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Abstract: Recommender systems have been applied in a wide range of domains such as e-commerce,
media, banking, and utilities. This kind of system provides personalized suggestions based on large
amounts of data to increase user satisfaction. These suggestions help client select products, while
organizations can increase the consumption of a product. In the case of social data, sentiment analysis
can help gain better understanding of a user’s attitudes, opinions and emotions, which is beneficial
to integrate in recommender systems for achieving higher recommendation reliability. On the one
hand, this information can be used to complement explicit ratings given to products by users. On the
other hand, sentiment analysis of items that can be derived from online news services, blogs, social
media or even from the recommender systems themselves is seen as capable of providing better
recommendations to users. In this study, we present and evaluate a recommendation approach that
integrates sentiment analysis into collaborative filtering methods. The recommender system proposal
is based on an adaptive architecture, which includes improved techniques for feature extraction and
deep learning models based on sentiment analysis. The results of the empirical study performed with
two popular datasets show that sentiment–based deep learning models and collaborative filtering
methods can significantly improve the recommender system’s performance.

Keywords: sentiment analysis; deep learning; recommender system; natural language processing

1. Introduction

With the explosion of blogs, forums, and online social networks, differing opinions
about a particular topic can be easily found from millions of users. For example, users can
discuss their current experiences, share their points of view on a specific fact, or praise
or complain about a product that they have just bought. With a vast amount of available
online data, sentiment analysis—a method to categorize text-based opinions to determine a
user’s attitude—can help gain better understanding of the attitudes, opinions and emotions
of the public in several domains such as business, government, and biomedicine. Several
studies are summarized and discussed in [1] regarding the benefits of sentiment analysis
in obtaining feedbacks and determining the interests and opinions of customers.

Recommender systems, first developed in the mid-1990s and based on users’ ratings
and preferences, have expanded widely in recent decades. They are now especially impor-
tant in the realms of e-commerce, media, banking, and utilities. This type of system is used
by Amazon to suggest preferred products for customers, by YouTube to suggest related
videos on the auto-play function, and by Facebook to recommend people and webpages to
connect and follow.

Sentiment analysis can be beneficial to recommender systems. A sample of this can
be found in the work of Preethi et al. [2], in which a cloud-based recommender system
uses recursive neural networks to analyze sentiments of reviews in order to improve
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and validate restaurant and movie recommendations. Along with behavioral analysis,
sentiment analysis is also an efficient tool for commodity markets [3].

Social media data has been exploited in different ways to address some problems,
especially associated with collaborative filtering approaches [4]. Methods in recommender
systems are based on information filtering, and they can be classified into three categories:
content-based; collaborative filtering (CF); and hybrid. Sparsity and gray-sheep problems
are two of the main reasons CF methods do not provide the reliability required in some
recommender systems [5]. In particular, when only sparse ratings data is available, senti-
ment analysis can play a key role in improving recommendation quality. This is because
recommendation algorithms mostly rely on users’ ratings to select the items to recommend.
Such ratings are usually insufficient and very limited. On the other hand, sentiment-based
ratings of items that can be derived from reviews or opinions given through online news
services, blogs, social media or even the recommender systems themselves, are seen as
capable of providing better recommendations to users. Sentiment-based models have
been exploited in recommender systems to overcome the data-sparsity problem that exists
in conventional recommender systems. Hence, integrating sentiment in recommender
systems may significantly enhance the recommendation quality.

In this study, we propose a recommendation method that combines sentiment analysis
and collaborative filtering. The method is implemented in an adaptive recommender
system architecture in which techniques for feature extraction and deep learning-based sen-
timent analysis is included. The results of the empirical study performed with two popular
datasets show that combining deep learning-based sentiment analysis and collaborative
filtering methods significantly improve the recommender system’s performance.

The rest of this paper is organized as follows. Section 2 presents background in-
formation and provides a literature review in this research area. Section 3 describes the
methodology for recommender systems. Section 4 outlines the results and discussion, and
Section 5 offers the main conclusion.

2. Background and Related work

Sentiment analysis is very useful in a wide range of application domains, including
business, government, and education. Application of sentiment analysis in recommender
system has also been the focus of extensive research. In this section, we start by presenting
background information and reviewing the literature to offer an up-to-date overview of
how sentiment analysis has been applied in recommender systems.

2.1. Sentiment Analysis

Sentiment analysis can be performed on three levels of extraction: the sentence level;
the document level; and the aspect or feature level. It is a process of extracting information
about an entity and automatically identifying any of the subjectivities of that entity. The aim
is to determine whether text generated by users conveys their positive, negative, or neutral
opinions. Three approaches currently exist to address the problem of sentiment analysis [6]:
lexicon-based techniques; machine-learning-based techniques; and hybrid approaches.
Lexicon-based techniques are divided into two approaches: dictionary-based and corpus-
based [7]. They were the first to be used for sentiment classification. Machine learning-
based techniques [8] that have been proposed for sentiment analysis include traditional
techniques and deep learning techniques. The hybrid approaches is the combination of
machine learning and lexicon-based approaches [9]. Sentiment lexicons regularly play a
key role in most of these strategies. Figure 1 illustrates a taxonomy of deep learning-based
methods for sentiment analysis.

Deep learning techniques can provide better results than traditional techniques. Dif-
ferent kinds of deep learning models can be used for sentiment classification, including
CNN, DNN, and RNN. These models address classification problems at the document level,
sentence level, or aspect level. In addition, some approaches that combine two models are
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introduced [10–16]. The CNN enhanced by SVM [10–12], CNN with RNN [13–16] showed
enhanced results.

The hybrid models can increase the accuracy for sentiment analysis in comparison
to a single model performance. In this study, we combine deep learning techniques for
sentiment analysis. The resulting hybrid deep-learning models for sentiment analysis,
which combine LSTM networks [17] and CNN [18], are built and tested on two datasets
containing reviews.
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2.2. Recommender Systems

A recommender system intends to provide personalized recommendations about
products or services to support decision making in the continuous increase of online
information. Several systems have been developed and applied in three main domains:
business, government, and education, across eight categories: e-government, e-business,
e-commerce/e-shopping, e-library, e-learning, e-tourism, e-resource services and e-group
activities [20]. E-commerce has widely applied recommender systems to suggest additional
products for customers to choose from among the multiple products available. A filtering
technique has improved systems for presenting personalized choices [21].

The most common methods used for recommender systems may be grouped into
three categories: content-based; collaborative filtering (CF) and hybrid recommender
systems [22]. These techniques vary depending on the types of social media data that
are used. Lu et al. [20] analyzed typical recommender systems and effectively identifies
the specific requirements for recommendation techniques in the domain. This work also
directly motivates and supports researchers and practitioners to promote the popularization
and application of recommender systems in different domains.

Content-based recommender systems: Content-based methods make use of character-
istics of items and users’ profiles. User profiles are created by mining content information
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about items accessed over the web by users, such as product attributes. Content-based
recommender systems filter items based on the content-based similarity measures between
items in the catalog and items that users have previously consumed, accessed, or rating
positively. Therefore, a user receives recommendations of items like those that previously
have been of interest. The utility of an item for a user can be a derivative done after a
quantitative analysis of the metadata of the item.

Collaborative filtering-based recommender systems: Collaborative filtering is a tech-
nique that can filter out items that a user might like based on reactions by similar users.
It works by searching in a large group of people and finding a smaller set of users with
tastes like those of a particular user. It looks at the items they like and combines them to
create a ranked list of suggestions. We need data that contains a set of items and a set of
users to perform with recommender algorithms. While working with such data, the matrix
consists of the reactions given by a set of users to certain items from within a set of items.
Each row would contain the ratings given by a user, and each column would contain the
ratings received by an item.

Hybrid recommender systems: Hybrid approaches take advantage of any kind of item
and user information that can be extracted or inferred from web systems, social media, or
other sources. Hybrid approaches are implemented by deployment individually as well
as by accumulating rankings and predictions and then building a general consolidative
model that resolves the common problems in recommender systems.

Each recommendation approach has advantages and limitations; for example, Collab-
orative Filtering has sparseness, scalability and cold-start problems [5,23,24]. A sparseness
problem occurs when we have a vast amount of data. A scalability problem occurs when
the rating data is missing. When a user or an item is added to the system the cold-start
problem appears. Combining sentiment analysis with recommendation methods can help
solve these problems. Figure 2 shows the categories of deep learning applied to information
retrieval and recommender system research.
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2.3. Related Work

Recommender systems can be improved in a variety of ways. In [4], social tag embed-
ding is used in a collaborative filtering approach in which user similarities based on both
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tag embedding and ratings are combined to generate the recommendations. Recommender
systems have also benefited from sentiment analysis. An example of this can be found in
the work of Preethi et al. [2], where recursive neural networks were applied to analyze
sentiments in reviews. The output was used to improve and validate restaurant and movie
recommendations of a cloud-based recommender system. Along with behavioral analysis,
sentiment analysis is also an efficient tool for commodity markets [3]. Wang et al. [26]
combined a hybrid recommender system and sentiment analysis to optimize the prelim-
inary list and obtain the final recommendation list. Kumar et al. [27] proposed a hybrid
recommender system by combining collaborative filtering and content-based filtering with
the use of sentiment analysis of movie tweets to boost up the recommender system.

Rao et al. [28] designed a recommender system that contains the user list and item
list with user reviews. Using the sentiment dictionaries, the researchers divided the items
into three categories: brand, quality, and price. They leveraged sentiment dictionaries
to calculate sentiment of a particular user on item/product. Gurini et al. [29] adopted
a different approach to describe a user recommender system for Twitter. Their work
emphasized the use of implicit sentiment analysis in order to improve the performance
of the recommendation process. They defined a novel weighting function that considers
sentiment, volume, and objectivity related to the users’ interests.

In yet another approach, Osman et al. [30] presented an electronic product recom-
mender system based on contextual information from sentiment analysis. Because ratings
are usually insufficient and very limited, they constructed a contextual information senti-
ment model for a recommender system by making use of user comments and preferences.
In a similar way, Contratre et al. [31] also proposed a recommender process that includes
sentiment analysis of textual data extracted from Facebook and Twitter in order to increase
conversion by matching product offers and consumer preferences. We can find similar
combinations in other studies [32–34].

In addition, Rosa et al. [35] used a sentiment intensity metric to build a music recom-
mender system. Users’ sentiments are extracted from sentences posted on social networks
and the recommendations are made using a framework of low complexity that suggests
songs based on the current user’s sentiment intensity. The research by Osman, Nurul Aida,
and Shahrul [36] addressed the data-sparsity problem of recommender systems by inte-
grating a sentiment-based analysis. Their work was applied to the Internet Movie Dataset
(IMDb) and Movie Lens datasets, but improvements in sentiment analysis have been made
since the paper was published. Rayan et al. [37] also tried to improve recommendations by
addressing the data-sparsity problem. They proposed a smart recommender system based
on methods of hybrid learning that integrate the most effective and efficient learning algo-
rithms. These methods switch among content-based and collaborative filtering, identify
the user context with the integration of dynamic filtering, and finally learn the profiles.

Several research teams [26,27,33,38–40] introduced the techniques for applying senti-
ment analysis in recommender systems. The techniques that are applicable for performing
the analysis of sentiments include support vector machines (SVM), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and deep neural networks (DNN).

Recommender systems rely on explicit user ratings, but this is not feasible in an
increasing number of domains. Moreover, when explicit ratings are available, the trust
and reliability of the ratings may limit the recommender system. When we have a large
number of reviews and comments on these items, analyzing sentiments in that text to
obtain implicit feedback in addition to traditional ratings for items, is useful and helps
to improve the recommendations to users. The above studies use sentiment analysis in
recommendation methods, but most studies have used traditional sentiment techniques or
a sole deep learning model.

In this study, we will apply new feature extraction techniques and hybrid deep-
learning methods for sentiment analysis exploiting the advantages of BERT, in order to
incorporate sentiments into recommendation methods as additional feedback and thus
improve the performance and the reliability of recommender systems.
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3. Methodology

In this section, the proposed recommender system is presented. It is based on a
recommendation method that combines collaborative filtering and sentiment analysis. The
aim is to improve reliability of the recommendations to the user by combining sentiment
analysis of reviews or comments of users with traditional recommendation methods. The
architecture of this system is illustrated in Figure 3. The architecture makes it easy to
configure the modules and their interactions, allowing the application to be composed by
choosing from supported techniques and methods.
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The architecture has two separate parts, one part in charge of generating the sen-
timent models and the other part to provide recommendations to a given user making
use of the models previously generated. The reviews’ data were preprocessed and used
to conduct and train sentiment-based hybrid deep-learning model. Then, a user-based
(user-user) collaborative filtering method is combined with sentiment-based models for
rating prediction.

3.1. Input Data and Preprocessing

Sentiment analysis requires that the text training data are cleaned before being used to
induce the classification model. Text cleaning is a preprocessing step that removes words or
other components that lack relevant information, and thus may reduce the effectiveness of
sentiment analysis. After cleaning, the text data can be split into individual words, which
are transformed into their base form by lemmatization, and then converted into numerical
vectors by using methods such as word embedding or TF-IDF. Both word embedding
and TF-IDF are used as input features of deep learning algorithms in nature language
processing [41].

For the deep learning approaches, word embedding representations have performed
significantly better than the TF-IDF representation of all features and feature selection
algorithms [1,42]. In this research, we used BERT to transform text data to word embed-
ding. Word embedding [43] is a type of word representation that maps each word into
a vector of real values in such a way that words with similar meanings have a similar
representation. Value learning can be done using neural networks. BERT is a language
model for nature language processing, and it was published by researchers at Google AI
Language in 2018 [44]. BERT was developed after Word2vec, and includes some advances
over Word2vec, such as support for out-of-vocabulary (OOV) words.

3.2. Conduct and Train Sentiment-Based Hybrid Deep-Learning Models

We used the combination of several successful approaches. We start by using a pre-
trained BERT model to create the feature vectors. We then vary the order of the CNN
and LSTM models used in the next stages: BERT→ CNN→ LSTM or BERT→ LSTM→
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CNN. The final stage of the model uses a ReLu activation function. We labeled the reviews
with one value of an ordinal scale of five classes (very negative; negative; neutral; positive;
and very positive), analogous to the explicit ratings, to train and validate the result of
sentiment analysis.

Figure 4 visualizes the process of the hybrid methodology for sentiment analysis. A
pre-trained BERT model was used in our experiments as a feature extractor to generate
input data for the proposal of hybrid models. The reviews data were fed into the BERT
model to generate the feature vectors, which are then input to the hybrid models that
perform the classification. The next step combines CNN and LSTM deep learning models,
which are used because of their good performance on sentiment analysis [1], as well as to
take advantage of the two network architectures when performing sentiment analysis on
data in different domains. The final stage is classification. We use the activate function of
Relu instead of Sigmoid because of the high convergence.
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3.3. Proposed Recommendation Method

The proposed recommendation method is a user-based collaborative filtering approach
that considers explicit ratings and sentiment analysis extracted from users’ reviews. We
tested Singular Value Decomposition (SVD), Non-Negative Matrix Factorization (NMF),
and SVD++ (a derivative of SVD) as collaborative filtering methods. The objective is to
achieve better predictive accuracy because of the addition of implicit feedback information
provided by the sentiment.

Results from the CF recommendation method and sentiment analysis were combined
to generate a rating and used to create a list of recommendations.

Given a rating matrix Rm × n (N) for training, where m is the number of users and n is
the number of items, rij ∈ Rm × n denotes the rating of user ui on item ij.

The rating of user ua on item ij in the test set is predicted as follows:

praj = β ∗ pr_m faj + (1− β) ∗ pr_sentaj (1)

where:

• pr_m faj: Rating for user ua and item ij predicted by Matrix Factorization methods
(SVD, SVD++, and NMF) without using sentiments.

• pr_sentaj: Rating for user ua and item ij predicted by using the sentiment model.
• β parameter used to adjust the importance of each term of the equation.

As shown in Algorithm 1, we used pseudocode to describe how to compute pr_sentaj.
As mentioned above, hybrid sentiment models are used for classifying each “review” in
one of five possible classes. These classes are converted into sentiment scores from 1 to 5
analogous to ratings. First, for each user ua, we find all items that user ua already rated and
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the sentiment score of the corresponding review matches the explicit rating. And second,
for each item ij, we also find all users who already rated item ij and item ik (found in the
first step) in the training set and their review scores also match the explicit ratings.

Algorithm 1. Rating prediction based on sentiment for user ua and item ij.

1. Function sentiment_ratingPred (user ua, item ij) {
2. //This function is used to obtain the pr_sentaj term of Equation (1)
3. //Step 1:
4. FOR each item ik in the training set:
5. IF user ua already rated item ik AND review score matches rating THEN
6. Add ik to list of items I;
7. //The result of this step is a set of m items I = {i1, i2, . . . im}
8. //Step 2:
9. FOR each user ub in the training set:
10. FOR each item ik in the set of items I:

11.
IF user ub already rated item ij AND user ub already rated item ik

AND their review scores match ratings
12. Add user ub to list of users U;
13. //The results of this step is a set of n users U = {u1, u2, . . . un}
14. //Step 3:
15. IF length(U)>0 THEN
16. FOR each user ui in the set of user U:
17. Compute sa,i= sim (user ua, user ui) by applying cosine metric;
18. Add sa,i to S;
19. //The result is a set of n similarity values S =

{
sa,i
}

20. Set the K value to select the K nearest neighbors using S;
21. Compute the predicted rating praj by applying the Equation (2);
22. pr_sentaj = praj
23. Return pr_sentaj;
24. ELSE
25. Return 0;
26. }

Next, two lists of data, including items and users which are created from step 1 and
step 2, are used for predicting user ua rating on each item ij. To do that, we compute the
similarity between users by applying the cosine metric. Then, we apply Equation (2) for
rating prediction based on user similarity. The ratings of the k most similar users are used
to estimate the preferences of the active user ua about the item ij that he/she has not rated.

praj = ra +
∑K

i=1 Sim(ua, ui)
(
rij − ri

)
∑K

i=1

∣∣∣Sim(ua, ui)
∣∣∣ (2)

where rij is the rating that user ui gives to item ij respectively; ra and ri are the average
ratings of user ua and user ui, respectively; and Sim(ua, ui) is the similarity between the
active user ua and his neighbor user ui, which would be obtained by using the cosine metric
(Equation (3)). In our case, the neighbors of user ua are users who have rated the same
items as user ua in a similar way or the score of their reviews on the same items are similar.

Sim(ua, ui) =
∑n

j=1 raj rij√
∑n

j=1 r2
aj

√
∑n

j=1 r2
ij

(3)

4. Experiments and Results

In this section, we present the experiments conducted to evaluate the performance of
the proposed approach to recommender systems. In particular, we used two well-known
datasets, Amazon Fine Food Reviews and Amazon Movie Reviews, in order to validate the
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proposal. The results are shown and discussed in Section 4.2. The metrics used to evaluate
the reliability of rating predictions were Root-Mean-Square Error (RMSE), Mean Absolute
Error (MAE) and Normal MAE (NMAE). In addition, Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG) were
used for evaluating top-N recommendations. Accuracy, Area Under Curve (AUC), and
F-score were the metrics used to evaluate the performance of the two hybrid deep-learning
models for sentiment analysis through all experiments. Because the F-score is the average
of the F-score of each class, with weighting depending on the average parameter in the
multi-class and multi-label case, we used the average parameter with ‘weighted’ value to
calculate the metrics for each label and to find their average weighted by support.

The configuration of related parameters, hardware devices, and the necessary li-
brary facilities was carried out before performing the experiments, such as echo = 5, and
k-fold = 5. In particular, we used Google Colab Pro with GPU Tesla P100-PCIE-16GB or
GPU Tesla V100-SXM2-16GB [45], Keras [46] and Tensorflow [47] libraries. We also used
the implementation of the SVD, NMF, and SVD++ algorithms provided by the Surprise
library (http://surpriselib.com/, accessed on 10 December 2020).

4.1. Dataset

We chose the datasets based on availability and accessibility criteria. Moreover, we
considered that they are widely accepted by the research community. These datasets are
shown in Table 1 and described below:

• Amazon Fine Foods Reviews comprise reviews of fine foods from Amazon [48]. Each
review includes product and user information, as well as the rating, and the plaintext
review given by each user to each product he/she rated. The data span a period of
more than 10 years, including 568,454 reviews with 256,059 users and 74,258 products
up to October 2012.

• Amazon Movie Reviews consists of movie reviews from Amazon [48]. Each review
also includes product and user information, ratings, and plaintext reviews. It covers a
period of more than 10 years as well, including 7,911,684 reviews with 889,176 users
and 253,059 products up to October 2012.

Table 1. Statistics of the datasets.

# Amazon Fine Foods Reviews Amazon Movie Reviews

Number of reviews 568,454 7,911,684
Number of users 256,059 889,176

Number of products 74,258 253,059
Users with > 50 reviews 260 16,341

Average no. of words per review 56 101
Timespan October 1999–October 2012 August 1997–October 2012

4.2. Results and Discussion

We performed experiments with two different settings without/with sentiment analy-
sis. In the former, recommendations are based on recommender system methods without
sentiment while in the second, the result of performing sentiment analysis on the reviews is
incorporated to the recommendation process. We tested two hybrid deep-learning models
for sentiment analysis: CNN and LSTM as well as LSTM and CNN, referred to as C-LSTM,
L-CNN, respectively.

As presented in Figure 4, we adopt a pre-trained BERT model to vectorize each
plaintext review. The obtained vector is then fed into C-LSTM or L-CNN followed by the
fully connected layer. Finally, ReLU is stacked on the top of the classifier. The output of
the sentiment classifier is exploited for recommendation. Table 2 and Figure 5 present the
experimental results of sentiment classification. The results show that the performances of
the hybrid models are encouraging, with accuracy and F-score over 80% and AUC over

http://surpriselib.com/
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84%, respectively. These models will be applied to predict sentiment rating before being
combined with recommendation methods.

Table 2. Sentiment performance of hybrid deep-learning models.

Measures
Amazon Fine Foods Reviews Amazon Movie Reviews

L-CNN C-LSTM L-CNN C-LSTM

Accuracy 80.04% 79.95% 82.27% 82.27%
F-Score 80.24% 80.00% 82.49% 82.46%
AUC 84.22% 84.36% 86.07% 86.17%

Sensors 2021, 21, x FOR PEER REVIEW 10 of 18 
 

 

Table 1. Statistics of the datasets. 

# 
Amazon Fine Foods  

Reviews 

Amazon Movie  

Reviews 

Number of reviews 568,454 7,911,684 

Number of users 256,059 889,176 

Number of products 74,258 253,059 

Users with > 50 reviews 260 16,341 

Average no. of words per review 56 101 

Timespan October 1999–October 2012 
August 1997–October 

2012 

4.2. Results and Discussion 

We performed experiments with two different settings without/with sentiment anal-

ysis. In the former, recommendations are based on recommender system methods without 

sentiment while in the second, the result of performing sentiment analysis on the reviews 

is incorporated to the recommendation process. We tested two hybrid deep-learning mod-

els for sentiment analysis: CNN and LSTM as well as LSTM and CNN, referred to as C-

LSTM, L-CNN, respectively. 

As presented in Figure 4, we adopt a pre-trained BERT model to vectorize each 

plaintext review. The obtained vector is then fed into C-LSTM or L-CNN followed by the 

fully connected layer. Finally, ReLU is stacked on the top of the classifier. The output of 

the sentiment classifier is exploited for recommendation. Table 2 and Figure 5 present the 

experimental results of sentiment classification. The results show that the performances 

of the hybrid models are encouraging, with accuracy and F-score over 80% and AUC over 

84%, respectively. These models will be applied to predict sentiment rating before being 

combined with recommendation methods. 

Table 2. Sentiment performance of hybrid deep-learning models. 

Measures 
Amazon Fine Foods Reviews Amazon Movie Reviews 

L-CNN C-LSTM L-CNN C-LSTM 

Accuracy 80.04% 79.95% 82.27% 82.27% 

F-Score 80.24% 80.00% 82.49% 82.46% 

AUC 84.22% 84.36% 86.07% 86.17% 

 

76

77

78

79

80

81

82

83

84

85

86

87

L-CNN C-LSTM L-CNN C-LSTM

Amazon Fine Food Amazon Movie

Sentiment Models

Accuracy F-Score AUC

Figure 5. Sentiment performance of hybrid deep-learning models using BERT.

To validate our recommendation approach, we compared the performance of three
widely used CF recommendation methods in their traditional form as baseline and the
same methods improved with our proposal involving use of sentiment analysis of reviews.
The comparative study was conducted for both rating prediction and item recommendation
(recommendation of top-N lists).

Tables 3–5 show the results of MAE, RMSE and NMAE measures for rating prediction
on both dataset food and movie reviews. They were calculated based on SVD, NMF and
SVD++ algorithm with and without using sentiment analysis. Beta (β) parameter is used
to adjust the importance of the recommendation result without and with sentiment in the
Equation (1). Figures 6–8 illustrate the comparative results obtained from the recommender
with sentiment analysis on different values of the β parameter against those obtained from
the recommender without sentiment analysis.

Table 3. MAE values without and with L-CNN sentiment analysis model.

#
Amazon Fine Foods Reviews Amazon Movie Reviews

SVD NMF SVD++ SVD NMF SVD++

Without sentiment 0.9706 0.9608 0.9540 0.8644 0.8087 0.8266
With sentiment (β = 0.3) 0.8365 0.8762 0.8263 0.5943 0.5936 0.5770
With sentiment (β = 0.5) 0.8634 0.8846 0.8470 0.6268 0.5976 0.5959
With sentiment (β = 0.7) 0.8933 0.8964 0.8707 0.6701 0.6125 0.6253
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Table 4. RMSE values without and with L-CNN sentiment analysis model.

#
Amazon Fine Foods Reviews Amazon Movie Reviews

SVD NMF SVD++ SVD NMF SVD++

Without sentiment 1.2076 1.2312 1.1831 0.9960 0.9464 0.9376
With sentiment (β = 0.3) 1.1338 1.2103 1.1292 0.8732 0.9112 0.8577
With sentiment (β = 0.5) 1.1442 1.2102 1.1356 0.8851 0.9041 0.8598
With sentiment (β = 0.7) 1.1633 1.2150 1.1493 0.9166 0.9110 0.8791

Table 5. NMAE values without and with L-CNN sentiment analysis model.

#
Amazon Fine Foods Reviews Amazon Movie Reviews

SVD NMF SVD++ SVD NMF SVD++

Without sentiment 0.2427 0.2402 0.2385 0.2161 0.2022 0.2066
With sentiment (β = 0.3) 0.2091 0.2191 0.2066 0.1486 0.1484 0.1443
With sentiment (β = 0.5) 0.2158 0.2211 0.2117 0.1567 0.1494 0.1490
With sentiment (β = 0.7) 0.2233 0.2241 0.2177 0.1675 0.1531 0.1563
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Figure 6. MAE measures comparison for different types of method and datasets using L-CNN
sentiment model.

The results show that RSME, MAE, and NMAE yielded by the approach that combines
CF with sentiment analysis are better than the error rates yielded by traditional CF methods
without sentiment on all algorithm in all β values. We found that the best results of the
proposal are obtained with β = 0.3.

Regarding the type of datasets, Amazon Movie Reviews provided better results than
those of Amazon Fine Foods reviews. For example, MAE measured with SVD++ is 0.577
with β = 0.3; RMSE measured with SVD++ is 0.8577 with β = 0.3; and NMAE measured
with SVD++ is 0.1443 with β = 0.3.

Figures 9 and 10 illustrate the comparison of the sentiment-based methods with the
L-CNN and the C-LCTM against non-sentiment-based methods on Amazon Fine Foods
Reviews and Amazon Movie Reviews. The values with sentiment are obtained with
β = 0.3. We found that C-LSTM and L-CNN provide similar results. In addition, the
sentiment-based approach provides better results on Amazon Movie reviews.
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Figure 7. RMSE measures the comparison for different types of methods and datasets using L-CNN
sentiment model.
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Figure 8. NMAE measures the comparison for different types of methods and datasets using L-CNN
sentiment model.

For all algorithms applied to two datasets, the combined proposal provides lower
error rates. For example, the sentiment-based approach on Amazon Movie Reviews with
β = 0.3 when L-CNN is used for sentiment analysis provided the following percentage
improvement with SVD: 12.29% in RMSE; 27.01% in MAE; and 6.75% in NMAE. With the
above results, we see that the sentiment model helps to improve the predicted ratings.
Instead of just using explicit rating, the predictive model now considers the aspect of
analyzing reviews of related items and users. Because more information is available in the
new recommendation method, we get better than usual results.

In addition to proving that the proposed method performs better in predicting ratings,
we also checked the performance for top-N recommendations. MRR, MAP, and NDCG
rank-based metrics have been computed. The results obtained for N = 5 are given in
Tables 6 and 7, and in Figures 11 and 12. SVD, NMF, and SVD++ values, respectively, with
L-CNN and C-LSTM sentiment models are obtained when applied on β = 0.7.
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Table 6. MRR, MAP and NDCG values without and with L-CNN sentiment model on Amazon Fine Foods Reviews with
β = 0.7.

#

SVD NMF SVD++

Without
Sentiment

With
Sentiment

(β = 0.7)

Without
Sentiment

With
Sentiment

(β = 0.7)

Without
Sentiment

With
Sentiment

(β = 0.7)

MRR 83.92% 84.09% 82.98% 83.19% 84.24% 84.24%
MAP 73.06% 73.67% 72.97% 73.26% 73.48% 73.82%

NDCG 86.53% 86.78% 86.67% 86.84% 86.84% 86.89%

Table 7. MRR, MAP, and NDCG values without and with C-LSTM sentiment model on Amazon Fine Foods Reviews with
β = 0.7.

#

SVD NMF SVD++

Without
Sentiment

With
Sentiment

(β = 0.7)

Without
Sentiment

With
Sentiment

(β = 0.7)

Without
Sentiment

With
Sentiment

(β = 0.7)

MRR 83.92% 84.16% 82.98% 83.23% 84.24% 84.33%
MAP 73.06% 73.64% 72.97% 73.23% 73.48% 73.84%

NDCG 86.53% 86.78% 86.67% 86.82% 86.84% 86.89%
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Figure 11. MRR, MAP, and NDCG values without and with L-CNN sentiment model on Amazon
Fine Foods Reviews with β = 0.7.
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Figure 12. MRR, MAP, and NDCG values without and with C-LSTM sentiment model on Amazon
Fine Foods Reviews with β = 0.7.

The values of MRR, MAP, and NDCG show that the proposed method also improve
top-N recommendations. In the case of the Amazon Foods Review with β = 0.7 and C-
LSTM sentiment model, the increase in MAP was 0.58% (SVD), 0.26% (NMF), and 0.36%
(SVD++) over without sentiment. Regarding NDCG, the increase was 0.25% (SVD), 0.15%
(NMF), and 0.06% (SVD++) over without sentiment. The value of MRR was increased on
0.24% (SVD), 0.25% (NMF), and 0.09% (SVD++).

Three algorithms (SVD, NMF, and SVD++) were tested in two ways, with explicit
ratings only, and combining explicit ratings with sentiment extracted from reviews. In
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most cases, the combined approach with sentiments from two classification models (C-
LSTM and L-CNN) on food and movie reviews datasets gave better results. However,
the improvement for top-N recommendation is not as significant than the achieved for
rating prediction.

In general, the sentiment-based methods proposed in this work provide better results
than those based only on explicit ratings. These improvements have occurred in both
data sets used in the study. General summaries of the results achieved in the experiments
referenced earlier are discussed below:

• We presented and evaluated a recommendation approach that integrates sentiment
analysis and collaborative filtering methods.

• Two datasets, Amazon Fine Foods Review and Amazon Movie Review, are used for
evaluation. Each plaintext review is vectorized by using the pre-trained BERT model.

• Two hybrid sentiment classification models, CNN-LSTM and LSTM-CNN, are used
for extracting sentiments from reviews, which are incorporated as implicit feedback
into the recommender system models.

• We applied SVD, NMF, and SVD++ recommendation methods following the user-
based CF approach.

• Accuracy, F-score, and AUC were computed for validating the sentiment
classification models.

• The evaluation of the recommendation method was performed for rating prediction
and top-N recommendation. RMSE, MAE, and NMAE were the metrics used in the
first case, and MRR, MAP and NDCG were the metrics used in the second case.

• The sentiment-based proposal increased the recommendation reliability in comparison
to traditional, rating-based recommendation methods on the two datasets.

5. Conclusions

In this paper, we have proposed an application of sentiment analysis in recommender
systems that is based on hybrid deep-learning models and collaborative filtering on online
social networks. The system architecture presented in this work, can integrate a variety
of techniques that have been proposed to perform recommendations, including the pre-
processing strategy, hybrid deep-learning models for sentiment analysis and methods for
recommender systems. The architecture can be used to develop a recommender system in
the context of social networks that take advantage of sentiment analysis performed on user
opinions and reviews in the network. We conducted experiments with reviews of food and
movies. Based on such experiments, we demonstrate the utility and applicability of our
approaches in producing personalized recommendations on online social networks.

The results show that the joint use of deep learning-based sentiment analysis and
collaborative filtering methods significantly improves the performance last ones. This is
achieved through the exploitation of additional information from user reviews/comments
data. Its integration into the traditional recommendation methods makes the recommender
system more reliable and capable of providing better recommendations to users.

As a future work, we plan to explore other application domains to ensure that the
proposed architecture can be generalized to efficiently solve similar problems. We will
also consider researching new sentiment analysis techniques, such as graph convolutional
networks, for a potential improvement of this aspect.
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