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A B S T R A C T   

COVID-19 (Coronavirus) went through a rapid escalation until it became a pandemic disease. The normal and 
manual medical infection discovery may take few days and therefore computer science engineers can share in the 
development of the automatic diagnosis for fast detection of that disease. The study suggests a hybrid COVID-19 
framework (named HMB-HCF) based on deep learning (DL), genetic algorithm (GA), weighted sum (WS), and 
majority voting principles in nine phases. Its segmentation phase suggests a lung segmentation algorithm using 
X-Ray images (named HMB-LSAXI) for extracting lungs. Its classification phase is built from a hybrid convolu-
tional neural network (CNN) architecture using an abstractly-designed CNN (named HMB1-COVID19) and 
transfer learning (TL) pre-trained models (VGG16, VGG19, ResNet50, ResNet101, Xception, DenseNet121, 
DenseNet169, MobileNet, and MobileNetV2). The hybrid CNN architecture is used for learning, classification, 
and parameters optimization while GA is used to optimize the hyperparameters. This hybrid working mechanism 
is combined in an overall algorithm named HMB-DLGA. The study experiments implemented the WS approach to 
evaluate the models’ performance using the loss, accuracy, F1-score, precision, recall, and area under curve 
(AUC) metrics with different pre-defined ratios. A collected, combined, and unified X-Ray dataset from 8 
different public datasets was used alongside the regularization, dropout, and data augmentation techniques to 
limit the overall overfitting. The applied experiments reported state-of-the-art metrics. VGG16 reported 100% 
WS metric (i.e., 0.0097, 99.78%, 0.9984, 99.89%, 99.78%, and 0.9996 for the loss, accuracy, F1, precision, 
recall, and AUC respectively) concerning the highest WS. It also reported a 99.92% WS metric (i.e., 0.0099, 
99.84%, 0.9984, 99.84%, 99.84%, and 0.9996 for the loss, accuracy, F1, precision, recall, and AUC respectively) 
concerning the last reported WS result. HMB-HCF was validated on 13 different public datasets to verify its 
generalization. The best-achieved metrics were compared with 13 related studies. These extensive experiments’ 
target was the applicability verification and generalization.   

1. Introduction 

The novel coronavirus (COVID-19) appeared in late December 2019 
in Wuhan, China which later (day-by-day) aroused a worldwide concern 
[1]. With the rapid escalation of that virus, the World Health Organi-
zation (WHO) declared on 16th March 2020 that the COVID-19 became 
a pandemic disease. Some countries reported a drop in the infection rate 
in July and August. A second infection wave started in October and 
currently, most are reporting rising cases [2]. This coronavirus until 4th 
January 2021 has already infected 218 countries (and territories) where 
the total number of cases is 85,801,672. The total number of deaths until 
that day is 1,855,931 which is about 2.16% of the total cases [3]. Most of 

the death cases occurred with very old people whose immunity is low (or 
faced health problems) [4]. USA, India, Brazil, Russia, UK, and France 
are the top six infected countries according to the published total 
number of cases [2]. 

The reported symptoms of the COVID-19 include fever, cough, and 
shortness of breath. It starts with a fever and dry cough and after 6 to 7 
days, it can lead to the third symptom. The symptoms approximately last 
for two weeks in mild cases and three to six weeks for severe (or critical) 
cases [5]. A hospital-based study was performed on 138 patients and 
conducted that fever, fatigue (muscle pain), and dry cough were the 
most common symptoms [6]. 

Some acute respiratory syndromes have been recognized as being 
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caused by other strains of the coronavirus family; Severe Acute Respi-
ratory Syndrome (SARS) and the Middle East Respiratory Syndrome 
(MERS). Imaging is a critical component of the diagnosis, monitoring, 
and follow-up in the coronavirus-related syndromes [7]. Imaging fea-
tures in the COVID-19 are variable and nonspecific [8,9]. Investigators 
are making every effort to further characterize these imaging features, 
but the information is still limited. 

X-Ray images datasets are one of the common public and available 
datasets. Many datasets (i.e., databases) of patients suffering from 
COVID-19 became public and available to be used since March 2020. 
This leads to the demand to try to discover and differentiate the lung 
radiological patterns (X-Ray and Computerized Tomography (CT)) in 
both the non-corona and the corona-infected people. Chest CT can 
produce fast imaging features, however, findings are highly sensitive 
and yet are non-specific [10]. There are two problems; the low speci-
ficity and the need for earlier diagnosis. This challenged the scientists 
and computer science (CS) engineers to try to find both earlier and ac-
curate diagnoses. While the classical infection discovery might take a 
few days, CS engineers might share in the development of the automatic 
medical imaging recognition of the disease [11]. 

Pattern recognition (PR) is one of the major research fields that 
comprise the process of recognizing, identifying the different features, 
and extracting the differences (i.e., patterns) from the different types of 
inputs such as images [12]. A significant advancement in the recognition 
process was achieved with the integration of deep learning (DL) ap-
proaches; based on the Artificial Neural Networks (ANN) [13]. DL is 
used in detection [14], classification [15,16], and learning [14,17,18]. 
DL has many categories including Convolutional Neural Networks 
(CNNs), Deep Belief Networks (DBNs), Recurrent Neural Networks 
(RNNs), and stacked auto-encoders [19–21]. 

CNN is used in identifying, analyzing, and classifying visual imagery 
[22]. Convolutions and parallel processing are the main dependencies of 
CNNs. A CNN consists of multiple convolutional layers and fully- 
connected (FC) layers. It is easier and faster to train and has fewer pa-
rameters compared with the traditional ANNs, especially while working 
with images and videos. After training, CNN could reach convergence, 
generalization, acceptable results, and accurate decisions [23]. 

As imaging has paramount importance, yet it had low specificity. 
Hence, some DL approaches and systems have been proposed [24,25]. 
However, until now, there are no validated nor verified systems, that 
diagnose the COVID-19 automatically with the help of the computer 
vision (CV) approach. One of the great challenges is finding a suitable, 
official, and published dataset. The size of the dataset, in this case, is 
very important for segmentation, feature extraction, recognition, and 
classification to achieve generalization [26]. 

The major objective of the current study is to provide a hybrid 
framework that performs segmentation, classification, and recognition 
on the lung images of the COVID-19 disease with the help of CNNs and 
genetic algorithms (GA). CNNs are used in the learning and parameters 
optimization process while GA is used in the hyperparameters optimi-
zation process. 

The contributions of the current study can be summarized as follows:  

- Proposing a hybrid COVID-19 framework named HMB-HCF.  
- Suggesting a lung segmentation algorithm using X-Ray images 

named HMB-LSAXI.  
- Designing an abstract CNN model named HMB1-COVID19. 
- Suggesting a combined DL and GA algorithm for learning and opti-

mization named HMB-DLGA.  
- Including a hybrid hierarchy model using HMB1-COVID19 and 

transfer learning pre-trained CNN models.  
- Studying the effects of regularization, optimization, dropout, and 

data augmentation techniques through the different reported 
experiments.  

- Reporting state-of-the-art performance metrics compared with other 
related works and approaches. 

The paper is organized as follows: in the next section, we describe the 
previous related studies and works. In Section 3, The Proposed Hybrid 
COVID-19 Framework (HMB-HCF), we present and discuss the different 
internal phases of the proposed framework in detail. In Section 4, we 
report the experimental results and their discussion. Finally, Section 5 
provides a conclusion for the study and presents future work. 

2. Related work 

Recently, there have been extensive researches in the field of 
recognition using DL and particularly for COVID-19 virus recognition. 
The studies are utilizing different tools, approaches, and variable data-
sets to facilitate the recognition of it. Until now, there are no verified 
public CS tools for the quantification of COVID-19 infection [11]. 

Bukhari et al. [27] used the transfer learning DL approach for 
COVID-19 recognition. They used ResNet50 [28] as their base model. 
Their CNN architecture was trained and tested on a dataset that con-
sisted of 278 images. It was provided by the University of Montreal and 
the National Institutes of Health. Their used digital dataset of Chest X- 
Rays was divided into three groups labeled: “Normal”, “Pneumonia”, 
and “COVID-19”. They divided the dataset into 80% and 20% for 
training and testing respectively. The images were resized into (224, 
224) pixels. They applied dropout [29] and data augmentation as well 
with different configurations: horizontal flipping, random rotation, 
random zooming, random lighting, and random wrapping [30]. Their 
analysis of the data was 98.18% and 98.19% for accuracy and F1-score 
respectively. 

Gozes et al. [31] proposed a system that outputs a lung abnormality 
localization map and measurements by accepting the thoracic CT images 
as inputs. Their system applied 3D and 2D analysis. They used different 
datasets for their subsystems. Their experiments reached 0.996 Area 
Under Curve (AUC), 98.2% sensitivity, and 92.2% specificity. 

Apostolopoulos et al. [32] proposed a CNN architecture with the help 
of transfer learning (TF) for COVID-19 detection. Their used dataset was 
a collection of 1428 X-Ray images (224 “COVID-19”, 700 common 
“Pneumonia”, and 504 “Normal”). They collected their used dataset 
from the different available X-Ray images on public medical re-
positories. They applied the Rectified Linear Unit (ReLU) [33] as the 
hidden activation functions, dropout technique to avoid overfitting, and 
Adam optimizer [34] in the training process. Their experiments with TF 
reported an overall accuracy of 97.82%. 

Chowdhury et al. [35] provided an artificial intelligence (AI) 
approach. They created a public dataset using three public datasets by 
collecting images from some of the recently published articles. It con-
tained a mixture of 190 COVID-19, 1345 viral Pneumonia, and 1341 
Normal chest x-ray images. They applied data augmentation in the 
process of training and validation. They used four different pre-trained 
deep CNNs: AlexNet, ResNet18, DenseNet201 [36], and SqueezeNet 
[37]. These applied two different training schemes: (Normal and COVID- 
19 Pneumonia); and (Normal, Viral, and COVID-19 Pneumonia). Their 
reported classification accuracy, sensitivity, specificity, and precision 
for the two schemes were (98.3%, 96.7%, 100%, and 100%); and 
(98.3%, 96.7%, 99%, and 100%) respectively. 

Abbas et al. [38] applied their previously developed CNN, named 
Decompose, Transfer, and Compose (DeTraC), for the classification 
problem of COVID-19. Their experimental results showed the DeTraC 
capability in detecting the COVID-19 cases from a comprehensive image 
dataset. They reported 93.10% and 100% for accuracy and sensitivity 
respectively. 

Wang et al. [39] collected 453 CT images of pathogen-confirmed 
COVID-19 cases along with those previously diagnosed with typical 
viral pneumonia. They used 217 images for training the Inception model 
[40]. Their reported internal total accuracy was 82.9% with a specificity 
of 80.5% and sensitivity of 84%. They used an external testing dataset 
that reported a total accuracy of 73.1% with a specificity of 67% and 
sensitivity of 74%. 
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Abraham et al. [41] investigated the effectiveness of using multi- 
CNNs to detect COVID-19 from X-Ray images automatically. They 
used the correlation-based feature selection (CFS) technique and 
Bayesnet classifier for the COVID-19 prediction. They tested the used 
approach using two public datasets. The first dataset consisted of 453 
COVID-19 images and 497 non-COVID images. Their approach achieved 
an AUC of 0.963 and an accuracy value of 91.16%. The second dataset 
consisted of 71 COVID-19 images and 7 non-COVID images. Their 
approach achieved an AUC of 0.911 and an accuracy value of 97.44%. 

Islam et al. [42] introduced a DL technique based on the combination 
of a CNN and long short-term memory (LSTM) [43] to diagnose the X- 
Ray COVID-19 images automatically. The CNN was used for the feature 
extraction while the LSTM was used for the detection. They used a 4575 
X-Ray images with 1525 COVID-19 images. Their experimental results 
achieved an accuracy of 99.4%, AUC of 99.9%, a specificity of 99.2%, a 
sensitivity of 99.3%, and an F1-score of 98.9%. 

Polsinelli et al. [44] proposed a light CNN design. It was based on the 
SqueezeNet model. Their proposed modified SqueezeNet CNN achieved 
an accuracy of 85.03%, a sensitivity of 87.55%, specificity of 81.95%, a 
precision of 85.01%, and an F1-score of 86.20%. Aslan et al. [45] 
developed a COVID-19 diagnosis model using Multilayer Perceptron and 
CNN. Their architecture achieved a higher accuracy of 96.30%. 

Bahgat et al. [46] suggested an optimized transfer learning approach 
for COVID-19 named OTLD-COVID-19. They used DenseNet (121, 169, 
and 201), Xception, MobileNet (V1, V2, V3 Small, and V3 Large), Effi-
cientNetB0, and ResNet (50 V2, 101 V2, and 152 V2) pre-trained CNN 

models. They also used Manta-Ray Foraging Optimizer for the hyper-
parameters optimization. They collected the used CT images from 8 
different public datasets. Their best-reported accuracy was 98.47%. 

Jain et al. [47] used the pre-trained CNN model, Xception, model for 
detecting Chest X-rays images. It reported the highest accuracy 97.97%. 
They used 6432 chest X-Ray images. Wang et al. [48] suggested a DL 
algorithm using CT images for COVID-19 detection. They modified the 
inception TF model to establish their algorithm. They applied their 
approach to the collected 1065 CT images. 

3. The proposed hybrid COVID-19 framework (HMB-HCF) 

The current section covers the detailed discussion of the proposed 
hybrid COVID-19 framework named HMB-HCF. It presents the whole 
process from the dataset (X-Ray images) acquisition to the exporting of 
the final results passing through data pre-processing, learning, recog-
nition, optimization, and image augmentation as shown in Fig. 1. 

The HMB-HCF consists of nine phases: (1) Images Acquisition Phase, 
(2) Pre-Processing Phase, (3) Segmentation Phase, (4) Data Augmenta-
tion Phase, (5) Splitting Phase, (6) Training, Classification, and Opti-
mization Phase, (7) Prediction and Evaluation Phase, (8) Output and 
Export Phase, and (9) Hybrid Model Deployment Phase. 

Basically, the first phase, Images Acquisition Phase, is responsible for 
retrieving the input image dataset. The images may vary from an envi-
ronment to another. Hence, the second phase, Pre-Processing Phase, 
exists. This phase is responsible for removing the unrequired elements 

Fig. 1. The proposed hybrid COVID-19 framework (HMB-HCF).  
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from the scanned images such as noise, annotations, and markers. It 
includes a set of methods such as normalization, noise filtration, crop-
ping, and skewing correction. If the dataset is well-prepared, the second 
phase can be bypassed. 

The image may contain unrequired body elements such as arms that 
may interfere with the COVID-19 detection process. These elements 
should be removed to avoid any inferences. That’s why the third phase, 
Segmentation Phase, is used. Public and accurate COVID-19 datasets are 
too few compared to the number of affected people. Hence, different 
techniques can be used to increase the diversity of the data. This hap-
pens in the fourth phase, Data Augmentation Phase. If the original im-
ages are required only to be used in the training and evaluation process, 
the fourth phase can be bypassed. 

The dataset shall be split into training, testing, and validation sub-
sets. The training and validation subsets are used to modify the model’s 
parameters such as weights in the training phase and evaluate the per-
formance after each epoch. The test subset will be used to measure the 
overall performance. This occurs in the fifth phase, Splitting Phase. In 
the sixth and seventh phases, the models will be trained, parameters and 
hyperparameters will be optimized, and the performance metrics will be 
calculated and reported. 

After the training phase, the eighth phase, Output and Export Phase, 
exists. In this phase, the final results should be exported to be used later, 
either in another system or individually. It includes graph generation, 
final parameters and hyperparameters storage, and statistics generation. 
The most suitable weight initializer, optimizer, and regularizer should 
be selected according to a criterion that will be discussed and concluded 

later. 
In the last phase, Hybrid Model Deployment Phase, a hybrid model is 

constructed from the optimized models and the decision is taken based 
on it. The internal details of each phase are discussed in the following 
subsections. 

3.1. First phase: images acquisition phase 

The first phase is responsible for retrieving the input image dataset. 
There are different ways of getting data from public ones to private 
patients’ data. The main source of getting lung images is the X-Ray 
scanners. They are rotating X-Ray devices that create cross-sectional 
body images [49]. The drawbacks of that approach are (1) the diffi-
culty of retrieving the images from the official organizations and (2) the 
time consumption to annotate (i.e., label) the retrieved images from 
professional doctors. 

The second source is the public and accurate lung X-Ray datasets. 
The major advantage of the second approach is the ability to perform 
comparisons between different systems and published works. 

The dataset must be annotated correctly to be used in any supervised 
learning approach such as machine learning (ML) and neural networks 
supervised techniques. If the dataset is not annotated, the decisions of a 
set of professional doctors can be obtained and their maximum decisions 
are taken. Fig. 2 shows a flowchart of the major sources of retrieving 
lung X-Ray scans and annotating them. 

The flowchart starts by checking if the dataset is composed of X-Ray 
scans or not. If the choice is “No”, then the right path (i.e., branch) is 

Fig. 2. The major sources of retrieving lung X-ray scans and their annotations.  
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followed. It reads the stored images. The images can be retrieved from 
different storage resources such as hard disks or cloud storage. After 
that, it checks if they are annotated or not. If the images are not anno-
tated, the annotation process is executed on each of the images. If the 
choice is “Yes”, the left path is followed. It reads the X-Ray scans and 
converts them to images. After that, the annotation process comes out. 
The annotation process of a single image is the maximization of the 
professional doctors’ decisions (i.e. majority voting principle) following 
Eq. (1). 

Decision = max
c∈C

(Count(c1) ,…,Count(cN) ) (1)  

where N is the number of used categories (i.e., classes) such as “COVID- 
19”, “Not-COVID-19”, and “Pneumonia”, c is a class from the used C 
classes. Table 1 shows an example on the annotation process. It shows 
five doctors annotating three samples. 

It is worth mentioning that, the words “categories”, “labels”, and 
“classes” are synonyms and refer to the same meaning in the current 
study. Table 2 shows some of the available online lung X-Ray images 
datasets that can be used. 

The “Pneumonia (virus) vs COVID-19” [50] dataset contains 70 
COVID-19 and 1493 Pneumonia X-Rays. The “Covid-19 Xray images 
using CNN” [51] dataset contains 140 COVID-19 and 144 Normal X- 

Rays. The “COVID-19 X-ray Images5” [52] dataset contains 91 COVID- 
19 and 1352 Normal X-Rays. 

The “COVID-19 Patients Lungs X Ray Images 10,000” [53] dataset 
contains 70 COVID-19 and 28 Normal X-Rays. The “COVID-19 Chest X 
Rays” [54] dataset contains 69 COVID-19 and 79 Normal X-Rays. The 
“COVID-19 Dataset” [55] dataset contains 25 COVID-19 and 25 Normal 
X-Rays. 

The “Curated Chest X-Ray Image Dataset for COVID-19” [56] dataset 
contains 1281 COVID-19, 3270 Normal, 1656 Pneumonia-Viral, and 
3001 Pneumonia-Bacterial X-Rays. It was obtained by collating 15 
publically available datasets and removing the duplicates based on the 
image similarities. The “Chest X-ray (Covid-19 & Pneumonia)” [57] 
dataset contains 576 COVID-19, 1583 Normal, and 4273 Pneumonia X- 
Rays. The “COVID19 with Pneumonia and Normal Chest Xray (PA) 
Dataset” [58] dataset contains 2313 COVID-19, 2313 Normal, and 2313 
Pneumonia X-Rays. 

The “COVID-19 Xray Dataset (Train & Test Sets)” [59] dataset con-
tains 94 Pneumonia and 94 Normal X-Rays. The “COVID19-xray” [60] 
dataset contains 1161 COVID-19 X-Rays. The “Chest Xray for covid-19 
detection” [61] dataset contains 174 COVID-19 and 174 Normal X-Rays. 

The “covid_19_2020” [62] dataset contains 3594 COVID-19, 5583 
Normal, 2.313 Pneumonia (common), 3001 Pneumonia-Bacterial, and 
1656 Pneumonia-Viral X-Rays. The “COVID-19 Detection X-Ray Data-
set” [63] dataset contains 189 COVID-19, 2231 Normal, 1624 
Pneumonia-Bacterial, and 1029 Pneumonia-Viral X-Rays. The “COVID- 
19 & Normal Posteroanterior(PA) X-rays” [64] dataset contains 140 
COVID-19, and 140 Normal X-Rays. The “COVID-19 Radiography 
Dataset” [65] dataset contains 3616 COVID-19, 10,192 Normal, 6012 
Lung Opacity, and 1345 Pneumonia-Viral X-Rays. 

The “Covid-GAN and Covid-Net mini Chest X-ray” [66] dataset 
contains 972 COVID-19, 2083 Normal, and 4489 Pneumonia X-Rays. 
The “COVID19_Pneumonia_Normal_Chest_Xray_PA_Dataset” [67] data-
set contains 1525 COVID-19, 1525 Normal, and 1525 Pneumonia X- 

Table 1 
A simple annotation example.  

Doctor no. First sample Second sample Third sample 

1 “COVID-19” “Not-COVID-19” “Pneumonia-Bacterial” 
2 “COVID-19” “COVID-19” “Pneumonia-Viral” 
3 “COVID-19” “Not-COVID-19” “Pneumonia-Viral” 
4 “COVID-19” “Not-COVID-19” “COVID-19” 
5 “COVID-19” “Not-COVID-19” “Pneumonia-Viral” 
Decision “COVID-19” “Not-COVID-19” “Pneumonia-Viral”  

Table 2 
The available online lung X-Ray images datasets.  

No. Name Classes Size Link  

1 “Pneumonia (virus) vs COVID-19” [50]  2  1563 https://www.kaggle.com/muhammadmasdar/pneumonia-virus-vs-covid19  
2 “Covid-19 Xray images using CNN” [51]  2  284 https://www.kaggle.com/akkinasrikar/covid19-xray-images-using-cnn  
3 “COVID-19 X-ray Images5” [52]  2  1443 https://www.kaggle.com/uddiptadas/covid19-xray-images5  
4 “COVID-19 patients lungs X ray images 10,000” [53]  2  98 https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images  
5 “COVID-19 chest X rays” [54]  2  148 https://www.kaggle.com/rupeshs/covid19-chest-x-rays  
6 “COVID-19 dataset” [55]  2  50 https://www.kaggle.com/syedrz/covid19-dataset  

7 “Curated chest X-ray image dataset for COVID-19” [56]  4  9208 https://www.kaggle.com/unaissait/curated-chest-xray-image-dataset-for-co 
vid19  

8 “Chest X-ray (Covid-19 & pneumonia)” [57]  3  6432 https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia  

9 
“COVID19 with pneumonia and normal chest Xray (PA) dataset” 
[58]  3  6939 

https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xra 
y-pa-dataset  

10 “COVID-19 Xray dataset (train & test sets)” [59]  2  188 https://www.kaggle.com/khoongweihao/covid19-xray-dataset-train-test-sets  
11 “COVID19-xray” [60]  1  1161 https://www.kaggle.com/anaselmasry/covid19xray  
12 “Chest Xray for covid-19 detection” [61]  2  348 https://www.kaggle.com/fusicfenta/chest-xray-for-covid19-detection  
13 “covid_19_2020” [62]  5  16,147 https://www.kaggle.com/tikoboss/covid-19-2020  
14 “COVID-19 detection X-ray dataset” [63]  4  5073 https://www.kaggle.com/darshan1504/covid19-detection-xray-dataset  
15 “COVID-19 & Normal Posteroanterior(PA) X-rays” [64]  2  280 https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays  
16 “COVID-19 radiography dataset” [65]  4  21,165 https://www.kaggle.com/preetviradiya/covid19-radiography-dataset  
17 “Covid-GAN and Covid-Net mini chest X-ray” [66]  3  7544 https://www.kaggle.com/yash612/covidnet-mini-and-gan-enerated-chest-xray  

18 “COVID19_Pneumonia_Normal_Chest _Xray_PA_Dataset” [67]  3  4575 
https://www.kaggle.com/asraf047/covid19-pneumonia-normal-chest-xray-pa 
-dataset  

19 “Chest X-ray images” [68]  2  5856 https://www.kaggle.com/tolgadincer/labeled-chest-xray-images  

20 “Chest Xray images pneumonia and Covid-19” [69]  3  6118 https://www.kaggle.com/masumrefat/chest-xray-images-pneumonia-an 
d-covid19  
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https://www.kaggle.com/yash612/covidnet-mini-and-gan-enerated-chest-xray
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https://www.kaggle.com/masumrefat/chest-xray-images-pneumonia-and-covid19
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Rays. The “Chest X-ray Images” [68] dataset contains 1583 Normal, and 
4273 Pneumonia X-Rays. The “Chest Xray Images PNEUMONIA and 
Covid-19” [69] dataset contains 262 COVID-19, 1583 Normal, and 4273 
Pneumonia X-Rays. 

3.2. Second phase: pre-processing phase 

The second phase is responsible for enhancing the images and 
removing the unrequired elements from them such as noise, annota-
tions, and markers. Different methods can be used such as normaliza-
tion, binarization, histogram equalization, noise filtration, cropping, 
and skewing correction. If the dataset is well-prepared, this phase can be 
bypassed. Eq. (2) shows the used normalization method. The value of 
255.0 refers to the maximum pixel value in any of the image channels. 

DataNormalized =
Data
255.0

(2) 

The remaining used methods in the current paper discussion are 
combined with the proposed lung segmentation algorithm using X-Ray 
images discussion in the next subsection. 

3.3. Third phase: Segmentation phase 

The third phase segments only the lungs by neglecting the shoulders, 
arms, and external bones as the COVID-19 remains in the lungs them-
selves. This paper suggests a lung segmentation algorithm using X-Ray 
images named HMB-LSAXI and its pseudocode is shown in Algorithm 1. 
It is worth mentioning that the current subsection’s following para-
graphs present the base details of the suggested algorithm and more 
information can be retrieved from the used references. 

Algorithm 1. Proposed lung segmentation algorithm using X-ray im-
ages, HMB-LSAXI, pseudocode.  

3.3.1. Algorithm line 1 
The HMB-LSAXI algorithm starts by reading the X-Ray colored lung 

image using the input image path “imgPath”’. A colored image has 3 
channels (ch = 3), Red, Green, and Blue (RGB), while a grayscale image 
has only one channel (ch = 1). 

3.3.2. Algorithm line 2 
The image is converted to a grayscale image after that. There are 

different methods for that conversion such as average, channel- 
dependent luminance perception, gamma compression, and linear 
approximation [70–72]. The last method, linear approximation, is the 
used method in the algorithm. It implements Eq. (3) for each pixel. 

Gr = 0.299×R+ 0.587×G+ 0.114×B (3)  

where Gr is the resultant grayscale pixel value, and R, G, and B are the 
red, green, and blue values respectively. 

3.3.3. Algorithm line 3 
Gaussian blurring is applied after that to remove the unrequired 

noise [73,74]. It follows Eq. (4) to get the kernel that will be applied to 
each pixel. 

Gauusiankernel =
1

2 × π × σ2 × e

(

−
x2
k+y2

k
2×σ2

)

(4)  

where σ is the standard deviation of the distribution and equals 1 using 
Gaussian. xk and yk are the values of the coordinates of the kernel. The 
used kernel size is (15 × 15). 

3.3.4. Algorithm line 4 
The blurred image is binarized [75] after that by setting the pixels 

values to 255 if they are less than or equal to the mean value and 
0 otherwise as shown in Eq. (5). 
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bw(i,j) =

(
0 if gray(i,j) > meangray
255 Otherwise (5)  

where i and j are the image row and column respectively. The image 
mean value, meangray, is calculated using Eq. (6). The foreground pixels 
will be at an intensity value of 255 and the background pixels will be at 
an intensity value of 0. 

meangray =

∑w
i=1

∑h
j=1gray(i,j)

w × h
(6)  

where w and h are the width and height sizes of the image respectively. 

3.3.5. Algorithm line 6 
The generated binary image may contain numerous imperfections 

that can be removed using the morphological image processing algo-
rithms [76]. Erosion is one of the basic operators in the area of mathe-
matical morphology [77]. It is applied to the binarized images, but there 
are alternative versions that handle the grayscale images. The basic ef-
fect of it on a binary image is to erode the boundaries of regions of 
foreground pixels. These areas of the foreground pixels shrink in size and 
the holes or gaps within these areas become larger. Thus, it is useful in 
removing small white noises and detaching connected objects [78]. 

The image is eroded after binarization for 7 iterations using a 
structuring element (i.e., kernel) sized (2 × 2) and filled with ones (in 
Algorithm Line 5). Each iteration is performed individually. Technically, 
the value of a pixel is set to the minimum value of all of the pixels 
covered by the kernel when aligned at that pixel as shown in Eq. (7). 

eroded(i,j) = min
(ik ,jk)∈K

bw(i+ik ,j+jk) (7)  

where ik and jk are the kernel’s row and column respectively and K is the 
kernel matrix. 

3.3.6. Algorithm line 7 
A flood fill algorithm is used after eroding the binary image [79]. It 

fills a connected component with a specific color (i.e., black in our case) 
[80]. In our case, the image boundaries are required to be converted to 
black pixels if they were white. So the background is completely black 
and the foreground that contains the lungs is completely white. Hence, a 
loop is applied to each row on the endpoints of it. If the endpoint is 
white, the flooding with black is applied on the row. After that, another 
loop is applied to each column on the endpoints to perform the same 
operation. 

3.3.7. Algorithm line 9 
Similar to erosion, dilation is another basic operator in the area of 

mathematical morphology and it is the reverse process of erosion. The 
basic effect of it on a binary image is to enlarge the elements in size and 

Fig. 3. Graphical illustration of the HMB-LSAXI major steps using a sample X-ray lung scan.  

Table 3 
The used data augmentation (DA) techniques and their 
configurations.  

Technique Configurations 

Rotation range ±15◦

Width shift range ±10% 
Height shift range ±10% 
Zoom range ±20% 
Shear range ±20% 
Horizontal flipping Yes  
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connecting broken objects [81]. The image is dilated after that for 3 
iterations using a structuring element sized (15 × 15) and filled with 
ones (in Algorithm Line 8). Each iteration is performed individually. 
Technically, the value of a pixel is set to the maximum value of all of the 
pixels covered by the kernel when aligned at that pixel as shown in Eq. 
(8). 

dilated(i,j) = max
(ik ,jk)∈K

bw(i+ik ,j+jk) (8)  

3.3.8. Algorithm line 10 
The next step is to find the contours of the dilated image. Contours 

can be explained as a curve joining process of all of the connected points 
along the boundary that have the same intensity [82]. The contours are 
very useful for object detection and recognition [83]. Different contours 
can be extracted from the image but the target is to find the largest two 
contours that represent the lungs. Hence, the contours are sorted ac-
cording to their areas in descending order and the first two contours are 
extracted. Before extraction, a check must be applied to check if the 

number of contours is less than two. If so, the process should terminate 
which indicates that the lungs are not found. Another check can be 
applied after extraction to check if the two extracted contours are near in 
size or not. If not, the process should terminate too. The size check 
condition is shown in Eq. (9). 

condition =

⎛

⎜
⎝

True if
Area(contour2) × 100

Area(contour1)
≥ 50%

False Otherwise
(9)  

where contour1 and contour2 are the first and second largest contours 
respectively. 

3.3.9. Algorithm line 14 
The extracted two contours are filled and a bitwise XOR operation is 

applied between the flooded binary image and the filled contours to 
refine the image and create the masks for the Watershed algorithm [84]. 
The Watershed algorithm is a marker-based interactive algorithm used 
for segmentation [85]. It is useful when extracting overlapping objects 

Fig. 4. Graphical illustration of some of the data augmentation (DA) techniques using a sample X-Ray lung scan.  

Fig. 5. Graphical illustration of the split process.  
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in images [86]. By applying the Watershed algorithm, the left and right 
colored lungs can be extracted from the background. The background is 
set to be white intensity in Algorithm Line 13: So, the only remaining 
elements in the colored image are the extracted lungs. The last check 
should be applied to ensure if the Watershed algorithm extracted the 
lungs successfully or not. If the sum of non-white pixels of the lungs to 
the size of the image is >10% or not. If true, we can consider the process 
succeeded to extract the lungs (in Algorithm Line 15 and Algorithm Line 
16). The outputs of the algorithm are the extracted lungs and the 
computed lungs ratio. 

Fig. 3 shows a graphical illustration of the HMB-LSAXI major steps 
using a sample X-Ray lung scan. 

3.4. Fourth phase: data augmentation phase 

Data augmentation (DA) is used to increase the diversity of relevant 
images artificially and avoid overfitting [87]. It is an essential part of 
training the models especially if there are few records or images. There 
are different DA techniques such as flipping, rotation, shifting, cropping, 
and brightness changing [30]. Flipping can be performed in horizontal, 
vertical, or both directions. Rotation can be applied circularly from 1 to 
360 degrees. The image can be scaled outward (larger) or inward 
(smaller). A region of interest (ROI) can be cropped from the image and 
this is also a DA technique. Translation can be applied by shifting the 
image in X-, Y-, or both directions. Noise can help in that too by applying 
Gaussian noise [88]. 

There are also advanced DA techniques such as Generative Adver-
sarial Networks (GANs) [89]. GAN is used in generative modeling using 
DL methods such as CNN. There are different derivatives of GANs such 
as Auxiliary Classifier Generative Adversarial Network (ACGAN) [90], 

Bidirectional Generative Adversarial Network (BiGAN) [91], and Semi- 
Supervised Learning with Context-Conditional Generative Adversarial 
Networks (CCGAN) [92]. 

DA in the current paper is applied in two locations. The first is 
applied before training and splitting to equalize the number of images in 
each category while the second is applied in the training process to avoid 
overfitting and reach better generalization. 

Using DA, before training and splitting, helps to equalize the number 
of records in each category. For example, there are three categories with 
a number of images 1000, 500, and 100 respectively. There is a large gap 
between the number of images in each category. Hence, we suggest 
applying DA before continuing to the next phase. This occurs by finding 
the maximum category with the maximum number of images (i.e., the 
first category in our example). For other categories, a ratio is calculated 
using Eq. (10) to determine the number of augmented images required 
for each image (e.g., each image in the third category should have 4 
more augmented images in addition to the original one). 

Ratioci =

⌈max
c∈C

Count(Xc)

Count(Xci)

⌉

− 1 (10)  

where Xc is the images in a c category and Xci is the images in the ci 
category. The used configurations in the DA process are shown in 
Table 3. Fig. 4 shows a graphical illustration of some of the DA tech-
niques applied on a sample X-Ray lung scan. 

3.5. Fifth phase: splitting phase 

The dataset shall be split into training, testing, and validation subsets 
after shuffling it. The training subset is used to update the model pa-
rameters. The validation subset is used to measure the performance of 
the model after each epoch. The test subset is used to measure the 
model’s overall performance after the learning process. In the current 
study, the dataset is first split into 90% for training and validation and 
10% for testing. The 90% portion is split again into 90% for training and 
10% for validation. Fig. 5 shows a graphical illustration of the split 
process. 

3.6. Sixth phase: training, classification, and optimization phase 

The current subsection presents the used and suggested architectures 
using CNNs and TF and their parameters optimization process using 
well-known optimizers. It can be summarized in two points: 

Table 4 
The used models’ number of parameters summarization.  

# Model Number of parameters  

1 HMB1-COVID  321,572  
2 MobileNetV2  2,263,108  
3 MobileNet  3,232,964  
4 DenseNet121  7,041,604  
5 DenseNet169  12,649,540  
6 VGG16  14,716,740  
7 VGG19  20,026,436  
8 Xception  20,869,676  
9 ResNet50  23,595,908  
10 ResNet101  42,666,372  

Table 5 
Tabular representation of the proposed CNN architecture (HMB1-COVID19).  

Block number Layer description Number of filters Filter size Pool size Stride size Padding Other info  

Input layer      Image size (w,h,ch) 
First block Convolutional 32 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
First block Batch normalization       
First block Convolutional 32 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
First block Batch normalization       
First block Max-pooling   (2, 2) (2, 2) 0  
First block Dropout      25% dropout ratio 
Second block Convolutional 64 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
Second block Batch normalization       
Second block Convolutional 64 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
Second block Batch normalization       
Second block Max-pooling   (2, 2) (2, 2) 0  
Second block Dropout      25% dropout ratio 
Third block Convolutional 128 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
Third block Batch normalization       
Third block Convolutional 128 (3, 3)  (1, 1) 1 10− 4 L2 regularization 
Third block Batch normalization       
Third block Max-pooling   (2, 2) (2, 2) 0  

Third block 
Dropout      25% dropout ratio 
FC flatten       
FC dense N     SoftMax function  
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- Proposes a designed CNN model with its internal structure.  
- Describes the TF approach and the used pre-trained TF models. 

It is worth mentioning that, the major purpose of tackling both ap-
proaches (i.e., abstract CNN and TF) is the environment complexity and 
hardware availability. The suggested abstract CNN architecture contains 
fewer parameters compared to the used pre-trained CNN models and 
hence it can be faster (i.e., less time), and consume less memory and 
processing. It can be suitable for low-hardware devices such as mobiles 
and tablets. However, the pre-trained CNN models are more complex 
and hence can produce higher performance results. They can be suitable 
for modern and high-hardware devices such as servers. Table 4 sum-
marizes approximately the number of parameters for each used model 
where the input image size is set to (64,64,3) with four output classes. 
The table is sorted in ascending order concerning the number of 
parameters. 

The working mechanism of CNNs and their cascaded layers, and the 
CNN different parameters (i.e., weights) optimization and initializer 
techniques are summarized in Appendix 1: convolutional neural 
networks. 

3.6.1. The proposed abstract CNN model 
The authors proposed an abstractly designed CNN architecture 

named HMB1-COVID19, after try-and-error trials between different 
designs. The suggested architecture passed through three levels of 
incrementing (i.e., doubling) the number of kernels to extract more 
features where each level has two convolutional layers followed by max- 
pooling and dropout layers. A design summary of the suggested archi-
tecture is shown in Table 5 and Fig. 6. 

In Table 5, the columns represent the block number, the layer type, 
the number of convolutional filters, the size of the convolutional filter, 
the size of pooling kernel, the stride size, the padding value, and other 
information respectively. The empty cells represent non-applicable (NA) 
values. 

The proposed model uses (3, 3) filter size, padding of 1, and stride of 
(1, 1) for all convolutional layers. It uses (2, 2) pooling size, padding of 
0, and stride of (2, 2) for all max-pooling layers. The dropout layers have 
initial dropout ratios of 25%. L2 regularization with an initial value of 
10− 4 is applied inside the convolutional layers. The output dense layer 
has N classes (i.e., the number of used categories in the dataset, and it 
will be defined in the experiments section). 

3.6.2. Transfer learning (TF) 
The transfer learning (TF) approach can be used instead of building 

and learning the CNN from scratch. TF is a machine learning concept 
that targets the gained experience and knowledge while handling a 
related task [93]. This approach is employed in DL by using the stored 
pre-trained models as the starting initial points. This grants swift prog-
ress and performance improvement. A pre-trained model can be ob-
tained commonly by (1) selecting a related task where there are 
relationships in the inputs and outputs or (2) choosing a pre-trained 
source model from the shared, public, and available models. The cur-
rent study follows the second path [94]. 

There are many shared, public, and available pre-trained CNN 
models such as VGG16 [95], VGG19 [96], ResNet50 [97], MobileNetV2 
[98], Xception, NASNet, Large NasNet [99], DenseNet201 [100], 
InceptionV3 [101], and InceptionResNetV2 [102]. They were pre- 
trained on different databases such as the ImageNet [103]. It is a very 

Fig. 6. Graphical representation of the proposed CNN architecture (HMB1-COVID19).  

Fig. 7. Graphical representation of the pre-trained CNN design.  
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large scale hierarchical image database (i.e., over 14 million images). It 
was designed for visual object recognition software research and CV 
tasks [104]. 

The pre-trained CNN models, that are used in the current study, use 
the ImageNet pre-trained weights to initiate them. Each pre-trained 
model consists of a set of internal layers and can be controlled (i.e., to 
update the layer weights or freeze them). By decreasing the number of 
trainable layers, the number of trainable parameters will decrease, but it 
may lead to a noticeable decrease in the performance [105]. 

The number of controlled internal layers to be updated is denoted as 
the TF learning ratio in the current study. A global average pooling 
layer, a dropout layer, and an FC layer are added after the pre-trained 
model’s last layer as shown in Fig. 7. Similar to pooling layers, the 
global average pooling layers are used to reduce the dimensionality but 
in an extreme style where the output layer size is (1 × 1 × chin) where 
chin is the number of input channels. 

3.7. Seventh phase: prediction and evaluation phase 

After and through learning the models, it is required to evaluate their 
performances to judge if they can generalize and be used or not. 

Accuracy, Precision, Recall (i.e., Sensitivity), F1-score, and AUC 
values are widely-used performance measures (i.e., metrics) for the 
learning and production phases. Accuracy is the most intuitive perfor-
mance metric and is defined as the ratio of correctly predicted obser-
vations to the total number of observations. Hence, as a common 
practice, the best architecture is selected according to the highest ac-
curacy [106]. 

Precision is defined as the ratio of correctly predicted positive ob-
servations of the total predicted positive observations. Recall (i.e., 
sensitivity) is the ratio of correctly predicted positive observations to the 
total number of observations in a specific category (i.e., class). It helps 
when false-negative observations are high. The F1-score is the weighted 
average of precision and recall [107]. 

Eqs. (11), (12), (13), and (14) demonstrate the used accuracy, pre-
cision, recall, and F1-score formulas respectively to evaluate the models’ 
performances.  

Accuracy =
TP + TN

TP + TN + FP + FN + ε (11)    

Precision =
TP

TP + FP + ε (12)    

Recall =
TP

TP + FN + ε (13)    

F1Score =
2 × Precision × Recall

Precision + Recall
(14)  

where ε is a very small number that is added in the denominators to 
avoid the division by zero, and TP, TN, FP, and FN are the true positive, 
true negative, false positive, and false negative values respectively. 

The more the accuracy, F1-score, recall, AUC, and precision, the 

better the DL learning model while the lower the loss, the better the DL 
learning model. To unify all of them to find the maximum values, the 
value of “1 / Loss” is computed instead of the “Loss” value. To integrate 
between them, the weighted sum (WS) method [108] is used. It multi-
plies each metric by a w weight and computes the sum of them as shown 
in Eq. (15). 

MetricWS = w1 × Accuracy + w2 × Precision +

w3 × Recall + w4 × F1Score + w5 × AUC +
w6

Loss
(15)  

where w1, w2, w3, w4, w5, and w6 are the weights and their sum must be 
1. As mentioned, the accuracy is the most intuitive performance metric 
[109]. Hence, its weight, w1, is modified to be the highest among others. 
In the current study, the used values for w1, w2, w3, w4, w5, and w6 are set 
to 0.5, 0.1, 0.1, 0.1, 0.1, and 0.1 respectively when the MetricWS is used. 

It is worth mentioning that the weights can be equalized to be “100 / 
6” for each and this depends mainly on the target indication. In other 
words, if the target indicator is required to be for a specific performance 
metric, the highest weight w can be for it. If the target indicator is 
required to be balanced between all of the performance metrics, 
equalized weights can be used. As seen, the first path is selected. 

3.8. Eighth phase: output and export phase 

This phase handles the storing process as follows (1) the training and 
learning history can be stored in different formats such as text files and 
Comma Separated Values (CSV) files, (2) the trained CNN model is 
exported to be used later (i.e., to be used in the production system or to 
be retrained again), and (3) different figures can be plotted such as the 
relation between the number of epochs and training accuracy. 

3.9. Ninth phase: hybrid model deployment phase 

Choosing between the different hyperparameters used in the training 
of CNN models such as parameters optimizers, parameters initializers, 
dropout ratios, batch sizes, and TF learning ratios, can lead to a non- 
deterministic polynomial-time hard (NP-hard) problem [110]. 

For example, 8 parameters optimizers, 6 parameters initializers, 60 
dropout ratios, 3 batch sizes, and 20 TF learning ratios will lead to 
172,800 combinations. If a single combination takes only 1 min to train 
(which is a very small time in our case), then 120 days are required to 
complete. This will be very hard and time-consuming to handle. 

Determining the most suitable or optimal combination among the 
learning hyperparameters’ different combinations to achieve the best 
performance is considered a hyperparameters optimization problem. It 
can be handled using soft computing algorithms such as genetic algo-
rithms (GAs) [111]. 

Genetic Algorithm (GA), in the current study, is used to solve the 
problem of finding the best combinations faster than the grid search or 
native searching approaches [112,113]. The working mechanism of the 
genetic algorithms is summarized in Appendix 2: genetic algorithms 
(GAs). 

Hence, the current subsection discussion can be summarized in two 
points:  

- Proposes a deep learning and genetic algorithms optimization 
approach (HMB-DLGA) for the parameters and hyperparameters 
learning and optimization.  

- Describes the hybrid hierarchy used in the proposed hybrid COVID- 
19 framework (HMB-HCF). 
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3.9.1. Deep learning and genetic algorithms optimization approach (HMB- 
DLGA) 

The authors used the CNNs to extract the features and optimize the 
learning parameters and used the GA to optimize the learning hyper-
parameters and select the best combination. Algorithm 2 presents the 
proposed learning and optimization approach. 

Algorithm 2. Deep learning and genetic algorithms optimization 
approach (HMB-DLGA) pseudocode. 

It is worth mentioning that the current subsection’s following para-
graphs present the details of the suggested algorithm and the detailed 
technical information can be retrieved from the appendices and used 
references. 

3.9.1.1. Algorithm inputs and outputs. Algorithm 2 accepts five inputs 
(1) Np: the population size (i.e., the number of chromosomes in the 
population), (2) Ns: the number of GA iterations, (3) Nc: the number of 

required combinations to be returned upon completion, (4) Sr: the 
dataset split ratio that will be applied to the dataset (X images and Y 
labels) to get the training, testing, and validation subsets, and (5) model: 
the required CNN model to learn and optimize (i.e., it can be HMB1- 
COVID19 or any pre-trained CNN model in the current study). It 
returns the best Nc combinations among all of them. 

3.9.1.2. Algorithm line 1 to algorithm line 7. The algorithm starts by 
setting the available ranges for parameters optimizers, parameters ini-

tializers, batch sizes, TF model learning ratios, dropout ratios, hidden 
activation functions, and regularizers respectively. 

The current study uses Adam, Nadam, AdaDelta, AdaGrad, AdaMax, 
SGD, Ftrl, and RMSProp as the DL parameters optimizers. It uses He 
Normal, He Uniform, Glorot Normal, Glorot Uniform, LeCun Normal, 
LeCun Uniform, Random Normal, Random Uniform, and Truncated 
Normal as the parameters’ initializers for HMB1-COVID19 and Image-
Net for the pre-trained CNN models. The TF model learning ratio is 
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ranged from 0% to 100% with a step of 5% and hence there are 21 
values. The dropout ratio is ranged from 0% to 60% with a step of 1% 
and hence there are 61 values. The batch size is 32 or 64. ReLU, Tanh, 
ELU, SELU, Exponential, and Sigmoid are the used hidden activation 
functions. L1(10− 2), L1(10− 3), L1(10− 4), L1(10− 5), L2(10− 2), L2(10− 3), 
L2(10− 4), and L2(10− 5) are the used regularizers. 

3.9.1.3. Algorithm line 8. After that, it defines the required performance 
metrics. 

3.9.1.4. Algorithm line 9. All population chromosomes are initiated 
randomly concerning the available ranges (i.e., Os: DL parameters op-
timizers, Ws: DL parameters initializers, Hs: hidden activation functions, 
Ds: dropout ratios, Bs: batch sizes, Ls: TF model learning ratios, and Rs: 
regularizers). They, the population, are constructed as a matrix where 
each row of the Np rows is a solution (i.e., chromosome). 

Each chromosome’s genes: (1) the first gene is a randomly selected 
DL parameters’ optimizer from Os, (2) the second gene is a randomly 
selected batch size from Bs, (3) the third gene is a randomly selected 
dropout ratio from Ds, (4) the fourth gene is a randomly selected TF 
model learning ratio from Ls, (5) the fifth gene is a randomly selected DL 
parameters’ initializer from Ws, (6) the sixth gene is a randomly selected 
hidden activation function from Hs, and (7) the seventh gene is a 
randomly selected regularizer from Rs. 

If the model is a pre-trained CNN, the first 4 genes are used and if the 
model is the HMB1-COVID19 CNN model, all of them unless the fourth 
gene are used (i.e., the fourth gene is related to transfer learning). The 
reason behind this is that the pre-trained CNN model does not need 
parameters’ initializers, regularizers, nor hidden activation functions as 
it depends initially on the ImageNet weights. For example, “[Ada-
Delta,32,50,80]”. This example shows a randomly initialized chromo-
some for a pre-trained CNN model. 

3.9.1.5. Algorithm line 10. The “X” and “Y” represent the images and 
the corresponding labels respectively. The “SplitDataset” function is 
responsible for splitting the whole dataset into train, test, and validation 
subsets (discussed in “Fifth Phase: Splitting Phase”) using the split ratio 

Fig. 8. The hierarchy of the hybrid COVID-19 model.  

Table 6 
Experiments common configurations summarization.  

Configuration Values 

Dataset (X and Y) Collected from 8 Resources 

Categories “Normal”, “Pneumonia-Viral”, “Pneumonia-Bacterial”, 
and “COVID-19” 

Dataset Size 13,711 (i.e., each category is 5439, 3631, 3001, and 
1640 respectively) 

Input Image Size (64, 64, 3) 
Abstract Models HMB1-COVID19 (CNN Model) 

Pre-trained Models 
VGG16, VGG19, ResNet50, ResNet101, DenseNet121, 
DenseNet169, MobileNet, MobileNetV2, and Xception 

DL Parameters Initializers 
Ws 

He Normal, He Uniform, Glorot Normal, Glorot 
Uniform, LeCun Normal, LeCun Uniform, Random 
Normal, Random Uniform, and Truncated Normal 

Pre-trained DL Parameters 
Initializers ImageNet 

Parameters Optimizers Os 
Adam, NAdam, AdaGrad, AdaDelta, AdaMax, 
RMSProp, Ftrl, and SGD 

Hidden Activation 
Functions Hs 

ReLU, Tanh, ELU, SELU, Exponential, and Sigmoid 

Regularizers Rs 
L1(10− 2), L1(10− 3), L1(10− 4), L1(10− 5), L2(10− 2), L2 
(10− 3), L2(10− 4), and L2(10− 5) 

Output Activation 
Function SoftMax 

TF Learn Ratios Ls [0, 5, 10, …, 95, 100]% 
Batch Sizes Bs 32 and 64 
Dropout Ratios Ds [1, 2, 3, …, 95, 60]% 
Number of Epochs 64 
Performance Metrics Ms Accuracy, Loss, Precision, F1-score, AUC, and Recall 

Weighted Sum WS Ratios Accuracy (0.5), Loss (0.1), Precision (0.1), F1-score 
(0.1), AUC (0.1), and Recall (0.1) 

Number of GA Iterations 
Ns 

15 

Population Size Np 10 
GA Mutation Rate 0.25 (i.e., 25%) 
Split Ratio Sr 90% to 10% (Fig. 5) 
Data Augmentation Yes (Table 3) 
Training Environments Google Colab and Toshiba Qosmio X70-A  
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Sr. The training and validation subsets are used to learn and train the 
selected CNN model. The testing subset is used to test the performance of 
the trained CNN model after the learning process. 

3.9.1.6. Algorithm line 12. An outer loop is executed and Algorithm 
Line 13 to Algorithm Line 26 are repeated for the given number of 
iterations Ns. In other words, the hyperparameters’ optimization process 

Fig. 9. Two samples with the segmentation steps. Left: a successful segmentation process. Right: a failed segmentation process.  

Fig. 10. Samples of the defected X-ray lungs images.  

Table 7 
EXP-SEG-1: first HMB-HCF learning and optimization experiment with segmentation and VGG16.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 SGD  32  0.4  15%  0.4120  83.91%  0.8367  86.29%  81.27%  0.9700  77.02%  
2 SGD  32  0.3  30%  0.2210  90.67%  0.9085  91.62%  90.12%  0.9905  82.95%  
3 SGD  32  0.1  40%  0.1305  95.55%  0.9552  95.57%  95.47%  0.9946  87.14%  
4 SGD  32  0.0  40%  0.1099  96.14%  0.9615  96.34%  95.97%  0.9965  87.79%  
5 SGD  32  0.0  40%  0.0669  97.86%  0.9772  97.75%  97.69%  0.9984  89.72%  
6 SGD  32  0.1  40%  0.0732  97.69%  0.9780  97.88%  97.72%  0.9981  89.53%  
7 SGD  32  0.4  75%  0.0513  98.18%  0.9827  98.35%  98.20%  0.9989  90.51%  
8 SGD  32  0.1  90%  0.0563  98.34%  0.9836  98.36%  98.36%  0.9978  90.43%  
9 SGD  32  0.4  90%  0.0185  99.62%  0.9963  99.63%  99.63%  0.9996  95.11%  
10 SGD  32  0.4  90%  0.0464  98.55%  0.9857  98.57%  98.57%  0.9987  90.99%  
11 SGD  32  0.4  75%  0.0269  99.03%  0.9905  99.05%  99.05%  0.9992  92.94%  
12 SGD  32  0.4  90%  0.0174  99.36%  0.9936  99.36%  99.36%  0.9996  95.22%  
13 SGD  32  0.4  90%  0.0176  99.57%  0.9958  99.58%  99.58%  0.9996  95.33%  
14 SGD  32  0.4  90%  0.0245  99.30%  0.9934  99.36%  99.31%  0.9992  93.52%  
15 SGD  32  0.1  90%  0.0372  99.30%  0.9931  99.31%  99.31%  0.9981  92.12%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

H.M. Balaha et al.                                                                                                                                                                                                                              



Artificial Intelligence In Medicine 119 (2021) 102156

15

using GA is applied for Ns times. 

3.9.1.7. Algorithm line 15 to algorithm line 22. An inner loop is executed 
and Algorithm Line 16 to Algorithm Line 22 are repeated for the given 
population size Np. This loop iterates on each chromosome to (1) train 
and validate the selected CNN model using the current chromosome on 
the train and validation subsets (in Algorithm Line 17), (2) test the 
trained CNN model on the test subset and report the required perfor-
mance metrics stated in Ms and store them in the metrics variable (in 
Algorithm Line 18), (3) compute the fitness function to determine the 
corresponding score, fitnessScore, using the WS method defined in Eq. 
(15) (in Algorithm Line 19), (4) append in the chromosome with the 
corresponding fitness score in a list to be used after the completion of the 
inner loop (in Algorithm Line 20), and (5) export the trained CNN 
model to be used later in the production, the training history can be 
logged, and different figures and relations can be plotted and stored (in 
Algorithm Line 21). This learning process is applied to all of the Np 
solutions and their corresponding fitness scores are stored. 

3.9.1.8. Algorithm line 23. After that, they are sorted in descending 
order concerning the fitness scores. 

3.9.1.9. Algorithm line 24. Selection, crossover, and mutation are 
applied to the sorted chromosomes. Each mutation is applied randomly 

if it is above or equal to 0.5 (i.e., a fractional number from 0 to 1 is 
generated randomly and if it is more than or equal to 0.5, the mutation is 
applied). The used mutation rate is set to 25% which means that only a 
single gene is selected randomly from the available options. 

3.9.1.10. Algorithm line 27. Finally, the top Nc chromosomes concern-
ing the fitness scores are extracted from the final sorted chromosomes 
and returned as outputs. 

3.9.2. The hierarchy of the hybrid COVID-19 model 
The authors used the best combinations of each trained CNN model 

and cascaded them as shown in Fig. 8. 
The input image (i.e., X-ray lung image) is segmented and both of 

them are concatenated and passed to all of the trained CNN models 
including the suggested HMB1-COVID19 and other pre-trained models. 
These models are those reported from the previously discussed phases 
inside the proposed framework. The WS scores are summed together and 
the maximum L categories are reported. This will report more accurate 
results and decisions compared with the usage of only a single trained 
CNN model as shown in the experimental results in the next section. 

It is worth mentioning that the suggested hybrid model can be par-
titioned. In other words, one or more models can be turned OFF and the 
remaining ones will handle the rest of the work. 

The final prediction is based on the majority voting principle similar 

Fig. 11. EXP-SEG-1 WS curve for the 15 iterations.  

Table 8 
EXP-SEG-2: second HMB-HCF learning and optimization experiment with segmentation and VGG19.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 SGD  64  0.2  50%  0.1107  96.14%  0.9630  96.58%  96.03%  0.9973  87.84%  
2 AdaGrad  32  0.3  85%  0.1151  96.41%  0.9642  96.55%  96.29%  0.9954  87.95%  
3 SGD  64  0.3  85%  0.0670  97.80%  0.9783  97.88%  97.78%  0.9979  89.72%  
4 SGD  64  0.3  85%  0.0717  97.75%  0.9769  97.75%  97.64%  0.9983  89.56%  
5 SGD  32  0.3  85%  0.0340  98.87%  0.9891  98.94%  98.89%  0.9991  92.04%  
6 SGD  32  0.3  85%  0.0378  99.09%  0.9896  98.96%  98.96%  0.9987  91.87%  
7 SGD  64  0.2  85%  0.0376  98.77%  0.9878  98.78%  98.78%  0.9991  91.67%  
8 SGD  64  0.2  85%  0.0243  99.25%  0.9931  99.36%  99.26%  0.9992  93.53%  
9 SGD  32  0.3  85%  0.0213  99.25%  0.9926  99.26%  99.26%  0.9996  94.09%  
10 SGD  32  0.3  85%  0.0264  99.09%  0.9910  99.10%  99.10%  0.9992  93.05%  
11 SGD  32  0.4  85%  0.0195  99.36%  0.9936  99.36%  99.36%  0.9996  94.62%  
12 SGD  32  0.4  85%  0.0213  99.57%  0.9958  99.58%  99.58%  0.9989  94.35%  
13 SGD  32  0.3  85%  0.0235  99.20%  0.9921  99.21%  99.21%  0.9995  93.62%  
14 SGD  64  0.2  85%  0.0194  99.14%  0.9915  99.15%  99.15%  0.9996  94.46%  
15 SGD  32  0.2  85%  0.0170  99.46%  0.9947  99.47%  99.47%  0.9996  95.44%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 12. EXP-SEG-2 WS curve for the 15 iterations.  
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to Eq. (1). In other words, the most repeated (i.e., common) decision 
among the models for a single input will be the final decision. It is worth 
mentioning that the user can retrieve the most common L decisions (i.e., 
categories). 

4. Experimental results and discussion 

The performed and reported experiments can be divided into four 
categories:  

- Experiments related to the segmentation process.  

- Experiments related to the proposed framework with segmentation.  
- Experiments related to the proposed framework without 

segmentation.  
- Experiments Summarization, Generalization Validation, and 

Comparisons. 

In the first three experimental categories, the used dataset is unified 
and collected from 8 sources. They are “COVID-19 Radiography Data-
base” [114], “Pneumonia (virus) vs COVID-19” Dataset [50], “Covid-19 
Xray images using CNN” Dataset [51], “COVID-19 X-ray Images5” 
Dataset [52], “COVID-19 Patients Lungs X Ray Images 10,000” Dataset 

Table 9 
EXP-SEG-3: third HMB-HCF learning and optimization experiment with segmentation and ResNet50.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaMax  64  0.1  20%  7.1878  26.33%  0.2614  26.14%  26.14%  0.5535  26.55%  
2 AdaMax  64  0.1  20%  2.7166  26.27%  0.2661  27.06%  26.20%  0.5492  26.65%  
3 AdaMax  64  0.1  20%  2.6082  26.92%  0.2611  27.46%  24.92%  0.5613  26.96%  
4 AdaMax  64  0.2  10%  2.0592  29.54%  0.2932  29.99%  28.69%  0.5513  29.13%  
5 AdaGrad  64  0.4  30%  3.5762  26.33%  0.2614  26.14%  26.14%  0.5428  26.46%  
6 AdaMax  64  0.2  10%  2.3876  31.58%  0.3120  32.23%  30.26%  0.5429  30.63%  
7 Adam  64  0.4  30%  2.9762  26.33%  0.2614  26.14%  26.14%  0.5390  26.43%  
8 AdaMax  64  0.1  20%  3.6475  26.11%  0.2620  26.20%  26.20%  0.5534  26.48%  
9 AdaGrad  64  0.4  30%  3.9086  30.03%  0.2979  29.85%  29.72%  0.5260  29.24%  
10 AdaMax  64  0.1  20%  3.5242  26.06%  0.2617  26.19%  26.15%  0.5537  26.45%  
11 AdaMax  64  0.4  50%  2.0866  29.28%  0.2369  32.35%  18.89%  0.5247  27.43%  
12 Nadam  64  0.3  30%  5.0350  26.33%  0.2614  26.14%  26.14%  0.5427  26.45%  
13 Nadam  64  0.1  20%  3.5695  26.32%  0.2614  26.14%  26.14%  0.5570  26.60%  
14 AdaMax  64  0.1  20%  2.9179  30.24%  0.3047  30.59%  30.36%  0.5499  29.80%  
15 AdaMax  32  0.1  20%  4.0317  28.10%  0.2781  27.84%  27.78%  0.5411  27.83%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 13. EXP-SEG-3 WS curve for the 15 iterations.  

Table 10 
EXP-SEG-4: fourth HMB-HCF learning and optimization experiment with segmentation and ResNet101.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaDelta  32  0.2  100%  0.8164  75.71%  0.7619  79.49%  73.25%  0.9409  70.28%  
2 AdaDelta  32  0.2  100%  1.2505  77.64%  0.7724  79.71%  74.96%  0.9493  71.58%  
3 AdaDelta  32  0.2  100%  1.8553  81.45%  0.8123  82.41%  80.10%  0.9614  74.77%  
4 SGD  32  0.2  100%  0.1355  96.25%  0.9626  96.29%  96.24%  0.9946  87.69%  
5 SGD  32  0.2  100%  0.1588  95.71%  0.9575  95.91%  95.60%  0.9936  87.15%  
6 SGD  32  0.2  100%  0.1145  96.14%  0.9618  96.24%  96.13%  0.9963  87.76%  
7 SGD  32  0.1  100%  0.0996  96.73%  0.9680  96.82%  96.77%  0.9961  88.37%  
8 SGD  64  0.2  100%  0.1275  95.71%  0.9584  95.91%  95.76%  0.9951  87.34%  
9 SGD  64  0.2  100%  0.1143  96.78%  0.9684  96.92%  96.77%  0.9954  88.27%  
10 SGD  32  0.2  100%  0.1118  96.73%  0.9666  96.73%  96.58%  0.9956  88.21%  
11 AdaGrad  32  0.0  100%  0.0826  97.43%  0.9746  97.46%  97.46%  0.9977  89.14%  
12 SGD  64  0.0  100%  0.0830  97.32%  0.9732  97.35%  97.30%  0.9974  89.04%  
13 AdaGrad  32  0.0  100%  0.0817  97.43%  0.9743  97.51%  97.35%  0.9971  89.14%  
14 SGD  32  0.0  100%  0.0663  97.59%  0.9759  97.66%  97.51%  0.9985  89.56%  
15 AdaGrad  32  0.0  100%  0.0936  97.10%  0.9711  97.14%  97.09%  0.9957  88.71%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 14. EXP-SEG-4 WS curve for the 15 iterations.  
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[53], “COVID-19 Chest X Rays” Dataset [54], “COVID-19 Dataset” [55], 
and “Curated Chest X-Ray Image Dataset for COVID-19” [56]. The 
datasets details are presented in “First Phase: Images Acquisition Phase”. 

The collected images are combined by category together into 4 cat-
egories (“COVID-19”, “Normal”, “Pneumonia-Bacterial”, and “Pneu-
monia-Viral”). The uncategorized and repeated images are removed. 
The total number of images is 13,711 and in each category is “1640”, 
“5439”, “3001”, and “3631” respectively. 

The following subsections discuss the different experiments with 
their reported results. However, Table 6 summarizes the common 

experiments configurations. 

4.1. Segmentation experiments using HMB-LSAXI 

As discussed in the hybrid hierarchy (Fig. 8), the input image is 
applied in two formats, segmented and non-segmented. The segmenta-
tion process used the proposed HMB-LSAXI algorithm. 

By applying the segmentation on the overall dataset (i.e., the 13,711 
images), only 7308 are segmented successfully. The computed 

Table 11 
EXP-SEG-5: fifth HMB-HCF learning and optimization experiment with segmentation and Xception.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaMax  32  0.3  15%  4.1383  49.22%  0.4936  49.59%  49.14%  0.7227  46.67%  
2 Nadam  32  0.2  65%  1.8644  54.21%  0.5389  54.74%  53.09%  0.7933  51.26%  
3 AdaMax  64  0.3  90%  1.7366  57.53%  0.5739  57.71%  57.09%  0.8351  54.39%  
4 AdaMax  64  0.3  90%  1.8229  61.88%  0.6180  62.05%  61.56%  0.8398  57.93%  
5 Nadam  32  0.0  90%  1.0670  69.06%  0.6930  69.90%  68.72%  0.8875  64.29%  
6 Nadam  64  0.3  70%  1.7254  61.13%  0.6046  61.41%  59.58%  0.8254  57.02%  
7 Nadam  64  0.3  70%  1.6139  61.61%  0.6090  61.76%  60.10%  0.8372  57.51%  
8 AdaMax  32  0.3  90%  1.0881  66.70%  0.6670  67.03%  66.38%  0.8938  62.39%  
9 AdaMax  64  0.3  90%  1.4792  59.41%  0.5934  60.17%  58.55%  0.8376  55.95%  
10 AdaMax  32  0.3  90%  1.5132  66.11%  0.6608  66.45%  65.72%  0.8670  61.62%  
11 AdaGrad  64  0.3  100%  0.0524  98.55%  0.9860  98.62%  98.57%  0.9988  90.74%  
12 AdaGrad  64  0.3  100%  0.0552  98.07%  0.9806  98.20%  97.93%  0.9985  90.25%  
13 AdaGrad  64  0.3  100%  0.0451  98.34%  0.9833  98.36%  98.31%  0.9990  90.88%  
14 AdaMax  32  0.5  100%  0.0386  98.93%  0.9897  98.99%  98.94%  0.9986  91.73%  
15 AdaMax  32  0.3  100%  0.0311  99.25%  0.9926  99.26%  99.26%  0.9989  92.61%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 15. EXP-SEG-5 WS curve for the 15 iterations.  

Table 12 
EXP-SEG-6: sixth HMB-HCF learning and optimization experiment with segmentation and DenseNet121.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 RMSProp  32  0.1  100%  0.5317  87.45%  0.8732  87.54%  87.12%  0.9670  79.78%  
2 RMSProp  32  0.1  100%  0.7389  86.64%  0.8660  86.72%  86.49%  0.9594  79.03%  
3 AdaMax  32  0.1  100%  0.4670  89.17%  0.8945  89.71%  89.19%  0.9743  81.38%  
4 RMSProp  32  0.1  100%  0.1369  95.66%  0.9564  95.77%  95.52%  0.9952  87.20%  
5 AdaMax  32  0.2  100%  0.1374  96.19%  0.9629  96.34%  96.24%  0.9936  87.65%  
6 AdaMax  32  0.1  100%  0.1623  95.55%  0.9567  95.80%  95.55%  0.9938  87.03%  
7 AdaMax  32  0.1  100%  0.1259  96.41%  0.9645  96.50%  96.40%  0.9942  87.87%  
8 AdaMax  32  0.2  100%  0.1370  96.14%  0.9616  96.18%  96.13%  0.9948  87.60%  
9 AdaMax  32  0.1  100%  0.2274  94.85%  0.9477  94.82%  94.73%  0.9904  86.20%  
10 SGD  32  0.2  100%  0.2171  94.05%  0.9419  94.31%  94.07%  0.9890  85.63%  
11 SGD  32  0.0  100%  0.1386  96.14%  0.9619  96.19%  96.19%  0.9930  87.58%  
12 SGD  64  0.0  100%  0.1546  96.14%  0.9605  96.15%  95.95%  0.9933  87.46%  
13 AdaMax  32  0.1  100%  0.0814  97.69%  0.9772  97.72%  97.72%  0.9974  89.37%  
14 AdaMax  32  0.0  100%  0.1996  95.81%  0.9587  95.87%  95.87%  0.9913  87.08%  
15 SGD  64  0.1  100%  0.1963  93.99%  0.9388  93.93%  93.83%  0.9922  85.59%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 16. EXP-SEG-6 WS curve for the 15 iterations.  
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segmentation success ratio is 53.30%. After tracing the defective images 
to determine the reasons for this low ratio, we analyzed the major rea-
sons behind that. 

They are (1) some images are sided X-Ray images, (2) some images 
are not clear (i.e., the lungs do not appear in them), (3) some images 
were previously manipulated, and (4) some images contain part of the 
lungs. Fig. 9 shows two X-Ray lungs images samples with the segmen-
tation steps where the left represents a successful segmentation process 
and the right represents a failed segmentation process. Fig. 10 shows 
samples of the defected X-Ray lungs images. 

It is worth mentioning that (1) for the experiments with 

segmentation, the defected images are removed from the dataset, and 
(2) for the experiments without segmentation, the whole dataset 
including the defected ones are used to validate if the classifier and 
optimizer can overcome the defection issue. 

4.2. HMB-HCF learning and optimization experiments with segmentation 

HMB1-COVID19 and the pre-trained CNN models are subjected to be 
optimized where each one at a time. This is applied to get the best 
combinations from each of them to be used later in the hybrid archi-
tecture. To distinguish between the experiments, the annotation “EXP- 

Table 13 
EXP-SEG-7: seventh HMB-HCF learning and optimization experiment with segmentation and DenseNet169.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaGrad  64  0.3  85%  3.1203  38.55%  0.3865  39.08%  38.25%  0.6681  37.59%  
2 AdaGrad  64  0.3  85%  4.0409  37.59%  0.3768  38.02%  37.35%  0.6451  36.57%  
3 AdaGrad  32  0.3  85%  3.5347  54.74%  0.5463  55.11%  54.17%  0.7604  51.40%  
4 AdaGrad  32  0.3  85%  2.3902  54.37%  0.5427  54.92%  53.64%  0.7810  51.32%  
5 AdaGrad  32  0.3  85%  2.6333  59.52%  0.5927  59.84%  58.73%  0.7947  55.53%  
6 AdaGrad  32  0.3  85%  3.0503  57.16%  0.5702  57.70%  56.40%  0.7754  53.47%  
7 AdaGrad  32  0.3  85%  2.5901  55.82%  0.5592  56.45%  55.42%  0.7824  52.55%  
8 AdaGrad  64  0.3  100%  0.4106  88.79%  0.8876  89.05%  88.48%  0.9751  81.02%  
9 AdaGrad  64  0.3  100%  0.3227  90.94%  0.9093  91.01%  90.86%  0.9839  82.90%  
10 AdaGrad  64  0.3  100%  0.2460  92.87%  0.9286  93.01%  92.71%  0.9886  84.59%  
11 AdaGrad  64  0.3  100%  0.2439  92.23%  0.9218  92.45%  91.92%  0.9886  84.06%  
12 Adam  64  0.3  100%  0.1236  95.87%  0.9576  95.78%  95.73%  0.9955  87.43%  
13 AdaGrad  64  0.3  100%  0.3227  91.53%  0.9152  91.77%  91.28%  0.9818  83.35%  
14 SGD  64  0.3  100%  0.3227  91.90%  0.9207  92.20%  91.95%  0.9818  83.70%  
15 Adam  64  0.3  100%  0.2161  93.67%  0.9360  93.80%  93.40%  0.9892  85.27%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 17. EXP-SEG-7 WS curve for the 15 iterations.  

Table 14 
EXP-SEG-8: eigth HMB-HCF learning and optimization experiment with segmentation and mobileNet.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 RMSProp  64  0.2  35%  4.8663  61.77%  0.6162  61.77%  61.48%  0.8031  57.42%  
2 RMSProp  64  0.2  35%  6.0402  59.36%  0.5889  58.93%  58.85%  0.7691  55.05%  
3 RMSProp  32  0.2  35%  7.7115  56.51%  0.5634  56.41%  56.26%  0.7426  52.60%  
4 RMSProp  64  0.2  100%  1.2859  78.66%  0.7849  78.92%  78.09%  0.9175  72.13%  
5 AdaGrad  64  0.2  100%  0.3296  86.65%  0.8684  87.95%  85.80%  0.9799  79.49%  
6 RMSProp  64  0.2  100%  0.4666  87.13%  0.8711  87.38%  86.86%  0.9730  82.64%  
7 AdaGrad  64  0.2  100%  0.2534  90.72%  0.9047  91.10%  89.88%  0.9875  82.78%  
8 SGD  64  0.2  100%  0.2553  91.21%  0.9113  91.35%  90.91%  0.9882  83.22%  
9 SGD  64  0.2  100%  0.1635  94.80%  0.9486  94.91%  94.81%  0.9936  86.40%  
10 Nadam  64  0.2  100%  0.1047  96.14%  0.9621  96.29%  96.13%  0.9976  87.86%  
11 SGD  64  0.2  100%  0.2249  93.35%  0.9343  93.48%  93.38%  0.9902  85.05%  
12 SGD  64  0.2  100%  0.1765  94.42%  0.9457  94.64%  94.49%  0.9936  86.08%  
13 SGD  64  0.2  100%  0.1262  95.82%  0.9570  95.73%  95.68%  0.9954  87.37%  
14 SGD  64  0.2  100%  0.1376  95.50%  0.9536  95.41%  95.31%  0.9946  87.03%  
15 AdaMax  32  0.3  100%  0.2108  94.53%  0.9432  94.42%  94.22%  0.9878  85.91%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 18. EXP-SEG-8 WS curve for the 15 iterations.  
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SEG-xx” is used to denote the HMB-HCF learning and optimization ex-
periments with segmentation where “xx” is the experiment number. 

Table 7 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the VGG16 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 7, it is clear that the SGD parameters optimizer with a 
batch size of 32 was the top-1 in all iterations. The 40% dropout ratio 
was the best in 8 iterations. The 90% TF learn ratio was the best in 7 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0174, 99.62%, 0.9963, 99.63%, 
99.63%, 0.9996, and 95.33% respectively while the last reported iter-
ation metrics were 0.0372, 99.30%, 0.9931, 99.31%, 99.31%, 0.9981, 
and 92.12% respectively. The WS and TF learn ratio had a high positive 
correlation (0.86) while the WS and dropout ratio had negligible cor-
relation (0.17). The dropout ratio and TF learn ratio had a low positive 
correlation (0.38). Fig. 11 shows the EXP-SEG-1 WS curve for the 15 
iterations. 

Table 8 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the VGG19 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 8, the SGD optimizer was the best in 14 iterations. The 32 
batch size was the best in 9 iterations. The 30% dropout ratio was the 
best in 8 iterations. The 85% TF learn ratio was the best in 14 iterations. 

The best achieved metrics for loss, accuracy, F1-score, precision, recall, 
AUC, and WS were 0.0170, 99.57%, 0.9958, 99.58%, 99.58%, 0.9996, 
and 95.44% respectively while the last reported iteration metrics were 
0.0170, 99.46%, 0.9947, 99.47%, 99.47%, 0.9996, and 95.44% 
respectively. The WS and TF learn ratio had a moderate positive cor-
relation (0.50) while the WS and dropout ratio had negligible correla-
tion (0.12). The dropout ratio and TF learn ratio had a low positive 
correlation (0.33). Fig. 12 shows the EXP-SEG-2 WS curve for the 15 
iterations. 

Table 9 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the ResNet50 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 9, the AdaMax optimizer was the best in 10 iterations. 
The 64 batch size was the best in 14 iterations. The 10% dropout ratio 
was the best in 8 iterations. The 20% TF learn ratio was the best in 8 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 2.0592, 31.58%, 0.3120, 32.35%, 
30.36%, 0.5613, and 30.63% respectively while the last reported iter-
ation metrics were 4.0317, 28.10%, 0.2781, 27.84%, 27.78%, 0.5411, 
and 27.83% respectively. The WS and TF learn ratio had a low negative 
correlation (− 0.33) while the WS and dropout ratio had negligible 
correlation (0.03). The dropout ratio and TF learn ratio had a moderate 
positive correlation (0.69). Fig. 13 shows the EXP-SEG-3 WS curve for 
the 15 iterations. 

Table 10 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the ResNet101 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 10, the SGD optimizer was the best in 9 iterations. The 32 
batch size was the best in 12 iterations. The 20% dropout ratio was the 
best in 9 iterations. The 100% TF learn ratio was the best in 15 itera-
tions. The best achieved metrics for loss, accuracy, F1-score, precision, 
recall, AUC, and WS were 0.0663, 97.59%, 0.9759, 97.66%, 97.51%, 
0.9985, and 89.56% respectively while the last reported iteration met-
rics were 0.0936, 97.10%, 0.9711, 97.14%, 97.09%, 0.9957, and 
88.71% respectively. The WS and TF learn ratio correlation could not be 
determined while the WS and dropout ratio had a low negative corre-
lation (− 0.47). The dropout ratio and TF learn ratio could not be 
determined. Fig. 14 shows the EXP-SEG-4 WS curve for the 15 iterations. 

Table 11 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the Xception pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

Table 15 
EXP-SEG-9: ninth HMB-HCF learning and optimization experiment with segmentation and MobileNetV2.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 Adam  64  0.2  80%  2.6106  56.78%  0.5683  57.12%  56.56%  0.7817  53.30%  
2 AdaMax  64  0.3  100%  0.8695  83.32%  0.8320  83.34%  83.07%  0.9444  76.18%  
3 AdaMax  64  0.3  100%  0.5846  86.76%  0.8671  86.79%  86.65%  0.9648  79.21%  
4 SGD  64  0.3  100%  0.4353  88.69%  0.8863  88.73%  88.53%  0.9725  80.89%  
5 AdaMax  32  0.3  100%  0.4721  88.69%  0.8857  88.65%  88.50%  0.9713  80.84%  
6 AdaMax  32  0.3  100%  0.3570  89.76%  0.8969  89.90%  89.48%  0.9813  81.88%  
7 SGD  64  0.3  100%  0.5495  87.88%  0.8824  88.45%  88.03%  0.9642  80.24%  
8 AdaMax  32  0.5  100%  0.3869  90.24%  0.9012  90.34%  89.91%  0.9761  82.18%  
9 AdaMax  64  0.3  100%  0.4300  89.60%  0.8961  89.73%  89.48%  0.9744  81.66%  
10 AdaMax  64  0.4  100%  0.4171  90.24%  0.9017  90.49%  89.85%  0.9764  82.17%  
11 AdaMax  32  0.0  100%  0.5140  86.43%  0.8645  86.66%  86.25%  0.9675  79.02%  
12 SGD  64  0.3  100%  0.4265  90.08%  0.9046  90.73%  90.20%  0.9726  82.14%  
13 AdaMax  32  0.0  100%  0.5896  88.31%  0.8835  88.47%  88.24%  0.9630  80.46%  
14 SGD  64  0.3  100%  0.4610  89.71%  0.8968  89.78%  89.59%  0.9732  81.71%  
15 SGD  64  0.2  100%  0.4998  86.70%  0.8641  86.58%  86.25%  0.9685  79.16%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 19. EXP-SEG-9 WS curve for the 15 iterations.  
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From Table 11:, the AdaMax optimizer was the best in 8 iterations. 
The 64 batch size was the best in 8 iterations. The 30% dropout ratio was 
the best in 12 iterations. The 90% TF learn ratio was the best in 6 iter-
ations. The best achieved metrics for loss, accuracy, F1-score, precision, 
recall, AUC, and WS were 0.0311, 99.25%, 0.9926, 99.26%, 99.26%, 
0.9990, and 92.61% respectively while the last reported iteration met-
rics were 0.0311, 99.25%, 0.9926, 99.26%, 99.26%, 0.9989, and 
92.61% respectively. The WS and TF learn ratio had a moderate positive 
correlation (0.67) while the WS and dropout ratio had a low positive 
correlation (0.32). The dropout ratio and TF learn ratio had negligible 
correlation (0.11). Fig. 15 shows the EXP-SEG-5 WS curve for the 15 
iterations. 

Table 12 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the DenseNet121 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 
epochs. 

From Table 12, the AdaMax optimizer was the best in 8 iterations. 
The 32 batch size was the best in 13 iterations. The 10% dropout ratio 
was the best in 9 iterations. The 100% TF learn ratio was the best in 15 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0814, 97.69%, 0.9772, 97.72%, 
97.72%, 0.9974, and 89.37% respectively while the last reported iter-
ation metrics were 0.1963, 93.99%, 0.9388, 93.93%, 93.83%, 0.9922, 
and 85.59% respectively. The WS and TF learn ratio correlation could 

not be determined while the WS and dropout ratio had negligible cor-
relation (− 0.04). The dropout ratio and TF learn ratio could not be 
determined. Fig. 16 shows the EXP-SEG-6 WS curve for the 15 iterations. 

Table 13 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the DenseNet169 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 
epochs. 

From Table 13, the AdaGrad optimizer was the best in 12 iterations. 
The 64 batch size was the best in 10 iterations. The 30% dropout ratio 
was the best in 15 iterations. The 100% TF learn ratio was the best in 8 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.1236, 95.87%, 0.9576, 95.78%, 
95.73%, 0.9955, and 87.43% respectively while the last reported iter-
ation metrics were 0.2161, 93.67%, 0.9360, 93.80%, 93.40%, 0.9892, 
and 85.27% respectively. The WS and TF learn ratio had a very high 
positive correlation (0.96) while the WS and dropout ratio had negli-
gible correlation (0.00). The dropout ratio and TF learn ratio had 
negligible correlation (0.00). Fig. 17 shows the EXP-SEG-7 WS curve for 
the 15 iterations. 

Table 14 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the MobileNet pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 14, the SGD optimizer was the best in 6 iterations. The 64 
batch size was the best in 13 iterations. The 20% dropout ratio was the 
best in 14 iterations. The 100% TF learn ratio was the best in 12 itera-
tions. The best achieved metrics for loss, accuracy, F1-score, precision, 
recall, AUC, and WS were 0.1047, 96.14%, 0.9621, 96.29%, 96.13%, 
0.9976, and 87.86% respectively while the last reported iteration met-
rics were 0.2108, 94.53%, 0.9432, 94.42%, 94.22%, 0.9878, and 
85.91% respectively. The WS and TF learn ratio had a very high positive 
correlation (0.95) while the WS and dropout ratio had negligible cor-
relation (0.17). The dropout ratio and TF learn ratio had negligible 
correlation (0.13). Fig. 18 shows the EXP-SEG-8 WS curve for the 15 
iterations. 

Table 15 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the MobileNetV2 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 
epochs. 

From Table 15, the AdaMax optimizer was the best in 9 iterations. 
The 64 batch size was the best in 10 iterations. The 30% dropout ratio 

Table 16 
EXP-SEG-10: tenth HMB-HCF learning and optimization experiment with segmentation and HMB1-COVID19.  

Iteration POa Batch size DRa HAFa PIa Regularizer Loss Accuracy F1 Precision Recall AUC WS  

1 RMSProp  32  0.47 ELU Glorot normal L1(10− 5)  0.5693  81.79%  0.8146  83.31%  79.75%  0.9646  75.17%  
2 RMSProp  32  0.47 ELU Glorot normal L1(10− 5)  0.4683  86.88%  0.8668  87.88%  85.54%  0.9790  79.45%  
3 AdaGrad  32  0.14 ReLU Glorot normal L1(10− 4)  1.2240  79.04%  0.7889  81.63%  76.41%  0.9536  72.83%  
4 SGD  64  0.17 ReLU Glorot normal L1(10− 4)  2.2340  59.05%  0.5925  60.22%  58.34%  0.8273  55.62%  
5 SGD  32  0.17 ReLU Glorot normal L2(10− 2)  0.6212  81.89%  0.8166  83.80%  79.69%  0.9622  75.24%  
6 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.6352  78.60%  0.7867  80.05%  77.39%  0.9515  72.58%  
7 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.4542  84.96%  0.8475  86.12%  83.46%  0.9744  77.88%  
8 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.5117  82.81%  0.8254  82.99%  82.11%  0.9684  76.05%  
9 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.5731  82.76%  0.8257  83.21%  81.96%  0.9642  75.97%  
10 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.4978  83.68%  0.8391  85.06%  82.82%  0.9696  76.92%  
11 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.3687  88.34%  0.8826  88.89%  87.66%  0.9843  80.77%  
12 SGD  32  0.17 ReLU Glorot normal L2(10− 2)  0.6447  80.82%  0.8067  82.24%  79.20%  0.9623  74.40%  
13 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.4143  86.85%  0.8675  87.32%  86.20%  0.9792  79.49%  
14 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.4116  87.95%  0.8786  88.36%  87.38%  0.9805  80.38%  
15 SGD  32  0.17 ReLU Glorot normal L1(10− 5)  0.3124  91.38%  0.9140  91.77%  91.04%  0.9894  83.33%  

a PO: Parameters Optimizer, DR: Dropout Ratio, HAF: Hidden Activation Function, PI: Parameters Initializer. 

Fig. 20. EXP-SEG-10 WS curve for the 15 iterations.  
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was the best in 9 iterations. The 100% TF learn ratio was the best in 14 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.3570, 90.24%, 0.9046, 90.73%, 
90.20%, 0.9813, and 82.18% respectively while the last reported iter-
ation metrics were 0.4998, 86.70%, 0.8641, 86.58%, 86.25%, 0.9685, 
and 79.16% respectively. The WS and TF learn ratio had a very high 
positive correlation (0.97) while the WS and dropout ratio had negli-
gible correlation (0.22). The dropout ratio and TF learn ratio had 
negligible correlation (0.14). Fig. 19 shows the EXP-SEG-9 WS curve for 
the 15 iterations. 

Table 16 reports the top-1 combination in each hyperparameters’ 

optimization iteration in the 15 iterations for the proposed HMB1- 
COVID19 CNN model with the corresponding testing performance 
metrics. Each iteration has 10 solutions where each solution is trained 
for 64 epochs. 

From Table 16, the SGD optimizer was the best in 12 iterations. The 
32 batch size was the best in 14 iterations. The 17% dropout ratio was 
the best in 12 iterations. The ReLU hidden activation was the best in 13 
iterations. The Glorot Normal parameters initializer was the best in 15 
iterations. The L1(10− 5) regularizer was the best in 11 iterations. The 
best achieved metrics for loss, accuracy, F1-score, precision, recall, AUC, 
and WS were 0.3124, 91.38%, 0.9140, 91.77%, 91.04%, 0.9894, and 

Table 19 
EXP-NO-SEG-1: first HMB-HCF learning and optimization experiment without segmentation and with VGG16.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaMax  32  0.0  30%  0.0444  98.27%  0.9823  98.23%  98.23%  0.9996  90.85%  
2 AdaGrad  32  0.2  55%  0.0404  98.59%  0.9856  98.56%  98.56%  0.9995  91.33%  
3 SGD  32  0.2  55%  0.0375  98.75%  0.9872  98.72%  98.72%  0.9989  91.65%  
4 SGD  32  0.1  55%  0.0233  99.30%  0.9930  99.30%  99.30%  0.9996  93.73%  
5 SGD  32  0.2  55%  0.0134  99.62%  0.9957  99.60%  99.55%  0.9996  97.13%  
6 AdaGrad  32  0.0  55%  0.0168  99.57%  0.9955  99.55%  99.55%  0.9997  95.60%  
7 SGD  32  0.0  55%  0.0138  99.78%  0.9976  99.78%  99.73%  0.9996  97.06%  
8 SGD  32  0.2  55%  0.0135  99.68%  0.9968  99.68%  99.68%  0.9996  97.15%  
9 SGD  32  0.3  55%  0.0151  99.57%  0.9957  99.57%  99.57%  0.9996  96.29%  
10 SGD  32  0.3  55%  0.0120  99.62%  0.9962  99.62%  99.62%  0.9997  98.06%  
11 SGD  64  0.5  80%  0.0099  99.78%  0.9978  99.78%  99.78%  0.9996  99.88%  
12 AdaGrad  32  0.0  55%  0.0158  99.51%  0.9947  99.50%  99.44%  0.9997  95.94%  
13 SGD  32  0.5  80%  0.0097  99.78%  0.9984  99.89%  99.78%  0.9996  100.0%  
14 SGD  64  0.2  55%  0.0147  99.62%  0.9960  99.60%  99.60%  0.9997  96.48%  
15 SGD  32  0.3  55%  0.0099  99.84%  0.9984  99.84%  99.84%  0.9996  99.92%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 21. EXP-NO-SEG-1 WS curve for the 15 iterations.  

Table 20 
EXP-NO-SEG-2: second HMB-HCF learning and optimization experiment without segmentation and with VGG19.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 SGD  64  0.2  85%  0.0301  98.92%  0.9887  98.90%  98.85%  0.9996  92.44%  
2 SGD  64  0.2  85%  0.0343  98.75%  0.9879  98.87%  98.71%  0.9994  91.92%  
3 SGD  64  0.2  85%  0.0112  99.73%  0.9973  99.73%  99.73%  0.9997  98.74%  
4 SGD  64  0.2  85%  0.0237  99.35%  0.9938  99.41%  99.35%  0.9996  93.70%  
5 SGD  64  0.2  85%  0.0107  99.62%  0.9962  99.62%  99.62%  0.9996  99.01%  
6 AdaMax  32  0.1  75%  0.0189  99.51%  0.9954  99.57%  99.52%  0.9996  94.90%  
7 AdaMax  32  0.1  75%  0.0218  99.62%  0.9962  99.62%  99.62%  0.9996  94.29%  
8 SGD  64  0.2  85%  0.0229  99.30%  0.9930  99.30%  99.30%  0.9996  93.80%  
9 SGD  64  0.3  75%  0.0144  99.68%  0.9968  99.68%  99.68%  0.9996  96.69%  
10 SGD  64  0.2  85%  0.0121  99.73%  0.9973  99.73%  99.73%  0.9997  98.08%  
11 SGD  64  0.1  75%  0.0172  99.57%  0.9957  99.57%  99.57%  0.9996  95.48%  
12 SGD  64  0.1  85%  0.0172  99.40%  0.9943  99.46%  99.41%  0.9996  95.34%  
13 SGD  32  0.0  85%  0.0131  99.57%  0.9957  99.57%  99.57%  1.000  97.29%  
14 SGD  32  0.3  85%  0.0116  99.68%  0.9966  99.66%  99.66%  0.9996  98.32%  
15 SGD  32  0.0  85%  0.0139  99.52%  0.9952  99.52%  99.52%  1.000  96.81%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 22. EXP-NO-SEG-2 WS curve for the 15 iterations.  
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83.33% respectively while the last reported iteration metrics were 
0.3124, 91.38%, 0.9140, 91.77%, 91.04%, 0.9894, and 83.33% 
respectively. The WS and dropout ratio had a negligible correlation 
(0.11). Fig. 20 shows the EXP-SEG-10 WS curve for the 15 iterations. 

Table 17 summarizes the obtained top-1 results in each experiment 
with segmentation concerning the highest WS metrics. Table 18 sum-
marizes the obtained top-1 results in each experiment with segmenta-
tion concerning the last reported results. 

4.3. HMB-HCF learning and optimization experiments without 
segmentation 

HMB1-COVID19 and the pre-trained CNN models are subjected to be 
optimized where each one at a time. This is applied to get the best 
combinations from each of them to be used later in the hybrid archi-
tecture. To distinguish between the experiments, the annotation “EXP- 
NO-SEG-xx” is used to denote the HMB-HCF learning and optimization 
experiments without segmentation where “xx” is the experiment 
number. 

Table 19 reports the top-1 combination in each hyperparameters’ 

Table 21 
EXP-NO-SEG-3: third HMB-HCF learning and optimization experiment without segmentation and with ResNet50.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 Nadam  64  0.1  40%  2.1265  29.62%  0.2363  29.04%  20.03%  0.5429  27.55%  
2 Ftrl  64  0.3  35%  1.9089  31.67%  0.2652  44.76%  19.06%  0.5475  30.40%  
3 Adam  64  0.2  10%  3.4394  37.57%  0.3668  40.29%  33.74%  0.5661  35.55%  
4 Ftrl  64  0.3  35%  1.9754  26.96%  0.2877  33.49%  25.35%  0.5579  27.87%  
5 Nadam  64  0.2  10%  1.8882  32.32%  0.2461  33.75%  19.51%  0.5451  29.45%  
6 Adam  64  0.2  10%  3.0229  33.46%  0.2903  40.39%  22.87%  0.5999  31.99%  
7 Ftrl  64  0.3  55%  1.9645  37.14%  0.1691  65.29%  10.01%  0.5686  33.53%  
8 Adam  64  0.2  50%  10.974  26.85%  0.2693  26.93%  26.93%  0.5747  27.26%  
9 Ftrl  64  0.3  35%  1.9008  28.59%  0.2752  44.23%  20.24%  0.5525  29.07%  
10 Ftrl  32  0.4  10%  1.7385  26.85%  0.2878  35.32%  24.40%  0.5498  27.83%  
11 Ftrl  32  0.2  10%  1.8391  26.85%  0.2702  27.35%  26.72%  0.5529  27.12%  
12 Ftrl  32  0.4  10%  1.6795  26.85%  0.2491  40.85%  18.14%  0.5455  27.33%  
13 RMSProp  64  0.2  30%  7.5304  36.98%  0.3705  37.05%  37.05%  0.5549  35.17%  
14 Ftrl  32  0.4  10%  1.6821  26.85%  0.2849  33.86%  24.73%  0.5444  27.64%  
15 Ftrl  32  0.4  10%  1.7133  26.85%  0.2839  37.29%  23.09%  0.5558  27.92%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 23. EXP-NO-SEG-3 WS curve for the 15 iterations.  

Table 22 
EXP-NO-SEG-4: fourth HMB-HCF learning and optimization experiment without segmentation and with ResNet101.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 Adam  32  0.3  100%  0.5661  76.94%  0.7700  80.37%  74.00%  0.9434  71.21%  
2 Adam  32  0.3  100%  2.9887  61.88%  0.6196  62.60%  61.34%  0.8245  57.81%  
3 AdaGrad  32  0.3  100%  0.1390  96.16%  0.9615  96.15%  96.15%  0.9942  87.59%  
4 AdaGrad  32  0.3  100%  0.0770  97.46%  0.9749  97.52%  97.47%  0.9962  89.24%  
5 AdaGrad  32  0.3  100%  0.0469  98.59%  0.9865  98.71%  98.60%  0.9990  91.01%  
6 AdaGrad  32  0.3  100%  0.0435  98.54%  0.9852  98.52%  98.52%  0.9997  91.12%  
7 AdaGrad  32  0.5  100%  0.0678  97.94%  0.9791  97.91%  97.91%  0.9987  89.81%  
8 AdaGrad  32  0.5  100%  0.0405  98.75%  0.9876  98.76%  98.76%  0.9988  91.46%  
9 AdaGrad  64  0.3  100%  0.0462  98.32%  0.9833  98.33%  98.33%  0.9987  90.81%  
10 AdaGrad  32  0.5  100%  0.0397  98.43%  0.9840  98.40%  98.40%  0.9998  91.25%  
11 AdaGrad  64  0.5  100%  0.0504  98.86%  0.9885  98.85%  98.85%  0.9974  91.04%  
12 SGD  64  0.0  100%  0.0172  99.46%  0.9941  99.44%  99.39%  0.9992  95.36%  
13 SGD  64  0.5  100%  0.0157  99.68%  0.9968  99.68%  99.68%  0.9996  96.10%  
14 SGD  32  0.0  100%  0.0263  98.75%  0.9865  98.76%  98.55%  0.9997  93.19%  
15 SGD  32  0.0  100%  0.0214  99.73%  0.9973  99.73%  99.73%  0.9985  94.43%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 24. EXP-NO-SEG-4 WS curve for the 15 iterations.  
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optimization iteration in the 15 iterations for the VGG16 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 19, the SGD optimizer was the best in 11 iterations. The 
32 batch size was the best in 13 iterations. The 20% dropout ratio was 
the best in 9 iterations. The 55% TF learn ratio was the best in 12 

iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0097, 99.84%, 0.9984, 99.89%, 
99.84%, 0.9997, and 100.0% respectively while the last reported iter-
ation metrics were 0.0099, 99.84%, 0.9984, 99.84%, 99.84%, 0.9996, 
and 99.92% respectively. The WS and TF learn ratio had a moderate 
positive correlation (0.67) while the WS and dropout ratio had a mod-
erate positive correlation (0.59). The dropout ratio and TF learn ratio 

Table 23 
EXP-NO-SEG-5: fifth HMB-HCF learning and optimization experiment without segmentation and with Xception.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaGrad  64  0.3  80%  0.7671  79.21%  0.7935  80.11%  78.62%  0.9403  72.95%  
2 AdaGrad  64  0.3  80%  0.7672  79.86%  0.7977  80.45%  79.14%  0.9436  73.43%  
3 AdaGrad  64  0.3  80%  0.7462  79.97%  0.8007  80.75%  79.43%  0.9431  73.57%  
4 AdaGrad  64  0.3  80%  0.6754  81.65%  0.8157  81.90%  81.25%  0.9482  74.93%  
5 AdaGrad  64  0.3  80%  0.5898  82.13%  0.8210  82.82%  81.41%  0.9559  75.43%  
6 AdaGrad  64  0.3  80%  0.7505  79.86%  0.8005  80.53%  79.59%  0.9428  73.51%  
7 AdaGrad  64  0.3  80%  0.7095  81.05%  0.8098  81.38%  80.60%  0.9490  74.45%  
8 Nadam  64  0.1  80%  0.7719  81.05%  0.8106  81.51%  80.63%  0.9383  74.36%  
9 AdaGrad  64  0.1  80%  0.6485  82.24%  0.8228  82.63%  81.94%  0.9517  75.48%  
10 AdaGrad  64  0.1  80%  0.5924  83.97%  0.8381  84.13%  83.49%  0.9586  76.88%  
11 AdaGrad  64  0.1  80%  0.6127  84.79%  0.8473  85.04%  84.44%  0.9561  77.54%  
12 AdaGrad  64  0.1  80%  0.5690  85.22%  0.8508  85.29%  84.87%  0.9616  77.92%  
13 AdaGrad  64  0.1  80%  0.6391  84.68%  0.8468  84.91%  84.46%  0.9526  77.43%  
14 AdaGrad  32  0.1  80%  0.5521  85.22%  0.8489  85.27%  84.53%  0.9601  77.86%  
15 AdaGrad  64  0.1  80%  0.5740  84.46%  0.8459  84.97%  84.23%  0.9610  77.40%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 25. EXP-NO-SEG-5 WS curve for the 15 iterations.  

Table 24 
EXP-NO-SEG-6: sixth HMB-HCF learning and optimization experiment without segmentation and with DenseNet121.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 SGD  32  0.2  55%  1.1508  67.57%  0.6736  67.86%  66.88%  0.8963  63.04%  
2 SGD  32  0.2  55%  1.1467  73.80%  0.7380  74.01%  73.59%  0.9140  68.26%  
3 RMSProp  32  0.3  55%  6.8218  77.96%  0.7792  77.92%  77.92%  0.8814  71.19%  
4 AdaMax  64  0.2  60%  1.2286  80.40%  0.8049  80.81%  80.17%  0.9236  73.67%  
5 RMSProp  32  0.3  55%  3.9172  82.51%  0.8247  82.47%  82.47%  0.9061  75.08%  
6 AdaMax  64  0.3  55%  1.1584  80.94%  0.8094  81.05%  80.84%  0.9312  74.15%  
7 AdaMax  64  0.2  60%  1.1925  80.18%  0.8019  80.40%  79.99%  0.9264  73.50%  
8 AdaMax  64  0.2  100%  0.2635  93.18%  0.9318  93.23%  93.14%  0.9868  84.79%  
9 AdaMax  64  0.2  100%  0.2072  95.13%  0.9512  95.20%  95.04%  0.9891  86.47%  
10 AdaMax  64  0.2  100%  0.2093  94.69%  0.9461  94.86%  94.39%  0.9885  86.10%  
11 AdaMax  64  0.2  100%  0.0510  98.27%  0.9828  98.28%  98.28%  0.9990  90.57%  
12 AdaGrad  64  0.2  100%  0.0543  97.67%  0.9766  97.66%  97.66%  0.9989  89.96%  
13 AdaGrad  64  0.2  100%  0.0389  98.43%  0.9857  98.70%  98.44%  0.9994  91.35%  
14 AdaGrad  64  0.2  100%  0.0433  98.48%  0.9852  98.55%  98.49%  0.9991  91.10%  
15 AdaGrad  64  0.2  100%  0.0334  99.03%  0.9903  99.03%  99.03%  0.9988  92.20%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 26. EXP-NO-SEG-6 WS curve for the 15 iterations.  
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had a high positive correlation (0.76). Fig. 21 shows the EXP-NO-SEG-1 
WS curve for the 15 iterations. 

Table 20 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the VGG19 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 20, the SGD optimizer was the best in 13 iterations. The 
64 batch size was the best in 10 iterations. The 20% dropout ratio was 
the best in 7 iterations. The 85% TF learn ratio was the best in 11 

iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0107, 99.73%, 0.9973, 99.73%, 
99.73%, 1.000, and 99.01% respectively while the last reported itera-
tion metrics were 0.0139, 99.52%, 0.9952, 99.52%, 99.52%, 1.000, and 
96.81% respectively. The WS and TF learn ratio had negligible corre-
lation (0.12) while the WS and dropout ratio had negligible correlation 
(0.05). The dropout ratio and TF learn ratio had negligible correlation 
(0.07). Fig. 22 shows the EXP-NO-SEG-2 WS curve for the 15 iterations. 

Table 25 
EXP-NO-SEG-7: seventh HMB-HCF learning and optimization experiment without segmentation and with DenseNet169.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 AdaGrad  32  0.2  100%  0.0379  99.35%  0.9933  99.35%  99.30%  0.9985  92.10%  
2 AdaGrad  32  0.2  100%  0.0388  98.97%  0.9889  98.97%  98.81%  0.9981  91.71%  
3 AdaGrad  32  0.2  100%  0.0387  98.70%  0.9871  98.74%  98.69%  0.9991  91.54%  
4 AdaGrad  32  0.2  100%  0.0319  99.24%  0.9916  99.24%  99.08%  0.9985  92.49%  
5 AdaGrad  64  0.2  100%  0.0217  99.13%  0.9914  99.14%  99.14%  0.9996  93.90%  
6 AdaGrad  64  0.2  100%  0.0257  99.24%  0.9927  99.30%  99.25%  0.9993  93.29%  
7 AdaGrad  64  0.5  100%  0.0196  99.51%  0.9952  99.52%  99.52%  0.9993  94.71%  
8 AdaGrad  64  0.2  100%  0.0182  99.24%  0.9925  99.25%  99.25%  0.9993  94.88%  
9 SGD  64  0.2  100%  0.0124  99.51%  0.9951  99.51%  99.51%  0.9997  97.65%  
10 AdaGrad  64  0.5  100%  0.0202  99.68%  0.9968  99.68%  99.68%  0.9992  94.69%  
11 AdaGrad  64  0.2  100%  0.0236  99.19%  0.9919  99.19%  99.19%  0.9996  93.59%  
12 AdaGrad  64  0.5  100%  0.0197  99.51%  0.9951  99.51%  99.51%  0.9990  94.69%  
13 AdaGrad  64  0.5  100%  0.0163  99.73%  0.9973  99.73%  99.73%  0.9993  95.93%  
14 AdaGrad  64  0.5  100%  0.0179  99.62%  0.9962  99.62%  99.62%  0.9993  95.29%  
15 AdaGrad  64  0.5  100%  0.0157  99.62%  0.9962  99.62%  99.62%  0.9993  96.05%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 27. EXP-NO-SEG-7 WS curve for the 15 iterations.  

Table 26 
EXP-NO-SEG-8: eigth HMB-HCF learning and optimization experiment without segmentation and with MobileNet.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 SGD  32  0.3  100%  0.1576  94.91%  0.9499  95.10%  94.89%  0.9945  86.53%  
2 SGD  32  0.3  100%  0.0523  98.32%  0.9827  98.38%  98.17%  0.9988  90.54%  
3 SGD  32  0.3  100%  0.0444  98.43%  0.9844  98.44%  98.44%  0.9994  90.99%  
4 SGD  32  0.3  100%  0.0728  98.00%  0.9803  98.06%  98.01%  0.9980  89.76%  
5 SGD  32  0.3  100%  0.0460  98.54%  0.9855  98.55%  98.55%  0.9990  91.00%  
6 SGD  32  0.3  100%  0.0482  98.21%  0.9825  98.28%  98.22%  0.9991  90.65%  
7 SGD  32  0.3  100%  0.0644  98.38%  0.9838  98.38%  98.38%  0.9978  90.23%  
8 Nadam  32  0.3  100%  0.0466  98.48%  0.9860  98.71%  98.50%  0.9991  90.96%  
9 SGD  32  0.3  100%  0.0494  98.64%  0.9863  98.63%  98.63%  0.9980  90.92%  
10 SGD  32  0.3  100%  0.0322  98.81%  0.9879  98.79%  98.79%  0.9996  92.14%  
11 SGD  32  0.5  100%  0.0423  98.86%  0.9887  98.87%  98.87%  0.9987  91.44%  
12 SGD  32  0.5  100%  0.0426  98.48%  0.9847  98.47%  98.47%  0.9988  91.12%  
13 SGD  32  0.5  100%  0.0596  98.32%  0.9823  98.29%  98.18%  0.9975  90.28%  
14 SGD  32  0.3  100%  0.0337  98.97%  0.9898  98.98%  98.98%  0.9985  92.13%  
15 SGD  32  0.5  100%  0.0610  98.59%  0.9858  98.58%  98.58%  0.9973  90.48%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 28. EXP-NO-SEG-8 WS curve for the 15 iterations.  
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Table 21 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the ResNet50 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 21, the Ftrl optimizer was the best in 9 iterations. The 64 
batch size was the best in 10 iterations. The 20% dropout ratio was the 
best in 6 iterations. The 10% TF learn ratio was the best in 8 iterations. 
The best achieved metrics for loss, accuracy, F1-score, precision, recall, 
AUC, and WS were 1.6795, 37.57%, 0.3705, 65.29%, 37.05%, 0.5999, 
and 35.55% respectively while the last reported iteration metrics were 
1.7133, 26.85%, 0.2839, 37.29%, 23.09%, 0.5558, and 27.92% 

respectively. The WS and TF learn ratio had negligible correlation (0.11) 
while the WS and dropout ratio had a low negative correlation (− 0.30). 
The dropout ratio and TF learn ratio had negligible correlation (− 0.29). 
Fig. 23 shows the EXP-NO-SEG-3 WS curve for the 15 iterations. 

Table 22 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the ResNet101 pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 22, the AdaGrad optimizer was the best in 9 iterations. 
The 32 batch size was the best in 11 iterations. The 30% dropout ratio 
was the best in 7 iterations. The 100% TF learn ratio was the best in 15 

Table 27 
EXP-NO-SEG-9: ninth HMB-HCF learning and optimization experiment without segmentation and with MobileNetV2.  

Iteration POa Batch size DRa TLRa Loss Accuracy F1 Precision Recall AUC WS  

1 RMSProp  64  0.1  100%  11.1682  73.85%  0.7389  73.89%  73.89%  0.8351  67.45%  
2 RMSProp  64  0.1  100%  5.3725  79.75%  0.7974  79.74%  79.74%  0.8809  72.63%  
3 AdaMax  32  0.1  100%  0.4518  89.44%  0.8942  89.60%  89.25%  0.9723  81.49%  
4 AdaMax  32  0.0  100%  0.2549  92.69%  0.9267  92.75%  92.60%  0.9875  84.41%  
5 AdaMax  32  0.0  100%  0.1669  95.23%  0.9527  95.32%  95.22%  0.9921  86.72%  
6 AdaMax  32  0.3  100%  0.2514  93.39%  0.9339  93.63%  93.17%  0.9861  84.97%  
7 AdaMax  32  0.3  100%  0.1208  96.64%  0.9666  96.70%  96.64%  0.9958  88.11%  
8 AdaMax  32  0.0  100%  0.1440  96.10%  0.9607  96.15%  95.99%  0.9932  87.50%  
9 SGD  32  0.3  100%  0.1574  95.07%  0.9510  95.28%  94.93%  0.9938  86.64%  
10 SGD  32  0.3  100%  0.1174  96.59%  0.9666  96.76%  96.56%  0.9951  88.10%  
11 SGD  32  0.3  100%  0.1116  96.97%  0.9694  96.94%  96.94%  0.9958  88.42%  
12 SGD  32  0.1  100%  0.1395  96.53%  0.9653  96.53%  96.53%  0.9934  87.88%  
13 SGD  32  0.3  100%  0.0921  97.73%  0.9771  97.74%  97.68%  0.9962  89.22%  
14 SGD  32  0.3  100%  0.1258  95.83%  0.9588  95.96%  95.80%  0.9961  87.43%  
15 SGD  32  0.3  100%  0.1243  97.02%  0.9699  97.04%  96.94%  0.9934  88.35%  

a PO: Parameters Optimizer, DR: Dropout Ratio, TLR: TF Learn Ratio. 

Fig. 29. EXP-NO-SEG-9 WS curve for the 15 iterations.  

Table 28 
EXP-NO-SEG-10: tenth HMB-HCF learning and optimization experiment without segmentation and HMB1-COVID19.  

Iteration POa Batch size DRa HAFa PIa Regularizer Loss Accuracy F1 Precision Recall AUC WS  

1 Nadam  32  0.11 ELU Glorot uniform L1(10− 5)  0.4888  88.44%  0.8858  88.82%  88.34%  0.9804  80.80%  
2 Nadam  32  0.11 ELU Glorot uniform L1(10− 5)  0.5268  87.40%  0.8748  87.68%  87.28%  0.9775  79.91%  
3 RMSProp  32  0.47 ReLU He normal L1(10− 5)  0.5306  82.30%  0.8196  82.72%  81.24%  0.9676  75.61%  
4 SGD  32  0.37 ReLU He normal L1(10− 4)  0.6864  85.86%  0.8583  86.02%  85.64%  0.9703  78.53%  
5 RMSProp  32  0.47 ELU Glorot uniform L1(10− 5)  0.4572  85.75%  0.8587  86.29%  85.47%  0.9763  78.62%  
6 SGD  32  0.37 ReLU He normal L1(10− 4)  0.5570  87.57%  0.8756  87.98%  87.16%  0.9805  80.04%  
7 SGD  32  0.37 ReLU He normal L1(10− 5)  0.4887  84.90%  0.8469  85.85%  83.60%  0.9743  77.81%  
8 SGD  32  0.37 ReLU He normal L1(10− 4)  0.5827  87.08%  0.8713  87.54%  86.73%  0.9796  79.65%  
9 RMSProp  32  0.47 ReLU He normal L1(10− 5)  0.4591  85.53%  0.8556  86.37%  84.79%  0.9768  78.42%  
10 RMSProp  32  0.47 ELU Glorot uniform L1(10− 5)  0.5154  85.32%  0.8534  85.79%  84.91%  0.9724  78.18%  
11 RMSProp  32  0.47 ELU Glorot uniform L1(10− 5)  0.4382  86.85%  0.8680  87.32%  86.30%  0.9799  79.49%  
12 RMSProp  32  0.27 ELU Glorot uniform L1(10− 5)  0.4058  87.61%  0.8739  87.95%  86.86%  0.9824  80.10%  
13 RMSProp  64  0.27 ReLU He normal L1(10− 5)  0.4973  86.97%  0.8677  87.30%  86.26%  0.9773  79.49%  
14 RMSProp  32  0.27 ELU Glorot uniform L1(10− 5)  0.4717  86.59%  0.8663  86.80%  86.46%  0.9783  79.28%  
15 RMSProp  64  0.27 ReLU He normal L1(10− 5)  0.4037  89.37%  0.8937  89.69%  89.05%  0.9863  81.61%  

a PO: Parameters Optimizer, DR: Dropout Ratio, HAF: Hidden Activation Function, PI: Parameters Initializer. 

Fig. 30. EXP-NO-SEG-10 WS curve for the 15 iterations.  
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iterations. The best-achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0157, 99.73%, 0.9973, 99.73%, 
99.73%, 0.9998, and 96.10% respectively while the last reported iter-
ation metrics were 0.0214, 99.73%, 0.9973, 99.73%, 99.73%, 0.9985, 
and 94.43% respectively. The WS and TF learn ratio correlation could 
not be determined while the WS and dropout ratio had negligible cor-
relation (− 0.07). The dropout ratio and TF learn ratio correlation could 
not be determined. Fig. 24 shows the EXP-NO-SEG-4 WS curve for the 15 
iterations. 

Table 23 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the Xception pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 23, the AdaGrad optimizer was the best in 14 iterations. 
The 64 batch size was the best in 14 iterations. The 10% dropout ratio 
was the best in 8 iterations. The 80% TF learn ratio was the best in 15 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.5521, 85.22%, 0.8508, 85.29%, 
84.87%, 0.9616, and 77.92% respectively while the last reported iter-
ation metrics were 0.5740, 84.46%, 0.8459, 84.97%, 84.23%, 0.9610, 
and 77.40% respectively. The WS and TF learn ratio correlation could 
not be determined while the WS and dropout ratio had a high negative 
correlation (− 0.80). The dropout ratio and TF learn ratio correlation 

could not be determined. Fig. 25 shows the EXP-NO-SEG-5 WS curve for 
the 15 iterations. 

Table 24 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the DenseNet121 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 
epochs. 

From Table 24, the AdaMax optimizer was the best in 7 iterations. 
The 64 batch size was the best in 11 iterations. The 20% dropout ratio 
was the best in 12 iterations. The 100% TF learn ratio was the best in 8 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0334, 99.03%, 0.9903, 99.03%, 
99.03%, 0.9994, and 92.20% respectively while the last reported iter-
ation metrics were 0.0334, 99.03%, 0.9903, 99.03%, 99.03%, 0.9988, 
and 92.20% respectively. The WS and TF learn ratio had a very high 
positive correlation (0.94) while the WS and dropout ratio had a low 
negative correlation (− 0.38). The dropout ratio and TF learn ratio had a 
moderate negative correlation (− 0.57). Fig. 26 shows the EXP-NO-SEG- 
6 WS curve for the 15 iterations. 

Table 25 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the DenseNet169 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 

Fig. 31. Overall reported top-1 experiments graphical summary concerning the highest WS metrics.  

Fig. 32. Overall reported top-1 experiments graphical summary concerning the last reported results.  
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epochs. 
From Table 25, the AdaGrad optimizer was the best in 14 iterations. 

The 64 batch size was the best in 11 iterations. The 20% dropout ratio 
was the best in 9 iterations. The 100% TF learn ratio was the best in 15 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0124, 99.73%, 0.9973, 99.73%, 
99.73%, 0.9997, and 97.65% respectively while the last reported iter-
ation metrics were 0.0157, 99.62%, 0.9962, 99.62%, 99.62%, 0.9993, 
and 96.05% respectively. The WS and TF learn ratio correlation could 
not be determined while the WS and dropout ratio had a moderate 
positive correlation (0.51). The dropout ratio and TF learn ratio corre-
lation could not be determined. Fig. 27 shows the EXP-NO-SEG-7 WS 
curve for the 15 iterations. 

Table 26 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the MobileNet pre-trained 
CNN model with the corresponding testing performance metrics. Each 
iteration has 10 solutions where each solution is trained for 64 epochs. 

From Table 26, the SGD optimizer was the best in 14 iterations. The 
32 batch size was the best in 15 iterations. The 30% dropout ratio was 
the best in 11 iterations. The 100% TF learn ratio was the best in 15 
iterations. The best achieved metrics for loss, accuracy, F1-score, pre-
cision, recall, AUC, and WS were 0.0322, 98.97%, 0.9898, 98.98%, 
98.98%, 0.9996, and 92.14% respectively while the last reported iter-
ation metrics were 0.0610, 98.59%, 0.9858, 98.58%, 98.58%, 0.9973, 
and 90.48% respectively. The WS and TF learn ratio correlation could 
not be determined while the WS and dropout ratio had a low positive 
correlation (0.10). The dropout ratio and TF learn ratio correlation 

could not be determined. Fig. 28 shows the EXP-NO-SEG-8 WS curve for 
the 15 iterations. 

Table 27 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the MobileNetV2 pre- 
trained CNN model with the corresponding testing performance met-
rics. Each iteration has 10 solutions where each solution is trained for 64 
epochs. 

From Table 27, the SGD optimizer was the best in 7 iterations. The 32 
batch size was the best in 13 iterations. The 30% dropout ratio was the 
best in 8 iterations. The 100% TF learn ratio was the best in 15 itera-
tions. The best achieved metrics for loss, accuracy, F1-score, precision, 
recall, AUC, and WS were 0.0921, 97.73%, 0.9771, 97.74%, 97.68%, 
0.9962, and 89.22% respectively while the last reported iteration met-
rics were 0.1243, 97.02%, 0.9699, 97.04%, 96.94%, 0.9934, and 
88.35% respectively. The WS and TF learn ratio correlation could not be 
determined while the WS and dropout ratio had a low positive corre-
lation (0.38). The dropout ratio and TF learn ratio correlation could not 
be determined. Fig. 29 shows the EXP-NO-SEG-9 WS curve for the 15 
iterations. 

Table 28 reports the top-1 combination in each hyperparameters’ 
optimization iteration in the 15 iterations for the proposed HMB1- 
COVID19 CNN model with the corresponding testing performance 
metrics. Each iteration has 10 solutions where each solution is trained 
for 64 epochs. 

From Table 28, the RMSProp optimizer was the best in 9 iterations. 
The 32 batch size was the best in 13 iterations. The 47% dropout ratio 
was the best in 5 iterations. The ReLU hidden activation was the best in 8 

Table 33 
Generalization validation results on the available online lung X-ray images datasets.  

No. Dataset Used images count Correct predictions count Prediction accuracy  

1 “Pneumonia (virus) vs COVID-19” [50]  70  69  98.57%  
2 “Covid-19 Xray images using CNN” [51]  284  280  98.59%  
3 “COVID-19 X-ray Images5” [52]  1443  1437  99.58%  
4 “COVID-19 Patients Lungs X Ray Images 10,000” [53]  98  97  98.98%  
5 “COVID-19 Chest X Rays” [54]  148  145  97.97%  
6 “Chest X-ray (Covid-19 & Pneumonia)” [57]  2159  2132  98.75%  
7 “COVID-19 Xray Dataset (Train & Test Sets)” [59]  94  93  98.94%  
8 “COVID19-xray” [60]  1161  1133  97.59%  
9 “Chest Xray for covid-19 detection” [61]  347  343  98.85%  
10 “COVID-19 & Normal Posteroanterior(PA) X-rays” [64]  279  277  99.28%  
11 “Covid-GAN and Covid-Net mini Chest X-ray” [66]  3054  2528  82.78%  
12 “Chest X-ray Images” [68]  1583  1563  98.74%  
13 “Chest Xray Images PNEUMONIA and Covid-19” [69]  1845  1814  98.32%  

Table 34 
Comparison between the current study and other related studies.  

Study Year Dataset size Dataset type Approach Best metric 

Bukhari et al. [27]  2020  278 X-ray CNN + TF 98.18% accuracy 
Gozes et al. [31]  2020  270 CT 2D and 3D analysis 0.996 AUC 
Apostolopoulos et al. [32]  2020  1428 X-ray CNN + TF 96.78% accuracy 
Chowdhury et al. [35]  2020  3487 X-ray CNN + TF 98.30% accuracy 
Abbas et al. [38]  2020  1764 X-ray DeTraC 93.10% accuracy 
Wang et al. [39]  2020  453 CT CNN + TF 73.10% accuracy 
Abraham et al. [41]  2020  960 and 78 X-ray CNN + CFS 91.16% and 97.44% accuracies 
Islam et al. [42]  2020  4575 X-ray CNN + LSTM 99.40% accuracy 
Polsinelli et al. [44]  2020  460 CT CNN + TF 85.03% accuracy 
Aslan et al. [45]  2020  142 X-ray MLP + CNN 96.30% accuracy 
Bahgat et al. [46]  2021  12,933 CT OTLD-COVID-19 98.47% accuracy 
Jain et al. [47]  2021  6432 X-ray CNN + TL 97.97% accuracy 
Wang et al. [48]  2021  1065 CT CNN + TL 89.50% accuracy 
Current study  2021  13,711 X-ray HMB-HCF 100% and 99.92% WS  
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iterations. The He Normal parameters initializer was the best in 8 iter-
ations. The L1(10− 5) regularizer was the best in 12 iterations. The best 
achieved metrics for loss, accuracy, F1-score, precision, recall, AUC, and 
WS were 0.4037, 89.37%, 0.8937, 89.69%, 89.05%, 0.9863, and 
81.61% respectively while the last reported iteration metrics were 
0.4037, 89.37%, 0.8937, 89.69%, 89.05%, 0.9863, and 81.61% 
respectively. The WS and dropout ratio had a moderate negative cor-
relation (− 0.63). Fig. 30 shows the EXP-NO-SEG-10 WS curve for the 15 
iterations. 

Table 29 summarizes the obtained top-1 results in each experiment 
without segmentation concerning the highest WS metrics. Table 30 
summarizes the obtained top-1 results in each experiment without seg-
mentation concerning the last reported results. 

4.4. Experiments summarization, generalization validation and 
comparisons. Experiments summarization 

Table 31 summarizes the obtained top-1 results in each experiment 
concerning the highest WS metrics. It shows that “EXP-NO-SEG-1” 
experiment reports the highest WS score. Table 32 summarizes the ob-
tained top-1 results in each experiment concerning the last reported 
results. Both tables are sorted from the highest WS to the lowest. It shows 
that “EXP-NO-SEG-1” experiment reports the highest WS score. 

Both tables show the maximum reported accuracy is 99.84%, the 
maximum reported F1-score is 0.9984, the maximum reported precision 
is 99.89%, the maximum reported recall is 99.84%, the maximum re-
ported AUC is 1 (or 100%) and the minimum reported loss is 0.0097 
throughout all experiments. Fig. 31 summarizes the obtained top-1 re-
sults in each experiment concerning the highest WS metrics. Fig. 32 
summarizes the obtained top-1 results in each experiment concerning 
the last reported results. 

4.4.1. Generalization validation 
To validate and verify the generalization of the suggested hybrid 

COVID-19 model, 13 available datasets, from Table 2, are evaluated and 
the corresponding results are reported in Table 33. It reports the number 
of correctly predicted images and the corresponding prediction accu-
racy. The prediction accuracy is calculated by dividing the correct pre-
dictions’ count by the used images’ count. 

It is worth mentioning that the available datasets categories that are 
outside the current study used categories (i.e., “Normal”, “Pneumonia- 
Viral”, “Pneumonia-Bacterial”, and “COVID-19”) such as “Pneumonia” 
and “Lung Opacity” are ignored. 

4.4.1.1. Related studies comparison. The current study’s best-reported 
performance metrics are compared with some of the COVID-19 related 
studies. The comparison is presented in Table 34. The table is sorted 
from the oldest to the latest by the year. 

5. Conclusions and future work 

After the rapid spread of the COVID-19 (Coronavirus), computer 
science engineers shared in the development of the automatic diagnosis 
of that disease aiming at reaching an early and accurate diagnosis to face 
any future spread of that virus. The current study proposed a hybrid 
COVID-19 framework named HMB-HCF. It contained nine phases that 
were discussed in detail. A lung segmentation algorithm using X-Ray 
images named HMB-LSAXI was suggested in the third phase. An abstract 
CNN model named HMB1-COVID19 was designed and discussed in the 
sixth phase. It was cascaded in three blocks where each block contained 
convolutional and pooling layers. Batch normalization, regularization, 
dropout, and data augmentation were used in the current study. A 
combined deep learning and genetic algorithm overall algorithm for 
learning and optimization named HMB-DLGA was suggested in the ninth 
phase. A hybrid hierarchy model using HMB1-COVID19 and transfer 

learning pre-trained models was proposed also in the ninth phase. 
Extensive experiments were applied in the current study and the state- 
of-the-art performance metrics were reported. The used dataset was 
collected, filtered, and unified from 8 different sources. The proposed 
HMB-LSAXI algorithm reported a segmentation success ratio of 53.30%. 
The weighted sum (WS) approach using loss, accuracy, F1-score, pre-
cision, recall, and AUC metrics with different ratios were used to eval-
uate the models’ performance in the different experiments. The 
experiments with (and without) segmentation used VGG16, VGG19, 
ResNet50, ResNet101, Xception, DenseNet121, DenseNet169, Mobile-
Net, and MobileNetV2 pre-trained models besides the proposed HMB1- 
COVID19 model. Nine models achieved WS metrics above 90%. The best 
model was VGG16 as it reported a WS value of 99.92% while the worst 
model was ResNet50 as it reported only 27.73% concerning the last 
reported results. The hybrid hierarchy model was verified and validated 
on unseen datasets and it reported state-of-the-art prediction accuracies. 
Also, a comparison between the current study and other related studies 
was applied. This concludes the applicability of the suggested approach. 
In future work, more experiments can be applied using different 
hyperparameters optimizers such as Harris-Hawks Optimization or 
Manta Ray Foragining Optimizer. The segmentation algorithm can be 
improved to segment the unbalanced and low-resolution images. CT 
datasets along with X-Ray ones can be used in the hybrid approach for 
more accurate and precise results. 

Source code 

The source code is available at GitHub: https://github.com/Hossam 
Balaha/Hybrid-COVID-19-Segmentation-and-Recognition-Framework- 
HMB-HCF. 
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Appendix 1. Convolutional neural networks 

A convolutional neural network (CNN), in the current study, is the core of the learning process and model construction. A CNN is constructed by 
cascading layers. It is used to analyze and learn from visual elements. The major advantage of using CNNs is that the features are extracted auto-
matically by the selected CNN architecture [115]. Hence, there is no demand for the feature extraction manual and traditional ML techniques 
[116,117]. 

Basically, an image x from the X dataset is the input to a CNN (i.e., X-Ray lung image in our case). The CNN learns and extracts features auto-
matically from X, which is named the training subset after the splitting phase. X is an array of images (Eq. (16)) where an image x has a size shown in 
Eq. (17). 

X = [x1,…, xr,…, xm− 1, xm] (16)  

Size(xr) = (w, h, ch) (17)  

where xr is the image at an index r and m is the number of images. Commonly, w and h are equal. Different types of layers can be used with CNNs such 
as the convolutional layer, the pooling layer, the fully-connected (FC) layer, the activation layer, and the dropout layer [118]. 

Convolutional layer 

A convolutional (Conv. for short) layer applies filters for feature extraction. Each layer can represent a specific image feature extractor such as 
horizontal edges [119]. A single convolutional layer can contain nc filters where each of them has a size shown in Eq. (18). 

Size
(
convfilter

)
= (wc, hc, chc) (18)  

where wc is the convolutional filter width, hc is the convolutional filter height, and chc is the number of convolutional filter’s channels (chc is equal to or 
less than ch). Commonly, wc and hc are equal. Any convolutional layer has two main factors, padding, and stride. Padding is the process of adding zeros 
on the boundaries of the input matrix symmetrically. This will help to maintain the output dimension similar to the input dimension. Stride is the 
number of added steps while we are moving in each direction. The stride is one by default [120]. The convolutional layer output size can be computed 
from Eq. (19). 

Size(conv) =
(

⌊
win − wc + 2 × pc

scw
⌋+ 1 , ⌊

hin − hc + 2 × pc

sch
⌋+ 1 , nc

)

(19)  

where win is the input width, hin is the input height, scw is the convolutional stride width, sch is the convolutional stride height, and pc is the con-
volutional padding size. Commonly, scw and sch are equal. For example, if the input is (32, 32, 3) and the convolutional kernel is sized (5, 5, 3) with no 
padding, stride size (1, 1), and 10 filters, then the convolution output size will be (28, 28, 10). Fig. 33 illustrates the convolution layer process 
graphically. 
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Fig. 33. Graphical illustration of the convolution layer process.  

Pooling layer 

Pooling layers can follow the convolution layers for dimensionality reduction. They will scale down and keep the most important features from the 
previous convolutional layer according to the pooling layer type. Pooling layer types include max-, average-, min-, and sum- pooling. The commonly 
used pooling layer is the max-pooling layer [121]. The kernel size of a pooling layer is shown in Eq. (20). 

Size(poolkernel) =
(
wp, hp

)
(20)  

where wp is the pool filter width and hp is the pool filter height. Commonly, wp and hp are equal. Similar to convolutional layers, a pooling layer has 
padding and stride. The pooling layer output size can be computed from Eq. (21). 

Size(pool) =
(

⌊
win − wp + 2 × pp

spw
⌋+ 1 , ⌊

hin − hp + 2 × pp

sph
⌋+ 1 , nin

)

(21)  

where nin is the input number of filters, spw is the pooling stride width, sph is the pooling stride height, and pp is the pool padding size. Commonly, spw 
and sph are equal. For example, if the input is (28,28,10) and the pooling kernel is sized (2,2) with no padding and stride size (2,2), then the pooling 
output size will be (14,14,10). Fig. 34 illustrates the pooling layer process graphically.

Fig. 34. Graphical illustration of the pooling layer process.  
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Fully-connected (FC) layer 

FC layers exist after cascading the convolutional and pooling layers. An FC layer connects all of the previous layer neurons to every single neuron it 
has (i.e., flattens the previous multi-dimensional layer’s neurons). No more spatial information can be extracted in the FC layers. Hence, there can be 
no more convolutional layers after an FC layer [122]. Multiple FC layers with different numbers of neurons can be cascaded. The output layer is also an 
FC layer but its number of neurons is equal to the number of categories (i.e., classes) in the applied task. 

Activation function layer 

The activation function layer determines whether each neuron should be activated or not. The major advantage of it is the ability to provide non- 
linearity into the neural network [123]. They are added in the hidden layers such as convolutional and FC layers. There are different activation 
functions such as Sigmoid and ReLU [124]. 

ReLU is a widely used piece-wise linear function that will output the input value directly if it is positive and zero otherwise. It has three main 
advantages (1) easy to compute and (2) does not saturate, and (3) does not fall in the vanishing gradient problem [125]. But it suffers from the dying 
ReLU problem [126] which is solved by the Leaky ReLU activation function [127]. Eqs. (22) and (23) show the computational formulas for the ReLU 
and Leaky ReLU respectively. 

ReLU(z) =
(

z if z > 0
0 Otherwise (22)  

LeakyReLU(z) =
(

z if z > 0
α × z Otherwise (23)  

where z is an input value and α is a small selected value (i.e., 0.3). 
The SoftMax function is a generalization of the logistic regression binary form. It is widely used for multi-class classification tasks [128]. It is used 

to convert an array of values into probabilities, where each value is proportional to a relative scale of each value in the array as shown in Eq. (24). The 
lower the value of it, the more favorable [129]. 

SoftMax(Z)r =
ezr

∑N
t=1ezt

(24)  

where Z is the input array of values, zr is the value at index r, and zt is the value at another index t. Table 35 summarizes the equations of the 
used activation functions.  

Table 35 
Summarization of the used activation functions.  

Function Equation 

Exponential linear unit (ELU) f(z) =

(
α × (ez − 1), if z < 0.
z, Otherwise.

Exponential f(z) = ez 

Rectified linear unit (ReLU) f(z) =

(
z, if z > 0
0, Otherwise.

Scaled exponential linear unit (SELU) f(z) =

(
scale × α × (ez − 1), if z < 0
scale × z, Otherwise.

Sigmoid f(z) =
1

1 + e− z  

Hyperbolic tangent (Tanh) f(z) =
2

1 + e(− 2×z) − 1   

Parameters optimization 

Parameters (i.e., weights) optimization algorithms and techniques help the models generalize, achieve better performance metrics, and reach the 
global minimum faster [130]. Gradient descent algorithm is the default and traditional approach to optimize the learnable parameters of neural 
networks and many other ML algorithms [131]. It takes small steps in the negative gradient direction of the loss (i.e., error) function as shown in Eq. 
(25). 

θu+1 = θu − η×E(θu) (25)  

where θ is the parameters, u is the iteration number, η is the learning rate, and E is the error function. The standard gradient descent algorithm is 
applied to the entire dataset. The learning rate, η, is a hyperparameter that controls the adjusting step. The lower the learning rate value, the slower the 
move along the downward slope, and the more time it required. 

There are parameters optimization techniques that overcome the gradient descent drawbacks such as Adaptive Moment Optimization Algorithm 
(Adam), AdaGrad, AdaDelta, AdaMax, RMSProp, Nesterov-accelerated Adaptive Moment Estimation (Nadam), and Follow-the-regularized-leader 
(Ftrl). 

Adagrad adapts the learning rate to the parameters in two ways (1) applies smaller updates for the parameters that are associated with frequent 
features, and (2) applies larger updates for the parameters that are associated with infrequent features. Hence, it is suitable to handle sparse data 
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[132]. 
Adadelta is a derivative of the Adagrad. It seeks to reduce the Adagrad monotonically and aggressive decreasing learning rate. Adadelta applies a 

fixed size window to accumulate the past squared gradients instead of accumulating all of them [133]. 
RMSProp and Adadelta were developed independently to resolve the Adagrad’s radically diminishing learning rates [134]. Adam [34] computes 

adaptive learning rates for each parameter. It combines the Momentum [135] and RMSProp heuristics as they apply contrasting approaches. The 
Momentum accelerates the search in the minima direction the RMSProp impedes the search in the direction of the oscillations. 

AdaMax exhibits stable behavior [136]. Nadam combines Adam and Nesterov Accelerated Gradient (NAG) optimizers [137]. Ftrl gives better 
performance compared with the sparsity trade-off [138]. 

Dropout layer 

Dropout is an important parameters regularization technique. It is the process of dropping some of the neurons of the preceding layer to prevent 
overfitting on the training data and achieve better generalization [139]. Selecting a very high dropout ratio will decrease the number of parameters 
and may lead to a decrease in the performance metrics [29]. Fig. 35 shows a graphical illustration of the dropout process.

Fig. 35. Graphical illustration of the dropout process.  

Batch normalization (BN) layer 

BN is used to standardize the inputs, stabilize the parameters learning process, and reduce the internal covariate shift. Standardization means 
rescaling the parameters to have a mean value of zero and a standard deviation value of one [140]. Eq. (26) shows the standardization method. 

DataStandardized =
Data − Mean

Standard Deviation
(26)  

Regularization 

Regularization is a technique that modifies the learning algorithm slightly. This can improve the model performance and generalizes better as well 
on the unseen data. L1 and L2 are the widely used regularization types [141]. 

Appendix 2. Genetic algorithms (GAs) 

The genetic algorithms (GAs) major advantages can be (1) it supports multi-objective optimization tasks, (2) it handles noisy environments, (3) it 
merges different combinations to boost the best one, (4) it is used to solve many noisy and stochastic problems effectively, and (5) simpler to 
implement compared to other techniques that perform the same task [142–144]. 

GA steps include the creation of the initial population, fitness function calculation, sorting, selection, crossover, and mutation. After a set of it-
erations, the final and best chromosome with the highest fitness function value is reported upon completion. GA steps can be summarized as follows 
[145,146]: 
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Step 1: The GA starts by initiating a set of initial solutions which is called the “population”. Each solution is called a chromosome and is characterized 
by a set of values called “genes”.  

Step 2: Start working on each solution by iterating on them or applying parallel processing. For the retrieved solution, a fitness function is used to 
determine how fit it is. It takes a fitness score to compete with others. The chance that a solution will be selected or not for the next generation 
is based on its fitness score (i.e., solutions with high fitness scores will have higher probabilities to be selected for the next generation).  

Step 3: The selection step takes place after computing all of the fitness scores. The fittest solutions will remain and pass their genes to the next 
generation. This can occur by sorting them according to their fitness scores in descending order and selecting the first two solutions or half of 
them. The number of selected solutions depends on the task itself.  

Step 4: Crossover is considered the most significant step in a GA. First, a crossover point is selected randomly or pre-defined. Second, offspring are 
created by swapping the genes of parent solutions among themselves. Finally, the new offspring are added to the new population of the next 
generation.  

Step 5: Some of the new solutions’ genes are subjected to a mutation with a low random probability. This denotes that some of the genes in the 
solution can be changed. The mutation process prevents premature convergence and maintains diversity within the population. It is preferred 
to use a low-rate mutation to avoid any search space randomness.  

Step 6: Repeat Step 2 until convergence (i.e., offspring are not significantly different from the previous generation) or repeat for a set of iterations if 
the task does not focus on the convergence.  

Step 7: Upon completion, the required solutions are reported. 

Fig. 36 illustrates the GA steps graphically.

Fig. 36. Graphical illustration of the genetic algorithm (GA) steps.  

Appendix 3. Table of abbreviations 

Table 36 presents the “Table of abbreviations” used in the current study and it is ordered in ascending order.  

Table 36 
Table of abbreviations.  

Abbreviation Description 

ACGAN Auxiliary classifier generative adversarial network 
Adam Adaptive moment optimization algorithm 
AI Artificial intelligence 
ANN Artificial neural network 
AUC Area under curve 
BiGAN Bidirectional generative adversarial network 
BN Batch normalization 
CCGAN Context-conditional generative adversarial network 
CFS Correlation-based feature selection 
CS Computer science 
CSV Comma separated values 
CT Computerized tomography 
CV Computer vision 
CNN Convolutional neural network 
COVID-19 Coronavirus 19 
DA Data augmentation 
DBN Deep belief network 
DL Deep learning 
ELU Exponential linear unit 
FC Fully-connected 
Ftrl Follow-the-regularized-leader 
GA Genetic algorithm 
GAN Generative adversarial network 

(continued on next page) 
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Table 36 (continued ) 

Abbreviation Description 

LSTM Long short-term memory 
MERS Middle east respiratory syndrome 
ML Machine learning 
NA Non-applicable 
Nadam Nesterov-accelerated adaptive moment estimation 
NAG Nesterov accelerated gradient 
NP-hard Non-deterministic polynomial-time hard 
PR Pattern recognition 
ReLU Rectified linear unit 
RGB Red green blue 
RNN Recurrent neural network 
ROI Region of interest 
SARS Severe acute respiratory syndrome 
SELU Scaled exponential linear unit 
Tanh Hyperbolic tangent 
TF Transfer learning 
WHO World health organization 
WS Weighted sum  

Appendix 4. Table of symbols 

Table 37 presents the “table of symbols” used in the current study.  

Table 37 
Table of symbols.  

Symbol Description Symbol Description 

N The number of classes (i.e., categories) pp The pooling padding size 
c A specific class (i.e., category) where c ∈ C spw The pooling stride width 
C The used classes (i.e., categories) where count(C) = N sph The pooling stride height 
ch The number of the image channels nin The filter input filters count 
R, G, B Red, Green, and Blue respectively z An input value 
Gr The resultant grayscale pixel value α A small value for the Leaky ReLU activation function 

π The PI value (i.e., 3.14 or 
22
7

)  Z Array of inputs 

σ The standard deviation r The iteration number 
xk The x-coordinates of the kernel matrix K θ The parameters (i.e., weights) 
yk The y-coordinates of the kernel matrix K η The learning rate 
w The image width E The error function 
h The image height TP True Positive 
ik The kernel row index TN True Negative 
jk The kernel column index FP False Positive 
K The kernel matrix FN False Negative 
Xc The images in a c class (i.e., category) ε A very small added value to avoid the division by zero 
Xci The images in a ci class (i.e., category) w The weight used in the WS method such as w1 and w2 
X The images dataset Np The size of the population 
x A single image Ns The number of genetic algorithm iterations 
xr A single image at index r Nc The number of required combinations to be returned 
m The number of images Sr The split ratio 
nc The number of convolutional filters Y The dataset labels 
wc The convoltional filter width Os The list of the used parameters optimizers 
hc The convoltional filter height Ws The list of the used parameters initializers 
chc The convoltional filter number of channels Ds The list of the used dropout ratios 
win The filter input width Bs The list of the used batch sizes 
hin The filter input height Ls The list of the used transfer learning learn ratios 
pc The convolutional padding size Hs The list of the used hidden activation functions 
scw The convolutional stride width Ms The list of the used performance metrics 
sch The convolutional stride height Rs The list of the used regularizers 
wp The pooling filter width L The number of returned categories (i.e., classes) 
hp The pooling filter height chin The number of input channels  
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