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Indiscriminate ssDNA cleavage activity
of CRISPR-Cas12a induces no detectable
off-target effects in mouse embryos

Dear Editor,

Newly discovered characteristics like “collateral effect” or
trans-cleavage in CRISPR-Cas13 and CRISPR-Cas12 sys-
tems have enabled their usage in nucleic acid detection
(Gootenberg et al. 2017, 2018; Chen et al. 2018). The col-
lateral RNA cleavage of Cas13a has been reported to be
harmful for cell development (Wang et al. 2019; Buchman
et al. 2020). As a representative gene editor of CRISPR-
Cas12 system, CRISPR-Cas12a (Cpf1) holds great potential
for therapeutic applications in the future (Zetsche et al. 2015;
Koo et al. 2018; Campa et al. 2019). However, when used for
genome editing in mammalian cells, target-activated Cas12a
has the risk to cleave transiently exposed ssDNA during
replication, transcription and homology-directed repair pro-
cesses (Chen et al. 2018) (Fig. 1A), raising the concern of its
therapeutic applications. Therefore, the potential off-target
effects caused by the indiscriminate ssDNA cleavage activity
of Cas12a need to be carefully investigated.

Recently, we developed a new approach called GOTI
(Genome-wide Off-target analysis by Two-cell Injection) to
detect off-target effects without the interference of single-
nucleotide polymorphisms (SNPs) in individuals (Zuo et al.
2019). In this study, we designed an optimized method
called genome-wide off-target analysis by twin blastomeres
(GOAT) for off-target edits detection. Briefly, mouse
embryos were separated into two embryos at two-cell stage,
and then gene editing tools such as BE3, ABEmax and
Cas12a were injected into one of the twin embryos (Figs. 1B
and S1A). To increase the pregnancy efficiency, twin
embryos were co-transferred with two ICR embryos to the
pseudopregnant mouse. When the twin embryos developed
to embryonic day 12.5 (E12.5), twin embryos and ICR
embryos were distinguished by their eye colors and a SNP
site on Tyr gene (Fig. S1B and S1C). The edited embryo
was distinguished from the unedited twin embryo by high
editing efficiency to induce indels and nucleotide substitu-
tions on the target sites. Whole-genome sequencing (WGS)
was performed on the genomic DNA of twin embryos,
separately. Then single-nucleotide variants (SNVs) and
indels were called in the injected sample, with its twin un-

injected one as the reference (Figs. 1B and S1A). GOAT
could distinguish the injected and un-injected embryos
directly, while GOTI relies on massive FACS to separate
edited cells from unedited cells. In addition, GOAT could
also avoid the leak of two-cell injection, false-negative FACS
sorting and inferior developmental competition ability of the
injected blastomere.

To test the effectiveness of GOAT system, we included
three groups in our study: GFP, BE3, and ABEmax groups
(Fig. S1A). The developmental rate of twin embryos to
blastocysts was more than 90%, and twin embryos devel-
oped to E12.5 was 23.0% ± 3.1% (n = 5; Table S1). WGS
was conducted separately for the twin embryos at an aver-
age depth of 30 to confirm on-target editing efficiency and
analyze the potential genome-wide off-target effects
(Table S2). The activities of BE3 and ABEmax were con-
firmed by the high on-target efficiencies to introduce
nucleotide substitutions (Figs. S1D, S2 and S3).

For the off-target effects, we found 14 SNVs and 0 indel
per embryo on average in the GFP-injected group (Figs. 1C,
1D, S4 and Tables S3, S4, S5). For the BE3-injected
embryos, we found 210 SNVs per embryo on average, 15
times more than those of the GFP group (P = 0.0025;
Figs. 1C, S4 and Tables S3, S6). By contrast, indels showed
no differences between BE3 and GFP groups (Fig. 1D). We
observed that about 86% of SNVs were mutated from C to T,
or G to A (Figs. 1E and S5), consistent with the results of
GOTI method (Zuo et al. 2019). We also analyzed the off-
target effects of ABEmax using GOAT. An average of 18
SNVs and 0 indel were detected in each embryo, similar to
the number found in the GFP-injected group (P = 0.57;
Figs. 1C, 1D, S4 and Tables S3, S4). Together, these results
suggest that GOAT is a comparable approach to detect
genome-wide off-target effects in mouse embryo comparing
with GOTI.

We further used GOAT to analyze the genome-wide off-
target effects of two commonly used Cas12a (LbCas12a and
AsCas12a). Similarly, LbCas12a or AsCas12a mRNA and
their crRNAs targeting Dmd or Tp53 gene were injected into
one of the twin embryos (Fig. 1B). The activities of LbCas12a
and AsCas12a were confirmed by the high efficiency
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(100.0% ± 0.0% for LbCas12a-Dmd, 100.0% ± 0.0% for
AsCas12a-Dmd; 83.3% ± 16.7% for LbCas12a-P53, 100.0%
± 0.0% for AsCas12a-P53; n = 3 twins for each group) to

induce indels on Dmd gene. (Figs. 2A and S2). We found an
average of 19 SNVs and 1 indel in LbCas12a group. Simi-
larly, 18 SNVs and 1 indel were detected in AsCas12a group

Figure 1. GOAT detects off-target effects induced by BE3, ABEmax and indiscriminate ssDNA cleavage activity of CRISPR-

Cas12a. (A) “Collateral effect” or trans-cleavage in CRISPR-Cas13 and CRISPR-Cas12 systems. DNA replication, transcription,

homology-directed repair and R loop structure would lead to the unwinding of double-stranded DNA (dsDNA) to ssDNA. Whether the

indiscriminate ssDNA cleavage activity of Cas12a would induce genome-wide off-target effects in mammalian cells needs to be

explored. (B) Experimental design of GOAT mediated genome-wide off-target detection. (C) Number of SNVs identified in GFP, BE3,

and ABEmax injected groups. (D) Number of indels identified in GFP, BE3, and ABEmax injected groups by WGS. (E) The proportion

of G·C to A·T mutations in GPF-, ABEmax-, and BE3-injected groups. Numbers above the columns represent the number of samples.

n = 4 for GFP, n = 3 for BE3 and n = 3 for ABEmax groups. All values are presented as mean ± SEM. *P < 0.05, **P < 0.01,

***P < 0.001, ns, P ≥ 0.05, unpaired t-test.
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(Tables S3 and S4). Notably, the number of SNVs and indels
of LbCas12a and AsCas12a groups were comparable to
GFP ones and no significant difference was observed
(Fig. 2B and 2C). For all the identified SNVs, the base
substitution types showed no obvious bias (Fig. S5).
Besides, the SNVs and indels observed in each embryo
showed no overlap with those from other embryos (Fig. 2D).
In contrast to the top predicted off-target sites, no similarity
was observed between the adjacent sequences of detected
off-target and the on-target sequences except for one off-
target site (Figs. S3 and S6). Notably, this off-target
sequence was previously reported as a crRNA-mediated off-
target of Tp53 (Kim et al. 2016), demonstrating the sensitivity
of GOAT method. We next analyzed the distribution of these
SNVs in the genome context and found that they were ran-
domly located in each chromosome, suggesting no prefer-
ence for specific regions (Figs. 2E and S7). We further
explored whether the SNVs and indels were enriched in
transcription activated regions of the genome, where double-
strand DNA (dsDNA) are frequently unwinded to ssDNA
(Zhang et al. 2012), and found that no significant difference
was observed between GFP and LbCas12a or AsCas12a
groups (Fig. 2F and Table S7). These results indicated that
the characteristics of mutations generated in LbCas12a and
AsCas12a groups were consistent with those in GFP group.
Since previous studies showed that Cas12a had the tar-
geted-activated ssDNA cleavage activity in vitro (Chen et al.
2018; Li et al. 2018). We next applied the fluorophore

quencher (FQ)-labeled reporter assays to investigate the
correlation between the target DNA dosage and the per-
centage of cleaved ssDNA (Chen et al. 2018). Our results
showed that when the target DNA was diluted to 10−2 nmol/
L, the ratio of cleaved ssDNA was decreased to the control
level (Fig. 2G). These experiments may explain that the low
amount of targeted DNA in mammalian cells leads to a rel-
atively small ratio of target-activated ssDNA cleavage
activity of Cas12a, resulting in no detectable ssDNA cleav-
age induced off-target effects in mouse embryos.

In summary, we developed GOAT to detect genome-wide
off-target effects of gene editing tools without the need of
FACS. Compared with GOTI, GOATwas a simpler and lower
cost method with comparable accuracy and sensitivity. Using
GOAT analysis, we found that the trans ssDNA cleavage
activity of Cas12a (LbCas12a and AsCas12a) was low in
mouse embryos, suggesting that Cas12a is highly specific in
mammalian cells. Our results further demonstrated that the
target-activated, nonspecific ssDNA cleavage activity of
Cas12a in vitro was induced by a large amount of targeted
dsDNA. Recent studies reported that Cas13a-mediated tar-
geting on massive copies of RNA generated substantial
“collateral effect” in cultured cells and individual organisms
(Wang et al. 2019; Buchman et al. 2020). By contrast,
Cas12a only targeted a limited number of gene copies in
mammalian cells, and thus would not cause broad ssDNA
cleavage. Besides, protective DNA repairing mechanism can
repair the limited number of ssDNA cleavage (Sancar et al.
2004). In addition, low-frequency trans cleavage off-target
events and large scale deletions or insertions could be
missed by our detection approach, resulting in the unde-
tectable off-target effects in our study. Considering that
LbCas12a and AsCas12a have comparable editing effi-
ciencies, smaller size and lower mismatch tolerance com-
paring with spCas9, they hold great promise and competition
for therapeutic application in the future (Kleinstiver et al.
2016).
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b Figure 2. On-target editing and off-target effects of

LbCas12a and AsCas12a using GOAT. (A) On-target editing

efficiency identified by WGS for LbCas12a and AsCas12a

groups. (B) Number of SNVs identified in LbCas12a and

AsCas12a groups by WGS, where on-target editing was

removed from the analysis. (C) Number of indels identified in

LbCas12a and AsCas12a groups by WGS. (D) Overlap among

SNVs and indels detected by GOAT with predicted off-targets

by Cas-OFFinder. (E) Distribution of SNVs in the mouse

genome in GFP, LbCas12a-treated and AsCas12a-treated

samples. Embryos from inner circle to outer circle were GFP-

#1, GFP-#2, GFP-#3, LbCas12a-Dmd-#1, LbCas12a-Dmd-#2,

LbCas12a-Dmd-#3, AsCas12a-Dmd-#1, AsCas12a-Dmd-#2

and AsCas12a-Dmd-#3. (F) The distribution of off-target SNVs

in the transcribed and un-transcribed regions. P values were

calculated by Chi-square test on the number of SNVs in

transcribed and un-transcribed regions of each group. (G) Cor-

relation between the target DNA dosage and the presence of

cleaved ssDNA. n = 4 twins for GFP, n = 6 twins for LbCas12a

and n = 6 twins for AsCas12a groups; numbers above the

columns represent the number of samples. All values are

presented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001,

ns, P ≥ 0.05, unpaired t-test. Note that samples of the GFP

group are also used in Fig. 1.
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