
approximation algorithms with constant ratios for the maximization and minimization
problems. Arguing that an MC can not fulfill all sensors’ demand in dense networks, W.
Xu et al. in [9] introduce a multi-chargers approximation model to increase the charging
speed. In [10], C. Lin et al. derive a new energy transfer model with distance and angle
factors. They also consider the problem of minimizing the total charging delay for all
nodes. They use linear programming and obtain the optimal solution. As the charging
schedule is always fixed, the periodic scheme fails to adapt to the dynamic of sensors’
energy consumption.

Regarding the on-demand charging, the authors in [16] address the node failure
problem. They first propose to choose the next charging node based on the charging
probability. Second, they introduce a charging node selected method to minimize the
number of other requesting nodes suffering from energy depletion. In [12,13], aiming to
maximize the charging throughput, they propose a double warning threshold charging
scheme. Two dynamic warning thresholds are triggered depending on the residual energy
of sensors. The authors in [17] studied how to optimize the serving order of the charging
requests waiting in the queue using the gravitational search algorithm. In [15], X. Cao et al.
introduce a new metric (i.e., charging reward), which quantifies the charging scheme’s
quality. The authors then address the problem of maximizing the total reward in each
charging tour under the constraint of the MC’s energy and sensors’ charging time windows.
They use a deep reinforcement learning-based on-demand charging algorithm to solve the
addressed problem.

The existing charging algorithms have two serious problems. First, the charging time
problem has not been thoroughly considered. Most of the charging schemes leverage
either the fully charging approach [6–8,11–13,16] or the partial charging one [18]. We want
to emphasize that the charging time is an essential factor that decides how much the
charging algorithm can prolong the network lifetime. Moreover, there is no existing work
considering the target coverage and connectivity constraints concurrently. Most previous
works treat all sensors in WRSNs evenly; hence, the MC may charge unnecessary sensors
while necessary ones may run out of energy. Unlike them, this work addresses the target
coverage and connectivity constraints in charging schedule optimization. We uniquely
consider the optimization of charging time and charging location simultaneously. We use
Fuzzy logic and Q-learning in our proposal.
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Fuzzy logic has been applied in many fields, such as signal processing [19,20], robotics [21],
and embedded controllers [22]. In WSNs, Fuzzy logic is a promising technique in dealing
with various problems, including localization, routing [23,24], clustering [25], and data
aggregation [26,27]. R. M. Al-Kiyumi et al. in [23] propose a Fuzzy logic-based routing
for lifetime enhancement in WSNs, which maps the network status into corresponding
cost values to calculate the shortest path. In [28], the authors also leverage Fuzzy logic
and Q-learning but in a cooperative multi-agent system for controlling the energy of a
microgrid. In [29], Fuzzy and Q-learning are combined to address the problem of thermal
unit commitment. Specifically, each input state vector is mapped with the Fuzzy rules
to determine all the possible actions with the corresponding Q-values. The main idea
is exploiting Fuzzy logic to map the network status into corresponding cost values to
calculate the shortest path. Recently, the authors in [14] use Fuzzy logic in an algorithm
for adaptively determining the charging threshold and deciding the charging schedule.
Different from the others, we use Fuzzy logic and Q-learning in our unique Fuzzy Q-
charging proposal. The earlier version of this work has been published in [30], which
considers only Q-charging.

3. Network Model, Q-Learning, and Fuzzy Logic
3.1. Network Model and Problem Definition

Figure 1 shows the considered network model, in which a WRSN monitors several
targets. The network has three main components: an MC, sensor nodes, and a base station.
The MC is a robot that can move and carry a wireless power charger. The sensor nodes
can receive charged energy from the MC via a wireless medium. The base station is static
and responsible for gathering sensing information. We assume that there are n sensors
Sj (j = 1, . . . , n) and m targets Tk (k = 1, . . . , m). We call a sensor a target-covering sensor
if it covers at least one target. Moreover, if there exists an alive routing path between a
sensor and the base station, it is connected to the base station. The target is defined as to be
monitored when at least one sensor connected to the base station covers it.

Figure 1. The network model.

A sensor node that has its remaining energy below Eth (i.e., a predefined threshold)
will send a charging request to the base station. The base station then uses one-hop routing
to transfer the request to the MC. We assume that the MC can interact with the base station
over a long-range communication. We target a non-preemptive charging schedule, in
which charging requests from sensors are queued at the MC. We assume that there are k
charging locations denoted by D1, . . . , Dk in the network. When the MC completes its tasks



Sensors 2021, 21, 5520 5 of 22

at a charging location, it runs our proposed algorithm to select the next optimal charging
location from D1, . . . , Dk. Moreover, the MC also determines the optimal charging time at
that charging location. When the energy of the MC goes below a threshold, it returns to the
depot to recharge itself. Besides gathering the sensing information, the base station is also
responsible for collecting information about the remaining energy sensors. Based on that,
the MC estimates every sensor’s energy consumption rate using the weighted averaging
method. Given all sensors and the targets’ locations, our on-demand charging algorithm
aims to maximize the network lifetime.

3.2. Q-Learning

Q-learning is a reinforcement learning technique that is widely used in making a
decision. The main idea is to achieve a specific goal based on experience learning from the
past. The standard Q-learning framework consists of four components: an environment,
one or more agents, a state space, and an action space, as shown in Figure 2. The Q-value
represents the approximate goodness of the action concerning the agent’s goal. An agent
chooses actions according to the policy and the Q-value. After performing an action, the
agent modifies its policy to attain its goal. The Q-value is updated using the Bellman
equation as follows:

Q(St, At)← (1− α)Q(St, At) + α[Rt + γ max
a

Q(St+1, a)], (1)

where Q(St, At) is the Q-value of action At at a given sate St. Rt is the reward obtained if
performing action At in the state St. Moreover, max

a
Q(St+1, a) is the maximum possible

Q-value in the next state St+1 for all possible actions a. α and γ are the learning rate and
the future reward discount factor. Their values are set between 0 and 1.

Figure 2. Q-learning overview.

3.3. Fuzzy Logic

A fuzzy logic system consists of three components: fuzzification, fuzzy logic controller,
and defuzzification. The first component converts the crisp values of the variable into
their fuzzy form using some membership functions. The second one is responsible for
simulating the human reasoning process by making fuzzy inference based on inputs and a
set of defined IF-THEN rules. The module itself can be separated into two subcomponents,
namely Knowledge Base and Inference Engine. Knowledge Base is a set of specifically designed
rules so that together with the input states of variables, they will produce consistent results.
Each rule’s form is “IF {set of input} THEN {output}”. More explicitly, a fuzzy rule Ri with
k-inputs and 1-output has the following form.

Ri : IF (I1 is Ai1)Θ(I2 is Ai2)Θ . . . Θ(Ik is Aik)

THEN (O is Bi),
(2)



Sensors 2021, 21, 5520 6 of 22

where {I1, . . . , Ik} represents the crisp inputs to the rule. {Ai1, . . . , Aik} and Bi are linguistic
variables. The operator Θ can be AND, OR, or NOT. The Inference Engine is in charge
of the estimation of the Fuzzy output set. It calculates the membership degree (µ) of the
output for all linguistic variables by applying the rule set described in the Knowledge Base.
For Fuzzy rules with lots of inputs, the output calculation depends on the operators used
inside it, i.e., AND, OR, or NOT. The calculation for each type of operator is described
as follows:

(Ii is Ai AND Ij is Aj) :

µAi∩Aj(Iij) = min (µAi (Ii), µAj(Ij)),

(Ii is Ai OR Ij is Aj) :

µAi∪Aj(Iij) = max (µAi (Ii), µAj(Ij)),

(NOT Ii is Ai) :

µĀi
(Ii) = 1− µAi (Ii).

The last component helps to convert the fuzzy output set from the linguistic variables
into a crisp value. The most popular fuzzy solution is a methodology called the centroid
technique, described as follows:

Center of Gravity of B (CoGB) =

∫ +∞
−∞ µB(z)zdz∫ +∞
−∞ µB(z)dz

, (3)

where µB(z) is the output membership function of the linguistic variable B.

4. Fuzzy Q-Charging Algorithm
4.1. Overview

We follow the on-demand charging strategy, in which a sensor sends a charging
request to the base station when its energy is below a predefined threshold Eth. The base
station then uses one-hop routing to transfer the request to the MC. The request is inserted
into the waiting list at the MC. The MC then performs the following procedures to update
the Q-table:

• The MC leverages Fuzzy logic to calculate a so-called safe energy level (denoted as Es f ),
which is sufficiently higher than Eth. The MC then uses the algorithm described in
Section 4.3 to determine the charging time at each charging location. The charging time
is optimized to maximize the number of sensors that guarantee the safe energy level.

• The MC calculates the reward of every charging location using Equation (12) and
updates the Q-table using Equation (4).

After finishing charging at a charging location, the MC selects the next charging
location as the one with the highest Q-value. Finally, the MC moves to the next charging
location and charges for the determined charging time. When the energy of the MC goes
below a threshold, it returns to the depot to recharge itself. Figure 3 presents the overview
of our charging algorithm. To facilitate the reading, we summarize all the used notations
in Table 1.
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Figure 3. The flow of Fuzzy Q-learning-based charging algorithm.

Table 1. List of notations.

Notation Definition

Di The i-th charging location

Q(Di, Dj) Action value of the action moving from Di to Dj
r(Di) Reward obtained after the MC moves to Di

α The learning rate of the Q-learning algorithm

γ The discount factor of the Q-learning algorithm

Eth The threshold for sending a charging request

Es f The safe charging level

θ The safe energy factor

Emax The maximum energy capacity of the sensors

pi
j The per second energy that a sensor Sj is charged when the MC stays at Di

ej Energy consumption rate of sensor Sj

Ej Remaining energy of sensor Sj

Ti The optimal charging time at Di

Lr, Emin Fuzzy input variables

wj The priority index of Sj

ξ j The energy severity index of Sj, ξ j =
ej
Ej

.

4.2. State Space, Action Space and Q Table

In our Q-learning-based model, the network is considered the environment while
the MC is the agent. A state is defined by the current charging location of the MC, and
an action is a move to the next charging location. Each MC maintains its own Q-table,
which is a two-dimensional array. Each row represents a state, and each column represents
an action. An item Q(Dj, Di) in the j-th row and i-th column represents the Q-value
corresponding to the action when the MC moves from the current charging square Dj to
the next charging location Di. Figure 4 shows an illustration of our Q-table. In the figure,
the gray row represents the Q-values concerning all possible actions when the MC stays at
the charging location Dc. The green cell depicts the maximum Q-value regarding the next
charging location.
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Let Dc be the current charging location and Di be an arbitrary charging location, then
the Q-value of action moving from Dc to Di is iteratively updated by using the Bellman
equation as follows:

Q(Dc, Di)← Q(Dc, Di) + α(r(Di) + γ max
1≤j≤l

Q
(

Di, Dj
)
−Q(Dc, Di)). (4)

The equation ’s right side consists of two elements, including the current Q-value and the
temporal difference. The temporal difference measures the gap between the estimated
target, i.e., r(Di) + γ max

1≤j≤l
Q
(

Di, Dj
)
, and the old Q-value, i.e., Q(Dc, Di). α and γ are two

hyper-parameters whose names are learning rate and discount factor, respectively. r(Di) is
our proposed reward function, which will be detailed in Section 4.5.

Figure 4. An illustration of the Q-table.

In the following, we first describe our algorithms to determine the optimal charging
time and the safety energy level in Sections 4.3 and 4.4. Then, we present the details of the
reward function and the mechanism for updating the Q-table in Sections 4.5 and 4.6.

4.3. Charging Time Determination

We aim to design a charging strategy so that the number of sensors reaching a safe
energy level is as big as possible after each charging round. Here, the safe energy level
means the energy amount that is sufficiently greater than Eth. We define the safe energy
level, Es f , as

Es f = Eth + θEmax, (5)

where Emax is the maximum energy capacity of the sensors. θ is an adaptive parameter,
named safe energy factor, which is determined by Fuzzy logic. The algorithm determining
θ algorithm will be described in Section 4.4.

A sensor node has the critical status if its remaining energy is smaller than to Es f . The
sensor with a critical status is named as critical sensor. Otherwise, a sensor node is called a
normal sensor. For each charging location Di (1 ≤ i ≤ l), we want to determine the optimal
charging time Ti to minimize the number of critical sensors.

We adopt the multi-nodes charging model, in which the MC can simultaneously
charge to all sensors. We leverage the charging model proposed in [31], which has been
widely used in most research in the WRSN-related studies. This model follows the RF-
power harvesting. The authors in [31] have performed experiments to verify the model in
the real environment. Following the experiment results shown in the paper, the charging
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energy is about 12× 10−4 W when the distance is 1.6 m. According to [31], the per second
energy that a sensor Sj is charged when the MC stays at Di is given by

pi
j =

λ

(d(Sj, Di) + β)2 , (6)

where λ and β are known constants decided by the hardware of the charger and receiver.
d(Sj, Di) is the Euclidean distance between Sj and Di. We denote ej as the energy con-
sumption rate of Sj, which is estimated by the MC. Suppose that the MC charges Sj at
Di, we denote the remaining energy of Sj when the charging process starts and finishes
as Ej and E

′
j, then E

′
j = Ej + (pi

j − ej)× Ti. At the charging location Di, we call pi
j − ej the

energy gain of Sj. The remaining energy of Sj will increase if its energy gain is positive
and decreases otherwise. Note that the energy of Sj equals the safety energy level, if the

charging time equals to
Es f−Eaj

pi
aj−eaj

, which is named as the safety charging time of Sj with respect

to the charging location Di and denoted as ∆i
j. The sensors can be classified into four

groups. The first and second ones contain normal sensors with positive energy gain and
critical sensors with negative energy gain, respectively. The third and fourth groups contain
normal sensors with negative energy gain and critical sensors with positive energy gain,
respectively. Obviously, the first and second groups’ sensors do not change their status no
matter how long the MC charges at Di. In contrast, a sensor Sj in the third group will fall
into the critical status, and a sensor in the four groups can alleviate the critical status, if the
charging time Ti is greater than or equals to its safety charging time, i.e., Ti > ∆i

j. Hereafter,
we call the sensors in the third group negative normal sensors and the sensors in the fourth
group positive critical sensors. Let ε1, ε2 denote the number of sensors belonging to the third
and fourth groups whose status changes after being charged (from critical to normal and
vice versa). It is worth noting that the greater the value of Ti, the greater ε1, and the greater
ε2, also. Our objective is to determine the optimal value of Ti to maximize ε1 − ε2. This
goal can be achieved by using the following algorithm.

• First, we calculate the safety energy charging time of all negative normal sensors
(denoted as ∆i

a1
, . . . , ∆i

au ) and positive critical sensors (denoted as ∆i
b1

, . . . , ∆i
bv

).
• We then combine the values of ∆i

a1
, . . . , ∆i

au and ∆i
b1

, . . . , ∆i
bv

into an array denoted as
∆i

c1
, . . . , ∆i

cu+v , where ∆i
c1

, . . . , ∆i
cu+v have been sorted by decreasing order (i.e., ∆i

c1
≥

∆i
c2
≥ . . . ≥ ∆i

cu+v ). We have an important observation that the value of (ε1 − ε2)
does not change when Ti varies in the range from ∆i

cp to ∆i
cp+1

(1 ≤ p ≤ u + v).
Therefore, the optimal value of Ti can be easily determined by brute force search over
∆i

c1
, . . . , ∆i

cu+v .

4.4. Fuzzy Logic-Based Safe Energy Level Determination
4.4.1. Motivation

We observe that Es f contributes significantly to the algorithm’s performance. When
Es f ’s value is small, the MC’s maximum energy amount, charging to the sensors, is also
small. Accordingly, after being charged, the sensor’s battery may quickly go below the
threshold. On the contrary, if Es f is too large, the MC needs to spend a long time at every
charging point. Consequently, the sensors far from the charging points may run out of
energy while waiting for their turn. To this end, we leverage Fuzzy logic to adjust Es f ’s
value adaptively. In the following, we first analyze factors that affect Es f . We then describe
the proposed algorithm. Remember that according to Equation (5), Es f is determined by
Es f = Eth + θEmax. Therefore, below, we will show how to adjust the value of θ adaptively.

When the MC stays at a charging point, the nearby sensors receive a more significant
energy amount than the faraway sensors. Therefore, each near sensor’s charging amount
is likely more significant than its energy consumption for sensing and communication.
Consequently, the nearby ones tend to increase their battery level gradually. On the
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contrary, the faraway sensors tend to decrease due to the energy consumption for sensing
and communication tasks. It is expected that the MC should spend a longer time at
charging points where sensors far from it do not encounter critical situations (i.e., having
low residual energy or high energy consumption rate). Based on this observation, our
algorithm is designed so that Es f tends to receive a small value in the following cases.

• The residual energy of all sensors is small.
• Many sensors need to be charged.

We propose a Fuzzy logic-based Es f determination algorithm, which utilizes the following
two variables. The first one is the minimum residual energy of all sensors Emin. The second
is the number of charging requests, denoted as Lr.

The details of the algorithm is presented in Algorithm 1.

4.4.2. Fuzzification

With the two variables Lr and Emin, we denote the output as the value of θ. Each input
is mapped into three linguistic variables that are low, medium, and high. Meanwhile, the
output is mapped into five ones, namely very low, low, medium, and high. We leverage the
triangular and trapezoidal fuzzy numbers, whose formulas are given below:

Triangular(x, a, b, c) =


0 , x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0 , c ≤ x

(7)

Trapezoidal(x, a, b, c, d) =


0 , x ≤ a

x−a
b−a , a ≤ x ≤ b
1 , b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d
0 , d ≤ x

, (8)

where x is the crisp input, and a, b, c, d are membership function ranges of the fuzzy
variables. The values of a, b, c, d are represented in Tables 2 and 3. Figures 5 and 6 depict
the Fuzzy membership functions of the input and the output variables, respectively.

Table 2. Input variables with their linguistic values and corresponding membership function.

Input Variable Linguistic Value Membership Function

Lr

L [0, 0, 2, 6]

M [2, 6, 10]

H [6, 10, ∞, ∞]

Emin

L
[
0, 0, 1

4 Eth, 2
4 Eth

]
M

[
1
4 Eth, 2

4 Eth, 3
4 Eth

]
H

[ 2
4 Eth, 3

4 Eth, Eth, Eth
]

Table 3. Output variable with its linguistic values and membership function, δ =
(

0.1− 2 Eth
Emax

)
.

Output Variable Linguistic Value Membership Function

θ

VL [0, 0, 1
3 δ]

L [0, 1
3 δ, 2

3 δ]

M [ 1
3 δ, 2

3 δ, δ]

H [ 2
3 δ, δ, δ]
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Figure 5. Fuzzy input membership functions.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Theta values (x δ)

M
e

m
b

e
rs

h
ip

 d
e

g
re

e
 (

µ
)

VL

L

M

H

Figure 6. Fuzzy output membership functions.

4.4.3. Fuzzy Controller

There are two input variables; each is converted to three fuzzy sets, so we have a total
of 32 = 9 rules in the Knowledge Base, which are listed in Table 4. The rules are designed
to reflect the observation described in Section 4.4.1. Our rules have the form of “IF (Lr is
A) AND (Emin is B) THEN (θ is D)”, in which A, B obtain the values of low, medium, or
high, and D is either very low, low, medium, or high. For the ease of presentation, we use the
following notations: VL = very low, L = low, M = medium, H = high. As the Fuzzy rules are
based on the AND operator, the output membership degree is defined by

µRi = min{µA(Lr), µB(Emin)}, ∀i = 1, . . . , 9. (9)

Table 4. Fuzzy rules for safe energy level determination.

R#
Input Output

Lr Emin θ

1 L L H

2 L M M

3 L H L

4 M L M

5 M M L

6 M H VL

7 H L L

8 H M VL

9 H H VL
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4.4.4. Defuzzification

After the Inference Engine determines the output’s membership degree on fuzzy sets
(by using Equation (9)), the fuzzy set with the highest membership degree is considered
the output variable. Finally, we utilize the CoG function to calculate the crisp value of the
output’s fuzzy set.

Let us consider an example where Lr = 3, Emin = 3, and Eth = 4. First, the fuzzy
inputs of the two variables Lr and Emin are calculated using Equations (7) and (8), as
presented in Table 5. Then, we use Equation (9) to calculate the output membership degree
of each fuzzy rule. For example, the fuzzy output for rule R1 is given by

µR1 = min(µL(Lr), µL(Emin))

= min(0, 0) = 0.

The values of all the fuzzy rules are shown in Table 6. From Table 6, it can be seen that rule
3 achieves the highest membership degree. Therefore, the output variable θ obtains the
linguistic value of low(L). Finally, we use the CoG function to convert the output’s linguistic
variable into a crisp value. According to Equation (3), the CoG of the output linguistic
variable low(L) is defined by

CoGL =

∫ δ
0 θµL(θ)dθ∫ δ
0 µL(θ)dθ

, (10)

where µL is the membership function of low(L). Following the definition of the output
membership function represented in Table 3, we have

µL(θ) =


3
δ θ , 0 ≤ θ ≤ 1

3 δ

2− 3
δ θ , 1

3 δ ≤ θ ≤ 2
3 δ

0 , 2
3 δ ≤ θ ≤ δ.

(11)

where δ =
(

0.1− 2 Eth
Emax

)
. By substituting Equation (10) into Equation (11), we obtain the

value of CoGM as 1
3 δ. It means that with Lr = 3, Emin = 3, and Eth = 4, the value of θ is 1

3 δ,
thus the safe energy level Es f is given by Es f = Eth +

1
3 δEmax.

Table 5. Inputs of linguistic variables.

Input Variable Membership Function Value

Lr

µL 0.75

µM 0.25

µH 0.00

Emin

µL 0.00

µM 0.00

µH 1.00

Table 6. Fuzzy rules evaluation.

R# µR# R# µR# R# µR#

1 0.00 4 0.00 7 0.00

2 0.00 5 0.00 8 0.00

3 0.75 6 0.25 9 0.00
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Algorithm 1: Fuzzy Logic-based θ determination
Input : Ej, Eth, Lr , ∀j = 1, n;

Ej: Remaining energy of sensor Sj;
Eth: Energy threshold sensors request charging;
Lr : The number of charging request;

Output : θ
θ ← 0;
for i = 1 to m do

Emin = min
1≤j≤n

Ej;

// Fuzzification
µL(Emin) = Trapezoidal

(
Emin, 0, 0, 1

4 Eth, 2
4 Eth

)
;

µM(Emin) = Triangular
(

Emin, 1
4 Eth, 2

4 Eth, 3
4 Eth

)
;

µH(Emin) = Trapezoidal
(
Emin, 2

4 Eth, 3
4 Eth, Eth, Eth

)
;

µL(Lr) = Trapezoidal(Lr , 0, 0, 2, 6);
µM(Lr) = Triangular(Lr , 2, 6, 10);
µH(Lr) = Trapezoidal(Lr , 10, 10, ∞, ∞);
// Fuzzy controller
M← null;
for A ∈ {L, M, H} do

for B ∈ {L, M, H} do
µ = min(µA(Lr), µB(Lr));
M.add(µ);

end
end
// Defuzzification
l = arg max

µ
M;

D ← the output of rule Rl ;
θ ← the value of θ by CoG function;

end
return θ

4.5. Reward Function

Our objective is to maximize the network lifetime. To achieve this goal, we need
to guarantee that every target is monitored by at least one sensor. Note that a target is
considered to be monitored by a sensor if it is covered by a sensor (i.e., remaining within
the sensor’s sensing range) and the sensor is connected to the base station (i.e., a routing
path exists between the sensor and the base station). Hence, the next charging location of
MC should be selected to prioritize the following sensors:

• The sensors with either high energy consumption rate or low level of remaining energy;
• The sensors either cover many targets or participate in many routing paths from

target-covering sensors to the base station.

We emphasize that our design can be applied to any routing protocol. However, in the
experiments in Section 5, we adopt the geographic greedy routing protocol [32]. The
geographic greedy routing protocol is widely accepted in WSNs due to its simplicity and
efficiency. In this routing protocol, each node chooses the next hop to be the neighboring
node closest to the destination. It is worth noting that in geographic routing, it is usually
assumed that every node knows its location, and the location of its one-hop neighbors. This
assumption can be realized by using positioning services [33] and the neighbor notification
packets, respectively. Besides, the source node knows the position of the destination node.
This assumption is legitimate in geographic routing [34–42]. To determine the next node,
the current node only needs to look up in its neighbor table and find the one with the
smallest distance to the destination. The computational complexity for determining such
the next node is only O(m), where m is the number of the current node’s one-hop neighbors.
For each sensor Sj, we define an energy severity index (denoted as ξ j) which is calculated by
the ratio of Sj’s energy consumption rate ej to its remaining energy Ej (ξ j =

ej
Ej

). We can
see that the higher the energy severity index, the more critical the sensor is. Hence, the
MC should charge a larger amount of energy to the sensor. We name a priority index for
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each sensor, which indicates the sensor’s importance in covering targets and transferring
sensory data to the base station. Specifically, a sensor Sj has the priority index wj, defined
as a sum of its covered target number and the routing-path number. The routing path is
from a target-covering sensor to the base station through Sj. Similarly, the priority index is
proportional to the significant effects on the target coverage and connectivity. The sensor
with a higher priority index needs more energy from the MC than a lower-index one does.

We reflect the observation mentioned above in the design of the reward function,
which considers three factors energy factor, sensor priority factor, and target monitoring factor.
The first two factors depict the relationship between the sensors’ energy severity indexes
and priority indexes with the energy they will be charged. The last factor estimates the
number of monitored targets. We denote a charging location Di’s energy factor, sensor
priority factor, and target monitoring factor as E(Di), P(Di), and T(Di), respectively. The
first two factors are designed based on a well-known fact that given two sorted number
sets a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn. Let π1 and π2 be two permutations

of {1, 2, . . . , n}, then
n
∑

i=1
aπ1(i)bπ2(i) attains the greatest value when π1 = π2 = {1, . . . , n}.

Intuitively,
n
∑

i=1
aπ1(i)bπ2(i) is maximized when aπ1(i) is proportional with bπ2(i).

First, the energy factor E(Di) is defined by ∑n
j=1 pi

j × ξ j, which sums up the products of
energy charged to the sensors and their severity indexes. According to the fact mentioned
above, E(Di) tends to achieve the maximal value when pi

j is proportional with ξ j. It means

that E(Di) will increase if we increase the value of pi
j for sensors with a large value of ej and

a small value of Ej. In other words, our algorithm encourages charging more to sensors
with a large energy consumption rate and small remaining energy.

The priority factor P(Di) is calculated by ∑n
j=1 wj pi

j, where wj is the priority of sensor

Sj. Obviously, the second factor is maximized if wj is proportional with pi
j. Therefore,

our algorithm will prioritize the sensors that play important roles in guaranteeing the
network’s target coverage and connectivity.

Third, the target monitoring factor T(Di) = ti
m depicts the ratio of the number of

targets that are monitored (i.e., ti) to the total number of the targets (i.e., m). By including
this factor, our algorithm will choose the next charging location that maximizes the number
of monitored targets.

The reward of a charging location Di (denoted by r(Di)) is the normalized sum of the
three factors. r(Di) can be calculated as follows.

r(Di) =

n
∑

j=1

1
Ej

pi
jej

l
∑

k=1

n
∑

j=1

1
Ej

pk
j ej

+

n
∑

j=1
wj pi

j

l
∑

k=1

n
∑

j=1
wj pk

j

+
ti

l
∑

k=1
tk

. (12)

4.6. Q Table Update

To determine the optimal charging time and calculate the charging locations’ Q-value,
the MC needs information about the sensors’ remaining energy and energy consump-
tion rate.

Since the base station gathers and transfers all sensors’ remaining energy information
to the MC periodically, the MC can estimate every sensor’s energy consumption rate
based on the received information. In this work, we leverage a simple weighted averaging
method to estimate the energy consumption rate. The energy consumption rate of sensor Sj
is defined by the average of its energy consumption rate at L timings in the past weighted
by the corresponding time,

ej =
∑L

k=1 ek
j × tk

∑L
k=1 tk

,
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where ek
j is the energy consumption rate of ej at timing tk in the past.

The more frequently the sensors update the information to the base station, the more
accurately the MC can estimate the sensors’ energy consumption rate. However, sending
such information too often may consume significant energy of sensors. Therefore, in our
algorithm, the sensors only update their remaining energy in the following scenarios.

5. Performance Evaluation

We compare the performance of Fuzzy Q-charging with the most relevant four existing
algorithms. The first one is INMA [16], in which the MC determines the next sensor to
charge based on factors, including the residual energy of sensors and the distance from
sensors to the MC. The next charging sensor is chosen to minimize the number of other
requesting nodes that may suffer from energy depletion. The second one is GSA [17]. At
each charging round in GSA, the MC uses the gravitational search algorithm to determine
a near-optimal charging order to fulfill all charging requests. In both INMA and GSA, the
MC always charges to the maximum battery capacity of the sensor. The third comparison
benchmark is RMP-RL [15]. RMP-RL uses the Deep Q-learning technique to determine the
charging path of the MC. The objective is to minimize the number of dead sensor nodes
and the moving distance of MC. The last comparison benchmark is our previous work,
namely Q-charging [30]. Q-charging leverages Q-learning to determine the next charging
location. However, different from Fuzzy Q-charging, Q-learning tries to maximize the
number of sensors being charged to a predefined energy level. Besides, we also measure
the network lifetime when there is no charging scheme is applied. Hereafter, we call this
option a “no-charging” scheme.

We conduct two experiments, among which the first complements the other. The
first experiment investigates the impact of parameters γ and α on the performance of our
proposal. Based on the first experiment results, we determine the optimal values of γ and α.
They are used in the second experiment, which compares Fuzzy Q-charging performance
to the existing works. The metrics of interest include the network lifetime and the number
of non-monitored targets over time in the evaluation. In all experiments, the network area
is fixed at the size of 100 m × 100 m. The sensors and targets were randomly scattered
in the simulated region. The charging locations are positioned in the same place as the
sensors. Each value plotted on the curves is the average obtained from 20 runs.

Regarding the charging model, we adopted the parameters proposed in [31,43]. The
parameters have been verified by the experiments in [31,43]. More specifically, we set
λ = 4.32× 10−4, β = 0.2316, eMC = 10 J/s, emove = 0.01 J/s. Moreover, the initial energy
of sensors and MC are 10J and 100J, respectively. Each sensor has a battery capacity of
10J. In this simulation, we assume that sensors follow the Zigbee communication standard.
We set the transmission range of sensors to 15 m. The reason is that based on the real
experiment results reported in [44], the transmission becomes unreliable (i.e., the drop
ratio becomes greater than 0) beyond 15 m. The velocity of the MC is 5 m/s. The average
energy consumption rate of the sensors is estimated by the base station, as mentioned in
Section 3. The parameters are summarized in Table 7.

5.1. Impacts of Parameters

This section studies the impacts of parameters α and γ on our proposed algorithm’s
performance. Although we have conducted experiments with various settings, the results
show similar trends. Therefore, we only present the results in a scenario with 300 sensors
and 200 targets.

5.1.1. Impacts of α

We vary the value of α from 0.3 to 0.8 and measure the network lifetime’s variation.
The results are shown in Table 8. We can see the network lifetime enlarges significantly
when α increases from 0.3 to 0.5. It dramatically drops when α reaches 0.6 and becomes
stable. This phenomenon can be explained as follows. As shown in Equation (4), the new
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Q-value is calculated from the current Q-value, the reward, and the estimated maximal
Q-value. α is the weight of the last two components, while 1− α is the weight of the first
one. Intuitively, the current Q-value reflects the experience the agent has learned so far.
Meanwhile, the reward and the estimated maximal Q-value can be seen as the knowledge
the agent has just attained through the current action and the future prediction, respectively.
When α is relatively small, e.g., less than 0.5, increasing α helps exploit the experience and
the future forecast in making the decision, thus improving the goodness of the actions.
However, when α is significantly large, the current experience and the future prediction
dominate the Q-value. It means that the agent makes a decision primarily based on the
current reward and future forecast and ignore all the experiences the agent has learned so
far. The Q-learning now converges to the greedy approach. That is why the performance
drops severely when α increases from 0.5 to 0.6 and becomes stable beyond that. From the
experiment results, α should be moderate values around 0.4 and 0.5.

Table 7. System parameters.

Factor Value

λ 4.32× 10−4

β 0.2316
Initial energy of the MC 100 J
Battery capacity of MC 500 J
The velocity of the MC 5 m/s
Initial energy of sensors 10 J
Battery capacity of sensors 10 J
Eth 4 J
Sensing range 7.5 m
Transmission range 15 m
Number of sensors 200~400
Number of targets 100~300
Per second packet generation probability 0.05~0.25

Table 8. The impact of α on the network lifetime.

α 0.3 0.4 0.5 0.6 0.7 0.8

Network lifetime (103 s) 235.042 246.601 246.268 243.493 243.719 244.183

5.1.2. Impacts of γ

Similarly, the impacts of γ is shown in Table 9. In this experiment, we set the value of α
to 0.5. As can be observed, the network lifetime gradually decreases when γ increases. This
is because γ is the weight of the predicted maximal Q-value in the future. The greater the
γ, the more importantly the future prediction information contributes to the agent’s action.
When γ is significantly small, the role of the future prediction (i.e., Qmax) in the Q-value
is minor. Increasing γ helps agents exploit more future information in making action
decisions, thus improving the decision’s goodness, thereby extending the network lifetime.
However, when γ is significantly large, e.g., more than 0.6, increasing γ will eliminate
the impacts of the current Q-value in making a decision. In other words, the agent tends
to ignore all experiences learned so far and relies primarily on the future prediction. As
the future prediction does not entirely correct, the performance of the Fuzzy Q-learning
downgrades severely. From the experiment results, the optimal value of γ is from 0.4 to 0.5.

Table 9. The impact of γ on the network lifetime.

γ 0.4 0.5 0.6 0.7 0.8

Network lifetime (103 s) ∞ ∞ 302.876 302.876 126.89
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5.2. Comparison with Existing Algorithms

This section presents the comparison of our proposal to the existing ones. Following
the previous observation, we set the values of α and γ to 0.5 and 0.4, respectively.

5.2.1. Impacts of the Number of Sensors

Figure 7 depicts the network lifetime when the number of sensors varies from 200
to 400. In this experiment, the packets are generated randomly, with the probability of
0.2 packets in 1s; the target number is 150. The targets are randomly located in the network
area. We can see that the network lifetime increases along with the increasing number of
sensors in all algorithms due to each sensor’s traffic load has been reduced. However, Fuzzy
Q-charging consistently outperforms the others. Ours can extend the network lifetime by
at least 19.3 times. Moreover, the performance gaps between Fuzzy Q-charging and the
others are proportional to the sensor number. When the number increases from 200 to 250,
the gaps are small. However, the gaps dramatically change when reaching 300 sensors.
Notably, when the number of sensors is 300, Fuzzy Q-charging extends the network lifetime
infinitely, while Q-charging, INMA, and GSA can only attain a limited network lifetime.
The reason is that when the number of sensors is small, the traffic imposed on each sensor
is large. Therefore, the energy consumption rate of all sensors becomes immensely high. In
all charging algorithms, the MC cannot charge to all sensors in time. That explains why the
performance gap between the algorithms is insignificant with a small number of sensors.
When the sensor number becomes sufficiently large, the energy consumption rate is slower.
Fuzzy Q-charging favors the sensors with more essential roles in covering targets and
transferring data to the base station. It can hence maintain the essential sensors’ lifetime
and ensure all monitored targets. Other algorithms do not concurrently consider the target
coverage and connectivity constraints. Therefore, the essential sensors may not be charged
in time, causing some targets to be unmonitored.
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Figure 7. Network lifetime vs. the number of sensors.

Compared to Q-charging, i.e., the second-best charging algorithm, at the condition of
fewer than 300 nodes, Fuzzy Q-learning’s network lifetime is 1.4 times better. In the case
of 300 sensors, Fuzzy Q-learning’s network lifetime is infinite, while Q-learning’s one is
only prolonged to about 500× 103 s. This results proves the effectiveness of our algorithm,
which uses Fuzzy logic to automatically adjust the charging energy level. Concerning the
two other algorithms, GSA, INMA, and RMP-RL, Fuzzy Q-learning improves the network
lifetime to more than 4.3 times, at the condition of fewer than 300 nodes. Moreover, when
the number of sensors reaches 300 nodes, GSA, INMA, and RMP-RL only prolong the
network lifetime to less than about 448× 103 seconds, while that of Fuzzy Q-learning
is infinite.

Among all the algorithms, RMP-RL shows the worst performance. The reason is
that RMP-RL relies on the Deep reinforcement learning technique, which necessitates the
training of a deep learning model. Unfortunately, a Deep reinforcement model typically
takes a long time to converse. As a result, its early-stage performance is often poor, resulting
in many dead nodes. This behavior is clearly demonstrated in Section 5.2.4.
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5.2.2. Impacts of the Number of Targets

We evaluate the target number’s impact in a scenario with 300 nodes and the packet
generation probability of 0.3. We investigate the network lifetime variation when the
number of targets increases from 100 to 300. To do so, we first generate 300 targets randomly
in the network region. After that, the number of targets is adjusted by subtracting 50, 100,
150, and 200 targets at random from the initial set. The results are presented in Figure 8. As
shown, Fuzzy Q-charging performs much better than the other algorithms. As expected,
as the number of targets increases, the network lifetime achieved by all algorithms drops.
The reason for this is because when the target number increases, the volume of traffic on
the sensors increases as well. When the number of targets is significantly large (i.e., more
than 250), the energy consumption rate of sensors becomes too high. As a result, the MC
is unable to charge the sensors in time. As a consequence, no algorithm can considerably
increase the network lifetime.
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Figure 8. Network lifetime vs. the number of targets.

When compared to the no-charge approach, Fuzzy Q-charging extends the network
lifetime by more than 9.8 in all scenarios. Fuzzy Q-charging has average performance
gaps of 6.3, 6.0, and 16.4 when compared to GSA, INMA, and RMP-RL, respectively. In
the best case, the performance gaps of Fuzzy Q-charging to GSA, INMA, and RMP-RL
are 12.6, 11.5, and 33.9, respectively. Compared to Q-charging, Fuzzy Q improves the
network lifetime by 1.9 times in average and 3.1 times in the best case. The improvement
of Fuzzy Q-charging is because Fuzzy Q-charging favors the sensors with more essential
roles in covering targets and transferring data to the base station. It can hence maintain
the essential sensors’ lifetime and ensure all monitored targets. Other algorithms do not
concurrently consider the target coverage and connectivity constraints. Therefore, the
essential sensors may not be charged in time, causing some targets to be unmonitored.

5.2.3. Impacts of the Packet Generation Frequency

Figure 9 shows the resulting impact of the packet generation probability on the net-
work lifetime. In this experiment, the number of sensors and targets is set to 300 and 150,
respectively. The location of the targets are generated randomly. In all algorithms, the
network lifetime tends to decrease when the packet generation probability increases. When
the probability is too large (i.e., being more than 0.25), all sensors’ energy consumption
rate (especially sensors in the base station’s vicinity) becomes fast. Therefore, the sensors’
batteries exhaust quickly. In such a critical case, the difference between the algorithms
is minor. We can see the improvement of Fuzzy Q-charging over the existing algorithms
clearly under the condition of small packet generation probability. Notably, when the prob-
ability is 0.1, Fuzzy Q-charging prolongs the network lifetime infinitely, while the others
cannot. When the probability is greater than 0.1, Fuzzy Q-charging’s network lifetime is
1.4 times more than Q-learning, 5.0 times more than INMA’s, 5.1 times more than GSA’s,
and 21.1 times more than RMP-RL, on average. The performance gaps between Fuzzy
Q-charging and the other algorithms decrease when the packet generation probability
increases. Even when the probability is 0.25, the network lifetime’s ratio achieved by
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Fuzzy Q-charging is 1.4, 4.5, 4.5, and 10.8 times better than Q-charging, INMA, GSA, and
RMP-RL, respectively.

In summary, we can conclude Fuzzy Q-charging outperforms the existing algorithms.
Moreover, the performance gaps between Fuzzy Q-charging and the others increase when
the number of sensors increases, the number of targets decreases, or the packet generation
probability decreases.
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Figure 9. Network lifetime vs. the packet generation frequency.

5.2.4. Non-Monitored Targets and Dead Sensors over Time

We present the number of non-monitored targets and the number of sensors over
time caused by different algorithms in Figure 10a,b, respectively. In Figure 10b, when
the time elapses, the number of sensors exhausting energy and becoming dead nodes
increases. Accordingly, more targets become non-monitored, as shown in Figure 10a. Fuzzy
Q-learning outperforms the other algorithms concerning both metrics. There is a huge
gap between the performance of Fuzzy Q-learning and the others in Figure 10a. Fuzzy
Q-charging with better charging strategies slows down the increase of non-monitored
targets over time. Another interesting observation is that while the gaps between the
number of dead sensors caused by using Fuzzy Q and that of INMA and GSA are relatively
small (Figure 10b), the gaps concerning the number of non-monitored targets are huge
(Figure 10a). The reason is INMA and GSA do not consider target coverage and connectivity
constraints. Therefore, the next charging location is not optimized to prioritize the sensors
with an essential role. Those sensors may be dead in INMA and GSA, leading to the
targets being non-monitored. Meanwhile, in Fuzzy Q-charging, the charging location
determination algorithm can identify the sensor nodes with a specific priority. Therefore,
the dead sensors caused by Fuzzy Q-charging are the less important ones. In many cases,
the death nodes may not affect or have minor impacts on the monitored targets.
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Figure 10. A comparison of non-monitored targets and dead sensors over time. (a) Non-monitored targets over time. (b)
Dead sensors over time.



Sensors 2021, 21, 5520 20 of 22

6. Conclusions and Future Work

This paper addresses optimizing the MC’s charging schedule in WRSNs, which con-
siders target coverage and connectivity constraints. Unlike the existing approaches, ours
took into account the charging location and the charging time in the newly proposed Fuzzy
Q-charging. Fuzzy Q-charging has an optimal charging time determination algorithm that
relies on Fuzzy logic to adjust the energy charging level dynamically. The algorithm has
been utilized at every charging point to maximize the number of alive sensors. Moreover,
Fuzzy Q-charging uses Q-learning in an optimal charging scheme to maximize the target
number. We have extensively evaluated Fuzzy Q-charging in comparison to the previous
charging schemes in WRSNs. The evaluation results show that Fuzzy Q-charging outper-
forms the others. Specifically, Fuzzy Q-charging prolongs the network lifetime infinitely in
certain conditions of the target and sensor numbers, while the other algorithms cannot. In
other cases, Fuzzy Q-charging extends the network lifetime by 6.8 times on average and
33.9 times in the best case, compared to the existing algorithms. In the future, we plan to
extend this work to handle the WRSNs with multiple mobile chargers.
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