
sensors

Article

A Novel Anti-Noise Fault Diagnosis Approach for Rolling
Bearings Based on Convolutional Neural Network Fusing
Frequency Domain Feature Matching Algorithm

Xiangyu Zhou, Shanjun Mao * and Mei Li

����������
�������

Citation: Zhou, X.; Mao, S.; Li, M. A

Novel Anti-Noise Fault Diagnosis

Approach for Rolling Bearings Based

on Convolutional Neural Network

Fusing Frequency Domain Feature

Matching Algorithm. Sensors 2021, 21,

5532. https://doi.org/10.3390/

s21165532

Academic Editor: Len Gelman

Received: 20 July 2021

Accepted: 15 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China;
zxy0112k@pku.edu.cn (X.Z.); mli@pku.edu.cn (M.L.)
* Correspondence: sj.mao@pku.edu.cn; Tel.: +86-010-6275-5420

Abstract: The development of deep learning provides a new research method for fault diagnosis.
However, in the industrial field, the labeled samples are insufficient and the noise interference is
strong so that raw data obtained by the sensor are occupied with noise signal. It is difficult to
recognize time-domain fault signals under the severe noise environment. In order to solve these
problems, the convolutional neural network (CNN) fusing frequency domain feature matching
algorithm (FDFM), called CNN-FDFM, is proposed in this paper. FDFM extracts key frequency
features from signals in the frequency domain, which can maintain high accuracy in the case of
strong noise and limited samples. CNN automatically extracts features from time-domain signals,
and by using dropout to simulate noise input and increasing the size of the first-layer convolutional
kernel, the anti-noise ability of the network is improved. Softmax with temperature parameter
T and D-S evidence theory are used to fuse the two models. As FDFM and CNN can provide
different diagnostic information in frequency domain, and time domain, respectively, the fused
model CNN-FDFM achieves higher accuracy under severe noise environment. In the experiment,
when a signal-to-noise ratio (SNR) drops to -10 dB, the diagnosis accuracy of CNN-FDFM still reaches
93.33%, higher than CNN’s accuracy of 45.43%. Besides, when SNR is greater than -6 dB, the accuracy
of CNN-FDFM is higher than 99%.

Keywords: fault diagnosis; convolutional neural network; deep learning; anti-noise

1. Introduction

Along with the rapid development of the modern industry and sensor monitoring
technology, a large amount of sensor data can be obtained [1]. Mining valuable information
contained in these data is a significant task of intelligent fault diagnosis, which is a current
hot spot for scholars [2]. Rotating machinery is widely used in industrial applications, and
rolling bearing, as the core component of rotating machinery, is the most vulnerable part
though [3]. Bearing failure caused by operation in complex and harsh environment will
lead to shutdown of large rotating machinery, which could result in enormous economic
loss and even threaten the safety of stuff [4]. Accurate and effective fault diagnosis of
rolling bearings, not only reduce the cost of maintenance, but also improve the reliability
and stability of the equipment [5].

Generally speaking, we mostly use the vibration signals collected by the sensor as the
basis of fault diagnosis [6]. Common intelligent fault diagnosis is mainly constructed by
the algorithms of signal processing and pattern recognition. Signal processing techniques
extract and select key features from the collected raw vibration signals that contain both use-
ful information and useless noise [7]. Commonly used methods are wavelet analysis [8,9],
fourier spectral analysis [10], empirical mode decomposition (EMD) [11,12] and other
feature transformation techniques [13–15]. However, exquisite technology and rich expert
experience are required in the above approaches [16]. Pattern recognition is to identify the
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fault information within the extracted features by artificial intelligence method and realize
automatic fault diagnosis. Machine learning algorithms have been successfully applied
in fault diagnosis, such as artificial neural networks (ANN) [17], support vector machine
(SVM) [18], k-nearest neighbor (KNN) [19] and hidden Markov model (HMM) [20].

In recent years, with the popularity of deep learning as a computational framework in
various research fields, deep learning provides a new research direction for fault diagno-
sis [21]. Deep learning methods have recently been applied and have realized remarkable
results, such as convolutional neural network (CNN) [22,23], recurrent neural network
(RNN) [24], deep belief network (DBN) [25], stacked auto-encoders (SAE) [1,26], long
short-term memory (LSTM) [27,28].

Many of the works mentioned above have achieved pretty good results, nevertheless,
the following problems in industrial sites still need to be considered: (1) Strong noise
interfere. It is necessary to study the anti-noise ability of the model due to the strong noise
interference in industrial site. (2) Limited labeled samples. The number of fault samples
is limited in the industry, which can easily cause over-fitting. We need to extract the key
information which can reflect the fault characteristics from the limited samples.

To solve the first problem, Zhang et al. [29] proposed a deep CNN, in which small
mini-batch training and kernel dropout were used as interference to simulate the influence
of noise. Shi et al. [30] proposes a residual dilated pyramid network combined with full
convolutional denoising auto-encoder, which is suitable for different speeds and noise
modes. Liu et al. [31] combined a one-dimensional denoising convolutional auto-encoder
(DCAE) and a one-dimensional convolutional neural network (CNN) to solve this problem,
whereby the former is used for noise reduction of raw vibration signals and the latter
for fault diagnosis using the denoised signals. Most of these denoising methods are only
applicable to the noisy environment where signal to noise ratio (SNR) is greater than−4 dB,
but cannot be applied to more severe noise environment.

To solve the second problem, Zou et al. [5] proposed an adversarial denoising convo-
lutional neural network(ADCNN), in which adversarial training was used to expand the
labeled samples. This method improved the robustness and generalization of ADCNN,
and avoid over-fitting with limited number of labeled samples. Dong et al. [32] proposed a
dynamic model of bearing to generate massive and various simulation data, and diagnosis
for real scenario are based on transfer strategies and CNN. Pan et al. [33] proposed a
semi-supervised multi-scale convolutional generative adversarial network for bearing fault
identification when the labeled data are insufficient. These methods mostly generate their
own datasets by adversarial training or simulation when the labeled samples are limited.

In addition, when the vibration signal is selected as the original data, the input data
can be divided into time domain and frequency domain. Many current application of deep
learning models complete feature extraction and classification in one single domain [34].
For the signals in time domain, the characteristics of the fault are not obvious and easily
affected by noise. However, for the signals in the frequency domain, different faults have
obvious peaks in different frequency bands in the frequency spectrum, and these peaks
are still obvious in the case of strong noise. Moreover, the fault characteristics which are
not obvious in time domain can be obtained after the signal is converted into frequency
domain. The same raw signal can provide different fault information in time domain and
frequency domain [35]. The fused fault information is more comprehensive, which can
improve the overall accuracy of the model.

In this paper, CNN fusing Frequency Domain Feature Matching algorithm (FDFM)
named CNN-FDFM, is proposed to solve the problems of strong noise interference and
limited samples in industry field. Compared with previous studies, our model is qual-
ified for severe noise environment with SNR of −10 dB. When solving the problem of
limited samples, FDFM focuses on the key features of limited data, which can be used to
characterize different fault types, instead of using the method of expanding the data set.
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(1) For signals in the frequency domain, the FDFM proposed in this paper can ensure
high recognition rate of test samples in strong noise environment, and is also effective
when the number of training samples is small.

(2) For signals in the time domain, one-dimensional CNN is used to learn features and
complete classification automatically. The trick of dropout acts on the input layer during
training, which can simulate the noise input and enhance the anti-noise performance of the
network.

(3) By fusing the diagnosis result of the two algorithms with softmax and D-S evidence
theory, the information fusion between frequency domain and time domain is realized.
Model fusion makes the two algorithms complementary. CNN-FDFM achieves higher
diagnosis accuracy and better anti-noise performance. The feasibility and superiority of
the model are verified in the experimental data set.

2. A Brief Theoretical Background
2.1. FFT

Fast Fourier transform (FFT) is an algorithm of discrete Fourier transform (DFT) with
efficient and fast computation, which is very important in the field of signal processing.
Fourier transform can transform a signal from time domain to frequency domain. The DFT
of discrete signals with finite length X(n), n = 0, 1, 2, . . . , N − 1 is defined as:

Xk =
N−1

∑
n=0

xne−i2πk n
N , k = 0, 1, 2, . . . , N − 1 (1)

The sampling theory needs to be satisfied when FFT algorithm is carried out, which
demands that the sampling frequency fs.max must be greater than two times the highest
frequency fmax in the signal ( fs.max > 2 fmax). Therefore, spectral aliasing can be avoided.

Additionally, when the time-domain signal is transformed by FFT, the range of fre-
quency for analysis is determined by the sampling frequency fs.max no matter how many
points (the value of N) are taken. If we take N points for FFT, the frequency interval
between two adjacent points after the transformation is fs.max/N. The frequency of k-th
point is k× ( fs.max/N), k = 0, 1, 2, . . . , N − 1. The values of these N points are symmetric,
so only N/2 points are actually used. In order to improve the resolution of the spectrum
with constant sampling frequency, the length of the sampling data should be extended so
that the influence of spectrum leakage can be indirectly reduced.

2.2. CNN

As an important method of deep learning, CNN has good effects in speech and image
processing. CNN is constructed by three types of layers, which are the convolutional layer,
the pooling layer and the fully connected layer. Feature extraction of input data is achieved
by the convolutional layer and the pooling layer, while the fully connected layer is mainly
responsible for classification.

The input signal is convoluted in the convolutional layer with a series of kernels. Each
kernel is used to extract the features from the local input signal. By sliding the kernel with
a constant stride and repeating the convolution operation on the data in the new receptive
field, the feature of the input signal extracted by one kernel is obtained. The weight of
kernel is shared during this this process. The corresponding feature map for each kernel
can be obtained by activation function. The process of convolution is described as follows:

xi
l = f

(
xr

l−1 ∗ Ki
l + bi

l

)
= f

(
∑

r
xr

l−1 ∗ Ki
l,r + bi

l

)
(2)

where xi
l is the i-th output feature map of convolutional layer l; f (·) is a nonlinear activation

function; xr
l−1 is the r-th convolutional region of feature map generated from the layer l− 1;

Ki
l is weight matrix of i-th kernel in convolutional layer l; bi

l is the bias. In CNN, Rectified
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Linear Unit (ReLu) is commonly used as activation unit to enhance the representation
ability. The expression of Relu function is as follows:

xi
l = max

(
0, xi′

l

)
(3)

where xi
l
′ is the output of i-th kernel in convolutional layer l without nonlinear activation.

Generally, the pooling layer is added to each convolutional layer for generating
lower-dimension feature maps by sub-sampling operation. Max-pooling layer is the most
commonly used type, which takes the maximum value of the feature in the receptive field
as the output. The expression of the max-pooling transformation is as follows:

xi
l+1 = max

(k−1)W+1≤s≤kW
xi

l(s) (4)

where xi
l+1 is the output of the max-pooling layer, xi

l(s) denotes the s-th value in each
pooling area, s ∈ [(k− 1)W + 1, kW], W is the width of the pooling area.

To integrate and classify the local features extracted from prior layers, the fully con-
nected layer is finally applied. Logits are the output of the fully connected layer. Then,
softmax is mainly used in the last layer to transform logits into possibilities, and it can be
expressed as follows:

P(y = i) = Softmax(i) =
eai

∑C
j=1 eaj

(5)

where P(y = i) is the possibility of the i-th categories (1 ≤ i ≤ C), C is the number of
categories, ai is the i-th value of logits.

3. Proposed Fault Diagnosis Method

Generally, in order to ensure the generalization of the model, we need plenty of labeled
fault samples to train the model. Actually, labeled fault samples are difficult to obtain
in an industry field, which could easily cause over-fitting and poor generalization of the
model. Additionally, industrial environment is harsh and terrible, covered with a lot of
interference, so the data obtained by the sensor are occupied with strong noise. To solve the
problems above, we utilize FFT to obtain key frequency features to improve the diagnosis
accuracy of CNN under noisy environment as well as in the case of few labeled samples.
The principle of feature selection from frequency spectrum, the structure of CNN and
the strategies for model fusion are introduced orderly in this part. The structure of fault
diagnosis method proposed in this paper is shown in Figure 1.

3.1. Frequency Domain Feature Matching Algorithm

Section 2.1 introduces that FFT can transform a signal from time domain to frequency
domain. By this means, when time-domain signals are transformed to a frequency domain,
the characteristics of the signals can be observed more clearly.

The frequency-domain signal is less affected by noise than the time-domain signal.
After the fault signal is converted from time domain to frequency domain, the abscissa
corresponding to the peak value in spectrum can be used as the feature frequency of
each fault signal. If the working condition remains the same, the noise interference will
only change the amplitude of the original frequency, but will not change the location of
the original frequency, which means that the abscissa of the peak will not change in the
strong noisy environment. The abscissa of the peak in spectrum can represent the feature
frequency of the fault in this case.
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Figure 1. Structure of fault diagnosis method proposed in this paper.

For the samples of the same fault type, we count the occurrence times of feature
frequencies in all feature sequences and sort them in descending order. The first n feature
frequencies are selected as the feature sequence of this fault type. If there are m fault types,
the feature matrix with size of m× n will be generated, which is the final result in training
phase. The training process of FDFM is shown in Figure 2.

For some fault types, the segmentation of samples and the interference of noise will
cause fluctuation in amplitude, and when noise interference is severe enough, the original
peak value will be exceeded by the amplitude of other frequencies. Therefore, in order to
ensure that the key features are not lost, we extract a series of feature frequencies according
to the descending order of peak value, which constitutes a set of feature frequencies of fault
samples. In this paper, the feature sequence generated by each training and test sample is
composed of 10 feature frequencies.

In test phase, the feature sequence of each test sample is matched with each row of
the feature matrix to earn the score. The score is used to measure the matching degree of
each category, and the category with the highest score is the final diagnosis result. In order
to make the discrimination of samples more obvious, the following three scoring rules are
proposed. For h ∈ [1, m],

(1) Count the number in { f1, f2, . . . , f10} ∩ {Fh1, Fh2, . . . , Fhn}, and score 1 point for each
number in common.

(2) Count the number in { f1, f1 ± 1, f2, f2 ± 1, . . . , f6, f6 ± 1} ∩ {Fh1, Fh2, . . . , Fhn}, and
score 1 point for each number in common.

(3) Count the number in { f1, f2, f3} ∩ {Fh1, Fh2, Fh3}, and score 4 point for each number
in common.

Where { f1, f2, . . . , f10}denotes 10 feature frequencies of each test sample, {Fh1, Fh2, . . . , Fhn}
denotes the feature sequence of on the h-th row of the feature matrix. The general procedure
of the proposed FDFM algorithm is given in Algorithm 1.
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3.2. 1D-CNN with Dropout in the First Layer

As shown in Figure 3, a one-dimensional convolutional neural network is used to learn
features adaptively from raw vibration signal in time domain without prior knowledge.
The input of the CNN is a segment of normalized bearing fault vibration temporal signal
and dropout is used in the input layer.

Dropout is a trick proposed by Srivastava et al. [36] to prevent the network from
overfitting. It is based on the premise that the neural network unit is temporarily deacti-
vated according to a certain probability called dropout rate during training. While in the
test phase, dropout is no longer applied. It is found that a network trained with dropout
usually leads to much better generalization ability compared to another network trained
with other regularization methods. However, in CNN, a dropout is only used for the fully
connected layer, but not for other layers. This is because overfitting is not really a problem
for convolutional layers which do not have many parameters. The convolutional layers
usually use batch normalization as an alternative. In addition to regularization, batch
normalization also avoids the problem of gradient disappearance during training of CNN,
which can reduce the training time and get better results.
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Algorithm 1 Frequency Domain Feature Matching Algorithm

Input: Training dataset: Dtrain = {(Xtrain(i), Ytrain(i)), i = 1, 2, 3, · · · , k}; length of training dataset: k;
Test dataset: Dtest = {(Xtest(i), Ytest(i)), i = 1, 2, 3, · · · , s}; length of test dataset: s;
Fast Fourier transform (FFT): F (·);
The number of selected feature frequencies for each sample: FN = 10;
The function that returns the index of the array sorted in ascending order: argsort(·);
The function that reverses the array and returns the first FN elements: ReverseFN(·);
The number of categories: m;
The number of selected feature frequencies for each category: n;
Scoring function with scoring rules 1, 2 and 3: SR{A, B}; A is feature frequencies; B is feature matrix.

Output:
Feature matrix with size of m× n;
Scoreboard of all test samples.

Training stage: Obtain feature matrix with size of m×n
for i ∈ [1, k] do

XtrainFFT(i) = F (Xtrain(i)) (Obtain the frequency spectrums of k training samples by FFT);[
f i
1, f i

2, · · · , f i
FN

]
= ReverseFN{argsort[XtrainFFT(i)]};

Feature Frequencies(i) =
[

f i
1, f i

2, · · · , f i
FN

]
(Extract FN feature frequencies from frequency spectrum of each training sample);

end for
for label ∈ [1, m] do

AFlabel = [ ];
for i ∈ [1, k] do

if Ytrain(i) == label then
Append Feature Frequencies(i) to the end of the list AFlabel ;

end if
end for

Count the occurrence times of feature frequencies in AFlabel and sort them in descending order;
The feature sequence Flabel consists of the first n feature frequencies;
Flabel = [Flabel1, Flabel2, · · · , Flabeln];

end for

Feature Matrix =


F11 F12
F21 F22

· · · F1n
· · · F2n

...
...

Fm1 Fm2

. . .
...

· · · Fmn

;

return Feature Matrix
Test stage: Calculate scoreboard of all test samples

Scoreboard = [ ];
for j ∈ [1, s] do

XtestFFT(j) = F (Xtest(j)) (Obtain the frequency spectrums of s test samples by FFT);[
f j
1, f j

2, · · · , f j
FN

]
= ReverseFN{argsort[XtestFFT(j)]};

Feature Frequencies(j) =
[

f j
1, f j

2, · · · , f j
FN

]
(Extract FN feature frequencies from frequency spectrum of each test sample);
Scorej = 0 (Initialize score);[
Sj1, Sj2, · · · , Sjm

]
= SR

{
Feature Frequencies(j), Feature Matrix

}
;

Scorej =
[
Sj1, Sj2, · · · , Sjm

]
;

Append Scorej to the end of the list Scoreboard;
end for

Scoreboard =


S11 S12
S21 S22

· · · S1m
· · · S2m

...
...

Ss1 Ss2

. . .
...

· · · Ssm

;

return Scoreboard
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Figure 3. The architecture of one-dimensional convolutional neural network in this paper.

In this paper, dropout is used in the input layer to simulate the noise input during
training, which can increase the robustness and anti-noise ability of the network. When
the dropout rate of input layer is set to 0.5, samples randomly generated by dropout can
achieve the highest diversity.

According to Zhang et al. [29], the wide kernels in the first convolutional layer can
better suppress high frequency noise compared with small kernels. In this paper, the kernel
size of the first convolutional layer is increased to 256 to obtain the global characteristics of
the signal in the longer time domain and reduce the influence of noisy details in the shorter
time domain. The detailed parameters of CNN are shown in Table 1.

Table 1. Structures and parameters of CNN.

Layer Kernel Size/Step Size Kernel Number Output Size Padding

Conv1 256 × 1/16 × 1 16 128 × 16 YES
Pooling1 2 × 1/2 × 1 16 64 × 16 NO

Conv2 20 × 1/5 × 1 10 9 × 10 YES
Pooling2 2 × 1/2 × 1 10 4 × 10 NO

Fully connected layer 100 1 1 × 100
Softmax 10 1 1 × 10

3.3. Fusion Strategies: Softmax with Parameter T and D-S Evidence Theory

According to Sections 3.1 and 3.2, we can obtain the scoreboard from FDFM algo-
rithm and the output after softmax from CNN, which can be regarded as the normalized
probabilities.

Prior to fusing the diagnosis results in the frequency domain and time domain, it is
necessary to ensure that the output formats of the two algorithms are consistent, that is,
the output should be converted into the probability of each category and the probability
distribution is smoothed. First, we need to transform the integer scoreboard into probability
distribution. Second, we need to make the probability distribution of the two algorithms
smoother. Therefore, after the model training, we add a temperature parameter T to the
softmax function of trained CNN. FDFM algorithm also uses the softmax with parameter T
to transform scores into probabilities. The softmax with the parameter T is described as
follows:

P(y = i) = SoftmaxT(i) =
e

ai
T

∑C
j=1 e

aj
T

(6)
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where P(y = i) is the possibility of the i-th categories (1 ≤ i ≤ C), C is the number of
categories, ai is the i-th value of the logits, T is the temperature parameter.

Parameter T controls the smoothness of probability distribution generated by softmax.
The smaller T is, the closer the output of softmax is to one-hot code, which means the
maximum value of predicted probabilities is close to 1 but the others are close to 0. If T is
larger, the predicted probability distribution will be smoother. The smoothed probability
distribution contributes to error correction during algorithm integration.

Following smoothing of the predicted probability distribution obtained by the two al-
gorithms, we use D-S evidence theory to fuse the output probabilities of the two algorithms
to obtain the final diagnosis results.

D-S evidence theory, first proposed by Harvard mathematician Dempster and later
developed by Shafer [37], is a general framework for reasoning with uncertainty, which can
be considered as a generalization of the Bayesian theory. D-S evidence theory is often used
as a method of sensor fusion [38]. This theory is based on two ideas: Obtaining degrees of
belief for one question from masses, and combining such degrees of belief when they are
based on independent items of evidence.

In this paper, we use the fault types as frames of discernment of D-S evidence theory:
Θ = {A1, A2, · · · , An} if there are n categories. Ai represents the i-th fault type. Basic
probability assignment (BPA), also called mass, is defined on Θ. The mass m(Ai) of Ai
represents the degree of belief in Ai, and m(Ai) meets the following conditions:

m(∅) = 0
0 ≤ m(Ai ) ≤ 1
∑n

i=1 m(Ai ) = 1
(7)

The output probabilities of the two algorithms obtained by the softmax with parameter
T can be seen as the basic probability assignment function m1 for FDFM and m2 for CNN.
Specifically, the combination, which is called the joint mass m1,2 = m1

⊕
m2, is calculated

from the two sets of masses m1 and m2 in the following manner:

m1,2(Ai) = (m1
⊕

m2)(Ai) =
m1(Ai)m2(Ai)

K , i = 1, 2, · · · , n

K =
n
∑

i=1
m1(Ai)m2(Ai)

(8)

where m1,2(Ai) represents the probability that the final predicted result is Ai after combina-
tion, K is a factor for normalization, 1− K is a measure of conflict between the two mass
sets.

Finally, the combined predicted result is argmax m1,2(A).

4. Experiments
4.1. Data Description

In this paper, we selected an experimental database of bearing from the Case Western
Reserve University (CWRU) [39], and the sampling frequency of the dataset used for
verification experiments is 12 kHz. The experimental platform is shown in Figure 4. In
this experiment, rolling bearings are processed by electrical discharge machining (EDM)
to simulate different fault types. The vibration signal data we analyzed in this paper are
collected by the accelerators installed at the drive end.
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Figure 4. CWRU bearing experimental platform [40].

There are four types of states: ball fault (BF), inner race fault (IRF), out race fault (ORF)
and normal. Except the normal state, each fault type contains different fault diameters
of 0.007 inches, 0.014 inches and 0.021 inches, so ten fault types were considered in total.
The training and test samples were expanded by slicing the original vibration signal with
overlap, and each obtained sample has 4096 points. For the FDFM algorithm, FFT is
utilized to obtain the frequency spectrum of the sliced sample with all 4096 points. But for
CNN, we only used the first 2048 points of the sliced samples for accelerating the training
of CNN. Dataset A, B and C each contains 7000 training samples and 3000 test samples
under loads of 1, 2 and 3 hp, which means each category contains 700 training samples and
300 test samples. The specific information of experimental samples is shown in Table 2. All
experiments are based on Dataset A. Dataset B and C are used to discuss the cross-domain
variation trend of frequency spectrum when the working condition changes.

Table 2. Description of rolling element bearing datasets.

Fault Location Ball Inner Race Outer Race None

Category label 0 1 2 3 4 5 6 7 8 9
Fault diameter(inch) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021 0

Dataset Size
Train 700 700 700 700 700 700 700 700 700 700
Test 300 300 300 300 300 300 300 300 300 300

The original dataset provided by CWRU can be considered as clean signals without
noise interference, and the model proposed in this paper was trained by the original
samples without noise. In order to study the robustness of the model in noise environment,
we added Gaussian white noise to sliced test samples to generate noisy samples with
different SNRs, and the definition of SNR is shown as follows:

SNR = 10 log10

(Psignal

Pnoise

)
(9)

where Psignal and Pnoise are the power of signal and the noise respectively. The smaller
the SNR, the greater the noise interferes with the signal. Figure 5 shows the process of
adding white Gaussian noise to the original signal of inner race fault with 0.021 inches fault
diameter (IRF-0.021) under 1 hp when SNR is 0 dB. Figure 6 shows the original and noisy
waveforms of the ten fault types in time-domain and corresponding frequency domain
under 1 hp when SNR is 0 dB.
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4.2. Parameters Selection
4.2.1. Sampling Points of FDFM

In Section 2.1, we mentioned that increasing the number of sampling points could
improve the resolution of the frequency spectrum, abscissa of which is always integer. Gen-
erally, the time domain signal with length of N can be transformed into the frequency do-
main signal with length of N/2 by FFT. For example, if each sliced sample has 1024 points,
its frequency spectrum with the length of 512 will be obtained after FFT. Figure 7 shows the
frequency spectrums of BF-0.007 with different sampling lengths. The sampling lengths
of (a), (b) and (c) are 1024, 2048 and 4096, and their corresponding frequency spectrums
are composed of 512, 1024, and 2048 points, respectively. At the bottom of each graph are
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10 points, which represent feature frequencies of BF-0.007 obtained by FDFM algorithm,
also as the first row of the feature matrix. As we mentioned in Section 2.1, the frequency
of k-th point is k× ( fs.max/N) Hz and these points are used to represent different feature
frequencies. We can see that the longer signals can generate frequency spectrum with a
higher resolution by using more points, so the information in frequency domain can be
expressed more completely and accurately. As sampling length increases, the measure of
feature frequencies is more precise and the discrimination between adjacent points is more
obvious. Figure 8 shows the diagnosis results of FDFM algorithm under different SNRs
when the number of sampling points is 1024, 2048 and 4096.
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Figure 8 shows that when the test samples are made up from the original signals,
increasing the number of sampling points can improve the accuracy of FDFM algorithm.
As the SNR of noisy test samples decreases, the fluctuation of accuracy is small when
the sampling length is 4096. In order to express the frequency domain features more
accurately and reduce the training time of the algorithm, each sample in this paper contains
4096 points. The feature matrix in Figure 7c, obtained from the training of FDFM in which
each sample has 4096 points, is shown in more detail in the Figure 9.
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4.2.2. Scoring Rules of FDFM

In order to investigate the effectiveness of scoring rules in FDFM test stage, four test
samples, each composed of 2048 points of frequency spectrum, including two original test
samples of IRF-0.007, IRF-0.014 and their corresponding noisy samples (SNR = −8 dB),
are selected as comparison. The results are shown in Figure 10. The FFT spectrum of
each test sample and its 10 feature frequencies are on the left side. According to different
scoring rules, these 10 feature frequencies are compared with each row of feature matrix
in figure to obtain scoreboards, which are on the right side. It can be seen from the figure
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that when there is only the scoring rule (1), the scoring discrimination is not clear enough,
especially in the case of noise interference. By adding the scoring rule (2) and (3), in
turn, gap between the highest score and the lowest score becomes larger. Moreover, the
scores of other similar categories are increased by adding (2) and (3) so that favorable
error-correction information can be provided during fusion. To sum up, rule (2) can count
repeatedly to increase the difference of scores, and rule (3) can increase the weight of vital
feature frequencies, which are generally the frequencies of the top several peaks. Table 3
shows the diagnosis results of FDFM by different scoring rules under different SNRs. It can
be seen that the accuracy increases after combination under both strong and weak noise
environment. By combining these three rules, the upper limit of highest score is expanded
and the scoring discrimination is much clearer, which affects the value of parameter T of
softmax and provides the error-correction information during model fusion.
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Table 3. Diagnosis accuracy of FDFM by different scoring rules under different SNRs.

Accuracy (%)
SNR (dB)

−10 −6 −2 2 6

(1) 86.77 93.03 94.23 94.7 94.83
(1) and (2) 86.9 93.13 94.3 94.93 95.23

(1), (2) and (3) 88.73 94.47 95.2 95.9 96.37
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4.2.3. First-Layer Kernel Size of CNN

In order to reduce the training time of CNN, for each sample of 4096 points, we only
select the first 2048 points to train the model, and discard the other points. In Section 3.2,
we mentioned that increasing the size of the first-layer convolution kernel could expand
the receptive field and capture global features in a longer time domain. As described
in this dataset, the minimum speed is 1730 rpm and the sampling frequency is 12 kHz,
so each rotation should contain 416 sampling points. When the convolution kernel in
the first layer of CNN is wider than 416, every single convolution kernel can capture the
global features upon one whole period. Although increasing the size of the convolution
kernel will result in a lack of some detailed features, it can reduce the dependence of the
model on too subtle information in shorter time domain. When the test sample contains
a large amount of noise, the short time domain signal affected by noise will reduce the
diagnosis accuracy and the diagnosis of model is more dependent on the global features
of the signal. Increasing the size of the first-layer convolution kernel can obtain better
anti-noise performance but also increase the complexity of the model. In this experiment,
we investigated diagnosis accuracy and training time of CNN with different sizes of first-
layer convolution kernel. Trained CNN was tested with noisy samples with SNRs of
−4 dB and −6 dB respectively. The results are shown in Figure 11. It can be seen that
when the size of first-layer convolution kernel is larger than 256, the diagnosis accuracy
remains relatively stable. As the size of convolution kernel continues to increase, so does
the training time, while the improvement of diagnosis accuracy is insignificant. Therefore,
the size of first-layer convolution kernel is selected as 256 in this paper.
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4.2.4. Dropout Rate

Dropout is used in the input layer to improve the anti-noise ability of the model.
During training, the data points of the original input signal are set to zero randomly at
a certain rate called dropout rate. The input signal will not be destroyed when dropout
rate is set to 0. As dropout rate rises from 0 to 0.8, the noise-free training samples are
destroyed excessively, which means that the proportion of destroyed data points increases.
Here, the performance of CNN under different dropout rates was investigated, and the test
samples were composed of noisy samples with different SNRs from −8 dB to 8 dB, as well
as noise-free samples. Experimental results are shown in Figure 12.
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As dropout rate increases, the accuracy under severe noise environment such as SNR
of −8 dB can be improved significantly. However, as SNR increases, the diagnosis accuracy
falls when model is trained with a high dropout rate such as 0.8. It can be seen that
increasing dropout rate can improve the anti-noise ability of the model under severely
noisy situation, but it will make diagnosis accuracy decrease in the case of weak or free
noise when dropout rate is too high. Therefore, the dropout rate was determined to be a
moderate value of 0.5. Meanwhile, destroyed training samples randomly generated by
dropout can achieve the highest diversity when dropout rate is 0.5.

4.3. Performance of FDFM with Limited Sample Size

In order to study the diagnosis performance of FDFM algorithm with limited sizes of
samples, five new datasets were generated by reducing the number of the training samples.
Five training datasets are composed of 1%, 5%, 10%, 20% and 50% of training samples from
Dataset A respectively, which means that each category of them only contains 7, 35, 70,
140, 350 training samples. Figure 13 shows how the new training dataset was composed
compared to the original one.
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In this experiment, 3000 test samples with SNR of −6 dB were predicted by FDFM,
and the results are shown in Table 4. It can be seen that with the decrease of proportion of
training samples, the diagnosis accuracy decreased slightly, but the total decrease is less
than 4%. Even when the number of training samples only accounts for 1% of the original
training dataset, the accuracy is still higher than 90%. As the number of training samples
reduces, the training time will be greatly reduced.
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Table 4. Diagnosis accuracy and training time of FDFM under different sample proportions.

Training
Samples

Proportion 1% 5% 10% 20% 50% 100%

Number 70 350 700 1400 3500 7000

Accuracy (%) 90.33 90.73 91.2 92.43 92.83 93.9
Training time (s) 0.01 0.14 0.62 2.66 19.58 91.86

The reason why the diagnosis accuracy of FDFM cannot be affected by the number
of samples is that the feature matrix generated in the training stage can still be effective.
Specifically speaking, the feature frequencies of the same fault type are basically consistent
under the same working condition, so the feature matrix generated with few training
samples can represent each fault effectively. In general, FDFM can improve the diagnosis
accuracy in the case of limited sample size under noise environment, but FDFM can only
be used for recognition under a single working condition. Nevertheless, it still can provide
a reference to solve the problems of data scarcity and noise interference in industrial field.

4.4. Visualization of CNN

To visually explain the feature learning process of CNN, the t-distributed stochastic
neighbor embedding (t-SNE) technique of manifold learning is applied for visualization. It
can project high-dimensional data into two-dimensional or three-dimensional space, which
is very suitable for visualization of high-dimensional data [41]. Figure 14 shows the feature
visualization results of the input layer, the first pooling layer, the second pooling layer, and
the fully connected layer of CNN. At first, the distribution of input data is so scattered that
it is difficult to distinguish them. As the layers get deeper, the feature are more separable.
After two layers of convolution and pooling, all 10 categories are easily distinguishable in
the fully connected layer. Only the labels 0 and 2 are partially interlaced. This indicates
that CNN proposed in this paper has an excellent ability in adaptive feature extraction and
feature expression.
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4.5. Model Fusion

In this section, we fused the output results of the trained CNN and FDFM algorithm
by D-S evidence theory. The temperature parameters of softmax in these two algorithms
were determined through experiments. The parameter T was set as 10 in CNN and 4.5 in
FDFM, by which the smoothed probability is conducive to fusion. Taking a test sample with
a SNR of −4 dB as an example, the fusion process and results are shown in the Figure 15.
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After smoothing, the highest probability is not too sharp, and some possibilities
are given to the other categories. The CNN and FDFM algorithm can provide different
information, so the diagnosis results are more reliable after fusion. Experiments were
carried out to investigate the anti-noise performance of CNN, FDFM and their fusion
model called CNN-FDFM. The models were trained with noise-free signals and tested with
noisy samples with different SNRs from −10 dB to 8 dB. For each model, ten trials were
carried out, and the average values were taken as the results. The specific results are shown
in the Table 5.

Table 5. Diagnosis results of CNN, FDFM and CNN-FDFM under different SNRs.

Accuracy (%)
SNR (dB)

−10 −8 −6 −4 −2 0 2 4 6 8 Original

CNN 45.43 70.67 85.07 96 97.53 98.13 98.6 98.47 99.27 98.63 98.47
FDFM 87.77 92.57 93.9 94.57 95.57 96.33 96 96.13 96.4 96.1 96.87

CNN-FDFM 93.33 96.73 99.2 99.3 99.6 99.33 99.77 99.7 99.87 99.93 99.6

It can be seen from the Table 5 that CNN performs well when the SNR of test samples
is larger than −4 dB, and the accuracy is over 98% when SNR > 0 dB. However, as SNR
decreases less than −4 dB, the accuracy falls significantly and is less than 50% when SNR is
−10 dB. For FDFM, the accuracy is still high under strong noise environment, but the upper
limit of accuracy is only 96~97% when SNR > 0 dB. The fusion model CNN-FDFM, which
can make up for the shortcomings of both CNN and FDFM, achieves better performance
and the accuracy is higher than both of CNN and FDFM after fusion. The accuracy of
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CNN-FDFM is over 99% when SNR is higher than −6 dB. When SNR is −10 dB, the
accuracy of CNN-FDFM still reaches 93.33%, improved by 47.9% compared to CNN.

In order to further evaluate the classification and explain why the model performs
better after fusion, confusion matrixes of CNN, FDFM and CNN-FDFM were generated.
Figure 16 shows the three confusion matrixes, each of which records the diagnosis clas-
sification results when SNR is −6 dB, including both the classification information and
misclassification information. The vertical axis of the confusion matrix represents the true
label, and the horizontal axis represents the predicted label. Therefore, for 300 test samples
of the same label, confusion matrix can show how many test samples are classified correctly
and which category test samples are misclassified into. Figure 16a shows the classification
results of CNN. When SNR is −6 dB, recognition of CNN is not significant upon labels 0,
2, 4 and 7. The classification results of FDFM are shown in Figure 16b. It can be seen that
FDFM has poor recognition upon labels 4 and 8. The confusion matrix of CNN-FDFM is
shown in Figure 16c, and the samples misclassified by CNN and FDFM are corrected to the
true label mostly.
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In this case, CNN-FDFM achieves better performance for two reasons: (1) When these
two models recognize test samples of the same label, the accuracy of one model is high, and
the accuracy of the other is relatively low. The classification results of low-precision model
can be improved by high-precision model. For example, CNN is weak in recognizing
samples of label 7, with only 219/300 accuracy, while the accuracy of FDFM is 300/300
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under the same conditions. This indicates that FDFM can provide extra useful information
to correct the samples misclassified by CNN. (2) Even though the accuracy of CNN and
FDFM is not high for recognizing samples of a certain label, their misclassified categories
are different. Therefore, the weight of misclassified categories can be reduced after fusion.
For example, when these two models recognizing samples of label 4, the accuracy of CNN
and FDFM is 225/300 and 236/300, respectively. The misclassified category of CNN is
label 3 with 75 samples in it, while the misclassified categories of FDFM are label 7 with
35 samples, label 0 with 20 samples, label 2 with three samples and label 3 with one
sample. Misclassified categories do not overlap, which means the predicted probability of
the original misclassified categories will decrease after fusion. Therefore, the accuracy of
CNN-FDFM after model fusion reaches 297/300 for recognizing 300 test samples of label 4.

4.6. Comparison

FDFM, CNN, CNN-FDFM, proposed in this paper and some commonly used models
such as Deep Neural Network (DNN) and Support Vector Machine (SVM) are selected
as comparison. The parameters of FDFM, CNN and CNN-FDFM are consistent with
Section 4.5. For DNN and SVM, all samples are transformed into frequency domain by FFT,
and then test samples with different SNRs are used to test the trained models. DNN has a
4-layer structure of 1024-512-256-10, and dropout is used before the last layer. The kernel
function of SVM is radial basis kernel function. For each model, the average result of ten
trials is used as the evaluation standard. Figure 17 shows the diagnosis results of different
models under different SNRs. It can be seen that the diagnosis accuracy of each model can
reach 99% except FDFM when the signals are original and noise-free. As the SNR decreases,
the diagnosis accuracy of SVM falls first, followed by DNN and CNN. CNN proposed
in this paper has better anti-noise ability than DNN and SVM. Besides, the upper limit
of accuracy of FDFM is not high enough, no more than 97%, but the anti-noise ability of
FDFM is so strong that the model after fusion also keeps this advantage. Benefiting from
FDFM, the diagnosis accuracy of CNN-FDFM is 47.9% higher than CNN when SNR is
−10 dB. The comparison results show that CNN-FDFM has the highest diagnosis accuracy.
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To investigate the computational cost of different models with different numbers of
samples, the CPU time including training time and testing time of each model is displayed
in Tables 6 and 7. All the experiments were implemented using Tensorflow toolbox of
Google with an Intel i7-10700 CPU and 32G RAM. DNN, CNN and CNN-FDFM are all
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trained 50 epoches and batch size is 64. Training time of FDFM is the time consumption of
generating the feature matrix. As shown in Table 6, when 7000 samples are used for model
training, both FDFM and CNN-FDFM cost long computation time due to the complex
computation of feature matrix. But when we use only 700 training samples to train the
models, FDFM only costs 0.62 s for training and CNN-FDFM costs 8.23 s as Table 7 shows.
Moreover, the diagnosis accuracy of FDFM and CNN-FDFM is less affected by the numbers
of samples compared with DNN and CNN. In addition, the processing time for CNN-
FDFM to diagnose a signal is about 1.5 ms, so CNN-FDFM can be used for real-time
diagnosis.

Table 6. The computation time of each method with 7000 training samples and 3000 test samples.

Method Training Time
(7000 Samples)

Testing Time
(3000 Samples)

Accuracy
(SNR = −4 dB)

DNN 39.12 s 0.125 s 87.4%
CNN 37.7 s 0.178 s 96%
FDFM 91.86 s 3.609 s 94.53%

CNN-FDFM 127.52 s 4.288 s 99.3%

Table 7. The computation time of each method with 700 training samples and 300 test samples.

Method Training Time
(700 Samples)

Testing Time
(300 Samples)

Accuracy
(SNR = −4 dB)

DNN 7.63 s 0.017 s 82.67%
CNN 7.68 s 0.065 s 86.33%
FDFM 0.62 s 0.363 s 93.33%

CNN-FDFM 8.23 s 0.477 s 98%

5. Discussion

The anti-noise ability of model for fault diagnosis is studied in this paper. The CNN
model is optimized in the time domain, and the FDFM algorithm is proposed in the
frequency domain. The final diagnosis result is obtained by combining the diagnosis
results of the two models. Compared with the previous studies,

(1) The anti-noise ability of our model is studied under worse noise environment.
The diagnosis accuracy of some previous models decreases obviously when SNR drops to
−4 dB, and most previous models are not competent for the situation where SNR is less
than −4 dB. In this paper, the range of SNR was extended to −10 dB, and the accuracy
was still greater than 90% when SNR is -10 dB. The comparison between some existing
anti-noise models and our proposed model is shown in Table 8. All the anti-noise models
were trained and tested on CWRU bearing dataset, and the diagnosis accuracy under noise
environment with SNR of −4 dB was compared.
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Table 8. Comparison with other anti-noise methods based on CWRU dataset.

Method Baseline Model Anti-Noise Strategy Diagnosis Accuracy on CWRU
Dataset (SNR = −4 dB)

WDCNN [29] CNN Wide kernels in the first convolutional layer 66.95%
FC-WTA [1] SAE Data destruction and lifetime sparsity 71.44%

TICNN [34] CNN Kernel with changing dropout rate and small
mini-batch training 82.05%

CNN-FDFM CNN Anti-noise algorithm FDFM and information
fusion between CNN and FDFM 99.3%

(2) The combination of time domain and frequency domain is adopted for fault
diagnosis. Most of the other studies only extract fault features from one single domain
for fault identification. In this paper, CNN can adaptively extract time-domain features
from original signals and recognize faults automatically, which is an end-to-end model,
while FDFM can extract key fault features from the frequency domain and generate feature
matrix to complete fault diagnosis.

By the experiments in this paper, there are following findings:
(1) We confirm that the larger kernel in the first convolutional layer can make CNN

achieve better performance, and the trick of dropout used in the input layer can improve
the anti-noise ability of network.

(2) The results of model fusion imply that the fault information obtained from fre-
quency domain and time domain by the two algorithms is different, but complementary to
each other. Therefore, the diagnosis accuracy can be improved by information fusion and
error correction. Besides, the features in frequency domain are less affected by noise.

(3) Analysis of frequency spectrum shown in Figure 18 suggests that when the sample
is only affected by noise, the amplitude of frequency spectrum changes vertically, but the
location of the peak frequency does not. However, when the working condition changes,
the frequency spectrum shifts laterally, so does the location of the peak frequency.
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6. Conclusions

In this paper, one-dimensional convolutional neural network fusing frequency domain
feature matching algorithm named CNN-FDFM is proposed to solve the problem of strong
noise interference in industry field. The analysis of experiments shows that the diagnosis
accuracy of the CNN-FDFM is improved by 47.9%, compared with CNN when SNR is
−10 dB. FDFM algorithm can also work in the case of limited sample size under noise
environment. Novelties and contributions of this paper are summarized as follows:
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(1) FDFM algorithm can learn the key features directly from the frequency domain,
and solve the problem of fault identification under limited samples and strong noise
interference environment.

(2) Dropout used in the first layer can simulate noise input during training of CNN. A
wider kernel in the first convolutional layer can improve the anti-noise ability of CNN.

(3) Softmax with parameter T and D-S evidence theory are used to fuse different diag-
nosis information in time domain and frequency domain, which makes up the limitations
of the two algorithms.

The model proposed in this paper has the following limitations:
(1) FDFM algorithm only pays attention to the abscissa axis of frequency spectrum,

without considering the specific amplitude.
(2) FDFM algorithm is not suitable for multiple working conditions. When the working

condition changes, the frequency spectrum shifts laterally and original feature matrix
generated by FDFM does not work.

In view of the above limitations, further research is needed:
(1) The key features of the spectrum should be extracted intelligently and adaptively,

and both the location of key features and the frequency amplitude are taken into account.
(2) To ensure the consistency of features extracted from samples under different

working conditions, we can use frequency spectrums on different scales to unify features
as much as possible. Moreover, rather than focusing on the specific location of peak
frequencies, further studies should investigate the trend within frequency spectrum.
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