Skip to main content
. 2021 Aug 19;21(16):5586. doi: 10.3390/s21165586
Algorithm 1: Solving RELAD regression (Equation (24)) by IRLS algorithm.
  • 1:

    W(0)=W˜(0)=I       ▷ Initialization of weights; I is the N×N identity matrix

  • 2:

    δ_(0)=inf             ▷ Absolute losses of all data are initialized to infinity

  • 3:

    t=0

  • 4:

    repeat

  • 5:

        t=t+1

  • 6:

        m_i(t)=HiTW(t1)Hi+γiW˜(t1)1HiTW(t1)1_   ▷ Closed-form WLS solution

  • 7:

        δ_(t)=|Him_i(t)1_|                      ▷ Absolute losses

  • 8:

        σ^=medianδ_(t)0.6745        ▷ Preliminary estimate of the standard deviation of δ_(t)

  • 9:

        W(t)=σ^×diagmin1δ_(t),106      ▷ The × operator is the scalar product

  • 10:

        W˜(t)=diagmin1|m_i(t)|,106

  • 11:

    until|meanδ_(t)meanδ_(t1)|<ϵortT

  • 12:

    m_i=m_i(t)                         ▷ Return the converged m_i