Skip to main content
. 2021 Aug 1;11(8):507. doi: 10.3390/metabo11080507

Table 2.

Performance and confusion matrices of machine learning (ML) algorithms applied for the detection and classification of glioma in the study subjects.

Sample Type Algorithm
Applied
Confusion Matrices of ML Algorithms 1 No. of Features Identified 2 Group Precision Recall F1-Measure
Glioma vs. Control
(n = 42)
Extra Tree Classifier [16      0] 104 Control 1.00 1.00 1.00
[0      26] Tumor 1.00 1.00 1.00
Logistic Regression [16      0] 01 Control 0.94 1.00 0.97
[1      25] Tumor 1.00 0.96 0.98
Random
Forest
[16      0] 158 Control 1.00 1.00 1.00
[0      26] Tumor 1.00 1.00 1.00
LGG vs. HGG (n = 25) Extra Tree Classifier [4      5] 107 LGG 0.80 0.44 0.57
[1      15] HGG 0.75 0.94 0.83
Logistic Regression [4      5] 92 LGG 1.00 0.44 0.62
[0      16] HGG 0.76 1.00 0.86
Random
Forest
[2      7] 88 LGG 0.67 0.22 0.33
[1      15] HGG 0.68 0.94 0.79

1 Key used: [true negative false positive]; [false negative true positive]; 2 details of features/spectral regions identified in each case are provided in the Supplementary Material as Table S1.