Skip to main content
. 2021 Aug 18;21(16):5553. doi: 10.3390/s21165553

Table A1.

The pseudocode of the model algorithm.

0  Requie: a Stepsize
1 Require: β1,β2 Exponential decay rates for the moment estimates
2 Require: θ0 : Initial parameter vector
3 m0 ← 0 (Initial 1st moment vector)
4 v0 ← 0 (Initial 2nd moment vector)
5 t ←0 : (Initial time step)
6 While θt not converged do
7 t ← t+1
8   Feature_vector ← BackboneNetwork(x) (Extract feature vector using CNN )
9   DropoutFeatureVector ← Dropout(Feature_vector) (Dropout layer)
10   y^coarse← fullyConnectedNetwork1(DropoutFeatureVector) (Predict Coarse Classification)
11   y^fine← fullyConnectedNetwork2(DropoutFeatureVector) (Predict Fine Classificatoin)
12   Loss CEcoarseycoarse,y^coarse+CEfineyfine,y^fine (Compute Loss)
13 gtθLoss (Get gradients w.r.t. stochastic objective at timestep t)
14 mtβ1\mt1+1β1gt (Update biased first moment estimate)
15 vtβ2 vt1+1β2gt2 (Update biased second raw moment estimate)
16 vt^vt/1β12 (Compute bias-correced first moment estimate)
17 θtθt1α mt^/ vt^+ε (Update parameters)
18 end while
19 return θt (Resulting parameters)