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Abstract

Objective: The prebiotic fiber inulin has been studied in individuals undergoing hemodialysis 

(HD) due to its ability to reduce gut microbiota-derived uremic toxins. However, studies 

examining the effects of inulin on the gut microbiota and derived metabolites are limited in 

these patients. We aimed to assess the impact of a 4-week supplementation of inulin on the gut 

microbiota composition and microbial metabolites of patients on HD.

Design and Methods: In a randomized, double-blind, placebo-controlled, crossover study, 

twelve HD patients (55 ± 10 y, 50% male, 58% Black American, BMI 31.6 ± 8.9 kg/m2, 33% 
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diabetes mellitus) were randomized to consume inulin [10 g/d for females; 15 g/d for males] or 

maltodextrin [6 g/d for females; 9 g/d for males] for 4 weeks, with a 4-week washout period. 

We assessed the fecal microbiota composition, fecal metabolites (short-chain fatty acids (SCFA), 

phenols, and indoles), and plasma indoxyl sulfate and p-cresyl sulfate.

Results: At baseline, factors that explained the gut microbiota variability included BMI category 

and type of phosphate binder prescribed. Inulin increased the relative abundance of the phylum 

Verrucomicrobia and its genus Akkermansia (P interaction = 0.045). Inulin and maltodextrin 

resulted in an increased relative abundance of the phylum Bacteroidetes and its genus Bacteroides 
(P time = 0.04 and 0.03, respectively). Both treatments increased the fecal acetate and propionate 

(P time = 0.032 and 0.027, respectively), and there was a trend toward increased fecal butyrate (P 
time = 0.06). Inulin did not reduce fecal p-cresol or indoles, or plasma concentrations of p-cresyl 

sulfate or indoxyl sulfate.

Conclusions: A 4-week supplementation of inulin did not lead to major shifts in the fecal 

microbiota and gut microbiota-derived metabolites. This may be due to high variability among 

participants and an unexpected increase in fecal excretion of SCFA with maltodextrin. Larger 

studies are needed to determine the effects of prebiotic fibers on the gut microbiota and clinical 

outcomes to justify their use in patients on HD.

Introduction

THE GUT MICROBIOTA is the diverse community of microorganisms that resides 

within the gastrointestinal tract.1–3 The gut microbiota is of interest in chronic kidney 

disease (CKD) as it has been associated with the pathogenesis and progression of kidney 

dysfunction.4,5 The gut microbiota of individuals with CKD and kidney failure has been 

described to have a lower abundance of some commensal bacteria, such as bifidobacteria, 

while having a greater abundance of pathobionts such as Enterobacteriaceae and Clostridium 
perfringens compared to healthy controls.6,7

The unique gut microbial composition in CKD also may be accompanied by changes in 

bioactive microbial-derived metabolites. Individuals with kidney failure have an expansion 

in bacterial families possessing indole- and phenolforming enzymes,8 along with an increase 

in protein fermentation products derived exclusively from microbial metabolism, such as 

indoles (from tryptophan) and phenols (from tyrosine).9 These indoles and phenols are 

absorbed and transformed in the liver, including sulfation, producing indoxyl sulfate and 

p-cresyl sulfate, respectively, and released into the systemic circulation.9 Importantly, serum 

p-cresyl sulfate and indoxyl sulfate have been associated with increases in cardiovascular 

mortality, endothelial dysfunction, and mineral and bone disorders in individuals with 

CKD.10–13 Since a big proportion of these are protein-bound, the dialysis process itself 

is not effective for their elimination.14 Therefore, therapies that reduce the production of 

these uremic toxins often are sought.

In parallel to an increased capacity for the production of uremic toxins, the gut microbiota 

of individuals with kidney failure may exhibit decreased saccharolytic fermentation and 

short-chain fatty acid (SCFA)-producing capabilities, which may be a result of a low dietary 

fiber intake.8,15 SCFAs, particularly butyrate, have been associated with positive outcomes 
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in healthy adults and other clinical populations.16,17 SCFAs have effects associated with 

kidney function, such as regulation of blood pressure and reduction of ischemia-reperfusion 

injury.18–20 However, research on SCFAs production and its effects on kidney failure is 

limited.

Diet is a main determinant of the gut microbial composition and it has been demonstrated 

that the gut microbiota and derived metabolites are significantly different when animal 

versus plant-based diets are consumed.21 In individuals undergoing hemodialysis (HD), the 

dietary recommendations may be considered restrictive.22 In particular, increased intake of 

protein of high biological value, while limiting dietary potassium and phosphorus, may 

result in a diet high in animal-based foods and low in plant-based foods.23 Additionally, 

there is a positive association between the ratio of dietary protein-to-fiber and indoxyl 

sulfate and p-cresyl sulfate in individuals with CKD.11 By increasing dietary fiber and 

polysaccharide fermentation, protein fermentation may be spared and thus reducing the 

protein fermentation products, including phenols and indoles.9 Thus, reducing the protein

to-fiber ratio by supplementing dietary fiber may be a novel clinical strategy to decrease 

the uremic toxins of microbial origin.11 Among dietary fiber, inulin-type fructans have been 

shown to reduce p-cresyl sulfate in individuals undergoing HD.10 Inulin-type fructans can 

be found in foods and are considered prebiotics as they are selectively utilized by host 

microorganisms and have been shown to confer health benefits, such as increased mineral 

absorption, increased production of endocrine peptides, and changes in the gut microbiota 

in healthy and other clinical populations.24,25 Inulin-type fructans are fermented by some 

bacteria, particularly bifidobacteria, producing acetate and lactate through the bifidogenic 

shunt, which then are used by other bacteria to produce other SCFAs, predominantly 

butyrate.26–29 However, the effects of inulin on the gut microbial composition and other 

microbial metabolites have not been explored in patients on HD. Therefore, our objective 

was to assess the effects of a 4-week supplementation of inulin on the gut microbiota 

composition, fecal gut-derived metabolites (SCFAs, indoles, and phenols), and plasma 

concentrations of microbial metabolites in individuals undergoing HD.

Methods

We recruited individuals undergoing HD from two local dialysis clinics. Inclusion criteria 

included thrice-weekly HD therapy for at least 3 months and being able to provide a total 

of four fecal samples. Exclusion criteria included previous major gastrointestinal disease 

diagnosis (e.g., inflammatory bowel disease and celiac disease) or intestinal resections; 

antibiotic treatment 1 month prior to the start of the study; sustained hypercalcemia; and 

current intake of probiotics or prebiotics. Consent was obtained from each participant and all 

protocols were approved by our University’s Institutional Review Board in accordance with 

the Declaration of Helsinki. This study was registered in Clinicaltrials.gov (NCT02718885). 

Part of this work was published as a doctoral dissertation.30

Intervention Protocol

In a randomized, double-blind, placebo-controlled, crossover study, 13 participants were 

randomized using a simple randomization technique (coin toss) to the intervention (inulin) 
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or placebo (maltodextrin). Randomization was performed by a research coordinator so that 

both researchers and participants were blinded to the treatment allocation. Seven participants 

were randomly assigned to consume the inulin supplement first, while six were assigned 

to consume the maltodextrin first. Participants consumed inulin (females: 10 g/day; males: 

15 g/day; Orafti Synergy, Beneo, Belgium [91% inulin with a degree of polymerization 

of 2–60; 9% short-chain fructooligosaccharides with a degree of polymerization of 2–8]) 

or maltodextrin (females: 6 g/day; males: 9 g/day; Now Foods Carbogain Maltodextrin, 

Bloomingdale, IL) for 4 weeks, with a 4-week washout period between supplementation 

periods (Figure S1). The differential dose for males and females was based on the dietary 

reference intake for dietary fiber for males and females of 38 g/d and 25 g/d, respectively, 

and the intervention doses represented ~40% of the adequate intake of fiber.31 Participants 

received the supplements in sachets at the beginning of each week at the dialysis center 

(Monday or Tuesday) and were instructed to consume the supplements mixed with a fluid 

of their choice. The first week of the supplementation periods was considered an adaptation 

week, in which participants consumed half of the dose. After this first week, participants 

were instructed to double the dose and were suggested to split the dose in half and consume 

it twice a day if they had gastrointestinal symptoms, such as flatulence. Participants were 

asked at every HD treatment about supplement compliance, as well as the fluid used to mix 

the supplement, gastrointestinal symptoms, and stool consistency based on the Bristol Stool 

Scale.

Fecal Sample Collection and Gastrointestinal Symptoms

Participants were asked to collect a complete fecal sample (Commode Specimen Collection 

System Sage Products, Crystal Lake, IL) at the beginning and end of both supplementation 

periods. For the end of the period, participants were instructed to collect and provide the 

fecal samples (day 21–28) to the research team. Samples were weighed, homogenized, and 

three-2 mL aliquots were stored at −80° C within 60 min of collection. Participants also 

were asked to rate consistency and ease of passage for the bowel movement. Additionally, 

stool consistency was scored by one member of the research team according to the Bristol 

Stool Scale.32 Ease of stool passage was ranked on a 5-point scale (1 = very easy, 2 = easy, 3 

= neither easy nor difficult, 4 = difficult, 5 = very difficult).

DNA Extraction and Fecal Microbiota Analyses

DNA was extracted using the Powerlyzer PowerSoil DNA Isolation Kit (MO BIO, 

Carlsbald, CA) and quantified using a Qubit Fluorometer 3.0 using the dsDNA BR Assay 

Kit (ThermoFisher Scientific, Waltham, MA), while quality was assessed by electrophoresis 

with 2% Agarose EX-gels using the E-Gel iBase (Invitrogen, Grand Island, NY). Fluidigm 

Access Array was used to generate16S rRNA gene amplicons, in combination with Roche 

High Fidelity Fast Start Kit. Primers 515 F (5′-GTG YCAGCMGCCGCGGTAA-3′) and 

806R (5′-GGA CTACNVGGGTWTCTAAT-3′) targeting a 252bp-fragment of the V4 

region of the bacterial 16S rRNA were amplified.33 CS1 forward tag and CS2 reverse 

tag were added according to the Fluidigm protocol. Sequencing was performed through 

Illumina Mi-seq using V3 reagents. Relative changes in bacterial diversity (α-diversity 

and β-diversity) and taxonomical changes were analyzed through the open software 

QIIME (version 1.9.1). In short, high-quality (quality value $ 20) sequencing reads were 
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demultiplexed. Sequences then were clustered into features, in this case, operational 

taxonomic units (OTUs) using UCLUST34 through a closed-reference OTU picking strategy 

against the Greengenes 13_8 reference OTU database with a 97% similarity threshold.35 

Singletons (OTUs that were observed fewer than two times) and OTUs that had less than 

0.01% of the total observation were discarded. Taxonomic identity to each OTU then was 

assigned using UCLUST. OTUs that had a relative abundance at any timepoint of $1% 

were considered for analysis. For α- and β-diversities, samples were rarified to an even 

sampling depth of 67,614 sequences/ sample. β-diversity was calculated using weighted and 

unweighted UniFrac distance measures.36

Fecal dry Matter, SCFAs, Phenols, and Indoles

SCFAs were quantified by gas chromatography according to Erwin et al.37 The 

concentrations of phenols and indoles were quantified by gas chromatography according 

to Flickinger et al.38 Fecal dry matter was measured according to the methods of the 

Association of Official Analytical Chemists.39

Blood Sample Collection and Plasma Metabolites

A plasma sample was obtained at the beginning of the dialysis session immediately after 

the fecal sample collection (BD Vacutainer Lithium plasma tube, Oakville, ON). Total 

plasma p-cresyl sulfate and indoxyl sulfate were measured by ultra-performance liquid 

chromatography-tandem mass spectrometry (UPLC-MS/MS) as described by de Loor et 

al.16

Dietary Intake

Participants were asked to maintain a constant dietary intake throughout the duration of 

the study. Dietary recalls covering the 48 h prior to the fecal sample collection were 

obtained by a trained dietitian using the modified version of the USDA 5-pass method.40 

The records were analyzed for macronutrient and micronutrient composition using Nutrition 

Data System for Research (NDSR 2014 version, University of Minnesota, Minneapolis, 

MN).

Statistical Analysis

Means and standard deviations are reported unless otherwise noted. All outcomes were 

assessed for normality and variance using Brown-Forsythe’s test and log-transformed 

before analyses as appropriate. Repeated measures ANOVA was performed in a within

subjects analysis with two groups (inulin, maltodextrin) and two timepoints (pre, post), 

against variables of interest with significance at P < .05. As we only had two treatments, 

the Wilcoxon’s paired test was performed to assess any potential carryover effects 

(inulin-pre vs. maltodextrin-pre) in the main variables of interest (e.g., Bifidobacterium, 
Faecalibacterium, fecal SCFAs, and plasma indoxyl sulfate and p-cresyl sulfate).41 

Statistical analysis was performed using SPSS version 25. Further statistical analysis of 

the microbial composition was performed through Statistical Analysis of Metagenomic 

Profiles (STAMP) using categorical variables (e.g., sex, body mass index [BMI] category, 
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type of phosphate binders) using Welch’s t-test at baseline, which was corrected for multiple 

comparisons using Benjamini- Hochberg False Discovery Rate (FDR, q).42

Results

From the 30 individuals undergoing HD that were approached, fifteen participants were 

recruited from two outpatient dialysis clinics. Two participants dropped from the study 

before starting the intervention (one because of personal reasons and the other was 

transferred to another clinic). One patient was deceased before completing the study and 

12 participants completed both supplementation periods (Table 1, Figure S2).

Phosphate Binders and BMI Category Are Key Determinants of Gut Microbiota 
Composition

Principal component analysis (PCA) of baseline data revealed a distinct fecal microbiota 

between participants prescribed calcium and non-calciumbased phosphate binders (i.e., 

sevelamer hydrochloride/carbonate). In participants who were prescribed sevelamer, there 

was a higher relative abundance of fecal unclassified Ruminococcaceae (q=0.028) and a 

lower relative abundance of fecal Bacteroides (q<0.022) (Figure 1). Similarly, the fecal 

microbiota was different depending on BMI category, with participants with a BMI 

≥30 kg/m2 having a higher relative abundance of fecal Ruminococcus (q = 0.047) and 

unclassified Enterobacteriaceae (q = 0.006), while individuals with BMI <25 kg/m2 had a 

higher relative abundance of Coprococcus (q = 0.014) (Figure S4). Additionally, the fecal 

microbiota tended to be different between female and male participants (Figure S3). Female 

participants tended to have a lower relative abundance of fecal Faecalibacterium (q=0.054) 

(Figure S3).

Inulin Did Not Alter Fecal Microbial Diversity

Inulin or maltodextrin supplementation did not affect a-diversity, a metric of microbial 

richness within a sample. For b-diversity, or microbial diversity between samples, principal 

coordinate analyses of unweighted (presence vs. absence) and weighted (account for OTUs 

abundance) UniFrac performed on the 97% OTU abundance distance matrix did not show 

effects of inulin or maltodextrin (PERMANOVA P = .99 and .875, respectively; Figure 

S5). However, there was a high interpersonal variability, where samples from the same 

participant clustered together (PERMANOVA P = .001 for weighted and unweighted 

UniFrac; Figure S6).

Inulin Supplementation Induced Minor and Similar Modifications to the Gut Microbiota 
Composition to Maltodextrin

After the supplementation of inulin or maltodextrin, the phylum Bacteroidetes and its genus 

Bacteroides increased after both treatments (P time = 0.041 and 0.028, respectively) (Table 

2). Furthermore, there was a group-by-time interaction on the Verrucomicrobia phylum and 

its only genus Akkermansia where it increased after inulin treatment and decreased after 

maltodextrin (P interaction = 0.045). There was a group-by-time trend toward significance 

in Ruminococcus, where it tended to decrease after inulin, while it was maintained after 

maltodextrin (P interaction = 0.051). Finally, we did not observe any differences in 
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the relative abundance of genera of interest (e.g., Bifidobacterium or Faecalibacterium). 

However, there was a trend toward a time effect on Faecalibacterium, which increased after 

inulin and maltodextrin (P time = 0.079) (Table 2).

Inulin and Maltodextrin Increased Fecal SCFAs but Did Not Decrease Indole and Phenol 
Metabolites in Feces or Serum

Fecal acetate and propionate significantly increased after inulin and maltodextrin (P time 

= 0.032 and 0.027, respectively), and a numerical increase in fecal butyrate after both 

supplementation treatments that did not reach statistical significance (P time = 0.128) (Table 

3, Figure 2).

Consumption of inulin did not alter microbiota-derived fecal p-cresol and indoles or plasma 

metabolites indoxyl sulfate and p-cresyl sulfate (Table 3, Figure 3). We assessed the 

potential carryover effect of both supplements and found no effect on the fecal SCFAs 

and plasma indoxyl sulfate and p-cresyl sulfate (p > .1 for all).

Supplement Adherence, Dietary Intake, and Gastrointestinal Symptoms

Overall, there were no major shifts in dietary intake across the length of the study. However, 

there was an increase in dietary fiber intake after inulin supplementation, as the supplement 

was considered in the total dietary fiber intake (P interaction = 0.006) (Table S1). As a 

result, the dietary protein-to-fiber ratio was reduced after the inulin supplementation (P 
interaction = 0.041). This increase in dietary fiber and reduction in the protein-to-fiber ratio 

was not associated with a decrease in uremic toxins in plasma (data not shown). Finally, 

there was a time effect on total carbohydrate intake, where it was decreased after inulin and 

maltodextrin (P time = 0.04).

After the supplementation of inulin, there was an increase in flatulence score (P interaction 

= 0.026). This increase, however, was not associated with a change in compliance, where 

self-reported compliance after inulin was $80% (Table S2). Additionally, there was a time 

effect on the reflux score, where it increased after both treatments (P time = 0.027) and 

a group effect on the rumbling score, where the inulin group was higher overall (P group 

= .021) (Table S2). Finally, there were no changes in the self-reported number of bowel 

movements or stool consistency scored by a member of the research team (Table S2).

Discussion

In this randomized, double-blind, placebo-controlled, crossover study, a 4-week 

supplementation of inulin did not result in major changes in the diversity or composition 

of the gut microbiota, or the fecal and plasma microbial metabolites. We, however, observed 

that anthropometric and pharmacological variables, such as BMI category and the type of 

phosphate binder partially explained fecal microbiota variability.

The supplementation of inulin-type fructans has resulted in changes in the gut microbiota 

composition in healthy adults,41,43 individuals with obesity,44,45 diabetes,46,47 and recently 

in individuals with kidney failure undergoing peritoneal dialysis.48 Most studies have 

reported an increase in the relative abundance of Bifidobacterium, Faecalibacterium, 
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Anaerostipes, and Roseburia.41,43,45,49 We did not observe an increase in Bifidobacterium, 
but we observed a trend toward an increase in the relative abundance of Faecalibacterium 
after inulin and maltodextrin. A failure to observe an effect on Bifidobacterium has been 

reported as a methodological flaw in 16S rRNA gene sequencing due to the overall 

low relative abundance of this genus,28 which in our participants was 2.36% (range 0–

21.8%) throughout the study timepoints. Besides these genera, reductions in other genera 

have been reported, such as Bacteroides and Bilophila.41,45 In our study, however, we 

observed that the relative abundance of Bacteroides increased after inulin and maltodextrin, 

and that the phylum Verrucomicrobia and its genus Akkermansia increased after inulin. 

Finally, we observed a trend toward significance on Ruminococcus, where the relative 

abundance numerically decreased after inulin, while it was maintained after maltodextrin. 

Ruminococcus gnavus has been shown to discriminate between healthy controls and 

individuals with CKD.50 Interestingly, a polysaccharide produced by R. gnavus has been 

shown to induce the production of TNF-a in inflammatory bowel disease.51 A potential 

reduction of the genus Ruminococcus and its impact on inflammation in individuals with 

CKD and kidney failure remains to be explored.

We hypothesized that supplementation with inulin would increase the fecal excretion of 

SCFA, especially butyrate, compared to maltodextrin. Bifidobacteria ferment inulin-type 

fructans producing acetate and lactate through the bifidogenic shunt, which can be cross-fed 

to other bacteria to produce other SCFA, predominantly butyrate.26–29 Unfortunately, we 

did not measure fecal lactate levels, as it is possible that there was not enough microbial 

capacity to produce butyrate from lactate, as butyrate-forming enzymes are reduced in 

individuals with kidney failure.8 We did, however, observe a similar numerical increase in 

fecal butyrate after inulin and maltodextrin, which was increased by ~60% (~15uM) after 

both treatments.

We observed a time effect in the fecal acetate and propionate after both supplementation 

periods. In fact, maltodextrin supplementation led to more robust increases in fecal 

acetate and propionate concentrations compared to inulin supplementation, suggesting that 

individuals undergoing HD may have impaired digestion and absorption of maltodextrin. 

In vitro fermentation studies have shown that maltodextrin can be degraded by bacteria, 

producing lactate, acetate, and propionate.52 We decided to use maltodextrin as our control 

because, in theory, it is a completely digestible carbohydrate used extensively as a control 

for fiber supplementation studies,53 including those focused on kidney disease.54,55 Species 

within the Lachnospiraceae family (Eubacterium rectale) and Faecalibacterium prausnitzii 
can utilize maltodextrins.56 In our study, we did not observe changes in the relative 

abundance of the family Lachnospiraceae, but Faecalibacterium tended to increase after 

inulin and maltodextrin. If indeed maltodextrin is fermented by the gut microbiota in 

kidney failure, maltodextrin should be avoided as a placebo and the use of negative control 

supplements, such as cellulose, should be preferred.

The reduction of uremic toxins through the modulation of the gut microbiota is a topic 

of interest to the nephrology community. In a non-randomized study by Meijers et al.,10 a 

4-week supplementation of 20 g/d of oligofructose-enriched inulin (same type of supplement 

as in the current study) resulted in a 20% reduction in circulating p-cresyl sulfate, without 

Biruete et al. Page 8

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a change in indoxyl sulfate. In our study, we did not observe an effect of inulin on plasma 

p-cresyl sulfate or indoxyl sulfate. However, the dose utilized in the current study was 

25–50% lower than reported by Meijers et al.10 Furthermore, it has been suggested that 

by lowering the ratio of dietary protein-to-dietary fiber, the production of these bacteria

derived uremic toxins may decrease.9 Despite having a significant reduction in the protein

to-fiber ratio after inulin supplementation (Table S1), we did not observe a decrease in 

these uremic toxins. Additionally, we did not observe a decrease in the fecal excretion 

of p-cresol and indoles, the precursors of indoxyl sulfate and p-cresyl sulfate. Specific 

bacterial species within the Bacteroides genus, such as Bacteroides thetaiotaomicron and 

Bacteroides ovatus, have been shown to express tryptophanase, the enzyme needed for the 

breakdown of tryptophan to indole.57 In our study, we did not find an association between 

the genus Bacteroides and the plasma concentration of indoxyl sulfate (data not shown). 

However, with our microbial analysis, we were not able to assess the relative abundance 

of specific bacterial species or functional capacity. Future studies should assess whether 

the supplementation of prebiotic fibers, including inulin, modifies bacterial species with the 

capacity of producing p-cresyl sulfate and indoxyl sulfate.

We observed that the fecal microbiota was different depending on the BMI category. 

Individuals with a BMI $30 kg/m2 had a higher relative of Ruminococcus and unclassified 

Enterobacteriaceae. As mentioned above, some species within the Ruminococcus genus can 

lead to increases in proinflammatory cytokines.51 The family Enterobacteriaceae has been 

shown to be increased in individuals with obesity in a large cohort of U.S. adults58 and has 

been shown to increase endotoxemia, leading to an increase in systemic inflammation.59

CKD-mineral and bone disorder is a highly prevalent problem in HD patients.60 Phosphate 

binders represent the first line of treatment for controlling hyperphosphatemia, in addition 

to dietary phosphate restriction and dialysis treatment.60 In our study, we observed a unique 

gut microbiota in those participants that were prescribed sevelamer. Sevelamer is a polymer 

that has a non-selective ability to bind molecules, so in addition to binding phosphate, 

it binds other molecules such as indoles, indoxyl sulfate, and p-cresol.9 Interestingly, we 

observed that participants taking sevelamer had a lower relative abundance of Bacteroides 
compared with participants prescribed calcium- based binders. As mentioned above, 

tryptophanase is expressed in some of the species within the genus Bacteroides, such as 

B. thetaiotaomiron and B. ovatus. As phosphate binders are ubiquitously prescribed in this 

clinical population, future studies should assess the effect of phosphate binders on the gut 

microbiota composition and metabolites produced.61

There are limitations to our study. The results of our investigation may be limited due to 

the small sample size and a high BMI. Additionally, our fecal analysis of the metabolites 

derived from the gut microbiota was performed only in 75% of our sample; however, this 

was to ensure confidence in our results. Furthermore, an important problem in this clinical 

population is adherence with treatment.62 Even though verbal compliance was >80% in all 

our participants, we did not measure adherence with our treatments, such as performance 

of a breath hydrogen test.63 Interestingly, maltodextrin exhibited traits of a dietary fiber, 

evidenced by an increase in fecal SCFAs after participants received the placebo treatment. 

This unexpected finding may have limited our ability to detect an effect of inulin on similar 
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outcomes. Finally, we collected only one fecal sample at each timepoint, which may have 

limited our ability to detect a more meaningful effect of our intervention. However, we 

believe our results are valuable as this is the first study, to our knowledge, using inulin as a 

prebiotic fiber to assess its overall effects on both the gut microbiota and derived metabolites 

in HD patients.

Practical Application

Prebiotic fibers have been proposed to be used in kidney failure because they may 

reduce protein fermentation byproducts by shifting the fermentation profile toward SCFA 

production. In our study, a 4-week supplementation of inulin did not produce major 

changes in the gut microbiota composition or derived uremic toxins indoxyl sulfate or 

p-cresyl sulfate. While there was an increase in the fecal excretion of SCFA after inulin 

supplementation, these also increased after our placebo, maltodextrin, which suggests that 

maltodextrin should not be used as a placebo in this clinical population. Importantly, factors 

such as the type of phosphate binder and BMI category may have a greater impact on the 

composition of the gut microbiota. As phosphate binders are one of the most commonly 

used drugs in individuals with kidney failure, their effects on the gut microbiome should 

be further explored.61 Finally, due to the high variability in the composition of the gut 

microbiota, future studies with a larger sample size should explore the effects of prebiotic 

fibers on the gut microbiota and outcomes to justify their use in individuals with kidney 

failure undergoing HD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Principal component analysis (PCA) performed on the 97% OTU abundance matrix. 

A) There was a unique microbiota in HD patients that were prescribed sevelamer 

hydrochloride/carbonate (orange squares) compared to participants prescribed calcium

based binders (blue circles). B) There was a lower relative abundance of Bacteroides in 

those prescribed sevelamer (q = 0.022) and a higher relative abundance of unclassified 

Ruminococcaceae (q = 0.028).
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Figure 2. 
Fecal short-chain fatty acids increased after inulin and maltodextrin supplementation. The 

mean concentrations before and after the supplementation periods and the individual pre- 

and post-effects are shown. A) There was a time effect on the fecal acetate, where it 

increased after inulin and maltodextrin. B. There was a time effect on the fecal propionate, 

where it increased after inulin and maltodextrin. C) There was a similar numerical increase 

in fecal butyrate after inulin and maltodextrin but did not reach statistical significance.

Biruete et al. Page 16

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Fecal p-cresol and indole and plasma concentrations of indoxyl sulfate and p-cresyl sulfate 

did not change after inulin and maltodextrin supplementation. The mean concentrations 

before and after the supplementation periods and the individual pre- and post-effects are 

shown. A) Fecal p-cresol was not altered after inulin or maltodextrin. B) Fecal indole was 

not altered after inulin or maltodextrin supplementation. C) Plasma p-cresyl sulfate was not 

modified after the supplementation of inulin or maltodextrin. D) Plasma indoxyl sulfate did 

not change after the supplementation of inulin or maltodextrin.
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Table 1.

Participants Baseline Characteristics

Variable Mean ± SD

Age (y) 55 ± 10

Gender (M/F) 6/6

African American (%) 58.3%

BMI (kg/m2) 31.62 ± 8.95

Diabetes (%) 46%

Serum Albumin (g/dL)* 3.27 ± 0.25

Energy (kcal/kg/d) 22.43 ± 10.87

Protein (g/kg/d) 0.97 ± 0.50

Carbohydrates (% total kcal) 44.28 ± 6.97

Fat (% total kcal) 37.79 ± 6.14

Total Dietary Fiber (g/1,000 kcal) 6.79 ± 2.95

Fecal Acetate (umol/g DM) 193.36 ± 125.88

Fecal Propionate (umol/g DM) 57.92 ± 35.01

Fecal Butyrate (umol/g DM) 35.63 ± 27.94

Fecal Indoles (ug/g DM) 129.47 ± 90.29

Fecal P-Cresol (ug/g DM) 195.95 ± 137.09

Plasma Indoxyl Sulfate (uM) 110.65 ± 48.29

Plasma P-Cresyl Sulfate (uM) 180.81 ± 108.84

M, male; F, female; SD, standard deviation; BMI, body mass index.

*
Serum albumin was measured with a Point of Care analyzer that utilizes the bromcresol purple method with reference values of 3.3–5.5 g/dL.

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biruete et al. Page 19

Ta
b

le
 2

.

B
ac

te
ri

al
 T

ax
a 

w
ith

 ≥
1%

 A
bu

nd
an

ce
 a

ft
er

 F
ou

r 
W

ee
ks

 o
f 

In
ul

in
 o

r 
M

al
to

de
xt

ri
n 

Su
pp

le
m

en
ta

tio
n

P
hy

lu
m

 (
%

)
In

ul
in

 (
m

ea
n 

± 
SD

)
M

al
to

de
xt

ri
n 

(m
ea

n 
± 

SD
)

G
ro

up
P

T
im

e
P

G
 ×

 T
P

G
en

us
 (

%
)

P
re

 (
n 

= 
12

)
P

os
t 

(n
 =

 1
2)

P
re

 (
n 

= 
12

)
P

os
t 

(n
 =

 1
2)

A
ct

in
ob

ac
te

ri
a†

3.
44

 ±
 3

.0
1

3.
02

 ±
 2

.3
9

5.
69

 ±
 6

.6
5

4.
28

 ±
 5

.1
2

.2
13

.1
67

1.
00

0

 
B

if
id

ob
ac

te
ri

um
†

1.
43

 ±
 2

.2
2

1.
89

 ±
 2

.2
3

3.
30

 ±
 6

.2
6

2.
72

 ±
 5

.0
8

.1
69

.7
89

.2
35

 
C

ol
lin

is
el

la
0.

88
 ±

 1
.7

8
0.

59
 ±

 0
.9

6
1.

27
 ±

 2
.1

9
0.

88
 ±

 1
.4

8
.3

87
.8

31
.6

55

B
ac

te
ro

id
et

es
†

32
.0

2 
±

 1
2.

27
38

.0
5 

±
 1

3.
60

27
.7

1 
±

 1
0.

64
34

.8
2 

±
 1

5.
51

.0
63

.0
41

.8
84

 
B

ac
te

ro
id

es
26

.7
9 

±
 1

2.
63

32
.0

8 
±

 1
3.

58
23

.5
2 

±
 1

1.
18

29
.8

6 
±

 1
6.

17
.1

22
.0

28
.8

64

 
Pa

ra
ba

ct
er

oi
de

s
2.

71
 ±

 1
.5

8
3.

00
 ±

 2
.5

6
2.

33
 ±

 1
.9

0
3.

04
 ±

 2
.2

9
.6

92
.3

00
.7

03

 
R

ik
en

el
la

ce
ae

*†
1.

66
 ±

 1
.8

8
1.

60
 ±

 1
.7

7
1.

43
 ±

 2
.0

9
1.

13
 ±

 1
.7

3
.0

68
.5

45
.9

56

Fi
rm

ic
ut

es
59

.7
5 

±
 1

0.
98

54
.0

3 
±

 1
4.

53
61

.9
4 

±
 1

2.
69

56
.4

7 
±

 1
4.

85
.2

94
.0

84
.9

69

 
St

re
pt

oc
oc

cu
s†

3.
74

 ±
 7

.3
8

1.
55

 ±
 3

.0
2

3.
45

 ±
 6

.5
1

2.
34

 ±
 3

.4
8

.8
19

.3
98

.7
15

 
C

lo
st

ri
di

al
es

7.
33

 ±
 3

.3
5

6.
39

 ±
 2

.8
2

9.
16

 ±
 4

.4
8

7.
54

 ±
 4

.4
2

.1
06

.0
96

.6
32

 
L

ac
hn

os
pi

ra
ce

ae
*

7.
50

 ±
 3

.4
8

5.
39

 ±
 3

.6
0

7.
23

 ±
 3

.7
2

7.
21

 ±
 3

.6
8

.3
40

.2
80

.1
66

 
B

la
ut

ia
†

4.
16

 ±
 3

.9
1

4.
71

 ±
 3

.2
9

7.
34

 ±
 5

.9
8

4.
49

 ±
 3

.3
9

.3
87

.7
14

.0
54

 
C

op
ro

co
cc

us
†

2.
10

 ±
 1

.8
9

1.
55

 ±
 1

.0
6

2.
36

 ±
 1

.9
2

2.
04

 ±
 2

.1
7

.5
04

.1
44

.7
13

 
D

or
ea

†
1.

16
 ±

 1
.9

6
1.

05
 ±

 2
.1

4
0.

94
 ±

 1
.2

7
2.

13
 ±

 3
.8

2
.3

13
.4

74
.4

76

 
R

um
in

oc
oc

cu
s†

3.
55

 ±
 4

.5
2

2.
12

 ±
 2

.5
9

2.
45

 ±
 1

.7
0

2.
38

 ±
 1

.9
3

.5
60

.2
07

.0
51

 
R

um
in

oc
oc

ca
ce

ae
*

8.
41

 ±
 5

.9
3

7.
02

 ±
 5

.5
8

7.
20

 ±
 4

.8
7

6.
77

 ±
 4

.8
2

.3
90

.0
65

.5
28

 
Fa

ec
al

ib
ac

te
ri

um
5.

77
 ±

 5
.0

3
9.

24
 ±

 7
.1

0
6.

96
 ±

 5
.9

2
8.

42
 ±

 7
.9

0
.8

48
.0

79
.4

29

 
O

sc
ill

os
pi

ra
†

1.
75

 ±
 1

.6
4

1.
01

 ±
 0

.6
8

1.
21

 ±
 0

.8
1

1.
33

 ±
 1

.2
8

.6
84

.0
44

.2
38

 
R

um
in

oc
oc

cu
s 

(2
)†

4.
77

 ±
 3

.3
3

3.
75

 ±
 4

.5
3

3.
76

 ±
 2

.1
6

3.
30

 ±
 2

.5
2

.4
82

.1
58

.4
87

 
Ph

as
co

la
rc

to
ba

ct
er

iu
m

†
1.

02
 ±

 0
.7

4
1.

14
 ±

 0
.9

5
0.

62
 ±

 0
.6

6
1.

02
 ±

 1
.2

9
.1

15
.3

87
.6

39

 
E

ry
si

pe
lo

tr
ic

ha
ce

ae
*†

1.
61

 ±
 1

.4
8

1.
53

 ±
 1

.9
1

1.
17

 ±
 0

.9
6

1.
58

 ±
 2

.5
3

.3
54

.6
37

.3
73

 
E

ub
ac

te
ri

um
†

2.
15

 ±
 3

.8
3

2.
19

 ±
 2

.5
7

2.
60

 ±
 2

.3
9

1.
29

 ±
 1

.2
1

.3
99

.1
32

.0
98

Pr
ot

eo
ba

ct
er

ia
†

1.
20

 ±
 1

.1
8

2.
15

 ±
 2

.6
8

1.
26

 ±
 1

.2
5

2.
04

 ±
 1

.4
4

.7
17

.0
65

.9
60

 
Su

tte
re

lla
†

0.
77

 ±
 0

.9
4

0.
77

 ±
 0

.8
9

0.
87

 ±
 1

.1
4

1.
03

 ±
 1

.4
2

.4
42

.8
40

.5
86

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biruete et al. Page 20

P
hy

lu
m

 (
%

)
In

ul
in

 (
m

ea
n 

± 
SD

)
M

al
to

de
xt

ri
n 

(m
ea

n 
± 

SD
)

G
ro

up
P

T
im

e
P

G
 ×

 T
P

G
en

us
 (

%
)

P
re

 (
n 

= 
12

)
P

os
t 

(n
 =

 1
2)

P
re

 (
n 

= 
12

)
P

os
t 

(n
 =

 1
2)

 
E

nt
er

ob
ac

te
ri

ac
ea

e*
†

0.
12

 ±
 0

.1
7

1.
07

 ±
 2

.8
8

0.
09

 ±
 0

.1
2

0.
49

 ±
 0

.9
4

.7
17

.2
10

.2
75

Sy
ne

rg
is

te
te

s
1.

39
 ±

 3
.1

8
0.

21
 ±

 0
.3

7
0.

87
 ±

 2
.1

4
0.

46
 ±

 1
.0

7
.7

69
.1

10
.4

15

 
Py

ra
m

id
ob

ac
te

r
1.

06
 ±

 3
.1

6
0.

15
 ±

 0
.3

4
0.

83
 ±

 2
.1

5
0.

46
 ±

 1
.0

7
.9

28
.1

92
.5

55

V
er

ru
co

m
ic

ro
bi

a
0.

84
 ±

 1
.6

8
1.

95
 ±

 3
.6

8
1.

94
 ±

 2
.5

6
0.

99
 ±

 1
.8

2
.8

91
.8

64
.0

45

 
A

kk
er

m
an

si
a

0.
84

 ±
 1

.6
8

1.
95

 ±
 3

.6
8

1.
94

 ±
 2

.5
6

0.
99

 ±
 1

.8
2

.8
91

.8
64

.0
45

G
 ×

 T
, g

ro
up

-b
y-

tim
e

B
ol

d 
de

pi
ct

s 
st

at
is

tic
al

 s
ig

ni
fi

ca
nc

e 
(p

 <
 .0

5)
.

* U
nc

la
ss

if
ie

d 
ge

ne
ra

.

† V
al

ue
s 

w
er

e 
tr

an
sf

or
m

ed
 b

ef
or

e 
an

al
ys

es
.

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biruete et al. Page 21

Ta
b

le
 3

.

Fe
ca

l S
ho

rt
-C

ha
in

 F
at

ty
 A

ci
ds

, p
-C

re
so

l, 
an

d 
In

do
le

s 
an

d 
Pl

as
m

a 
U

re
m

ic
 T

ox
in

s 
af

te
r 

Fo
ur

 W
ee

ks
 o

f 
In

ul
in

 o
r 

M
al

to
de

xt
ri

n 
Su

pp
le

m
en

ta
tio

n

In
ul

in
 (

m
ea

n 
± 

SD
)

M
al

to
de

xt
ri

n 
(m

ea
n 

± 
SD

)
G

ro
up

P
T

im
e

P
G

 ×
 T

P
V

ar
ia

bl
e

P
re

P
os

t
P

re
P

os
t

Fe
ca

l A
ce

ta
te

 (
um

ol
/g

 D
M

, n
=

9)
20

9.
26

 ±
 1

12
.3

4
26

3.
51

 ±
 1

16
.6

8
22

9.
71

 ±
 1

31
.3

7
33

3.
42

 ±
 2

06
.1

9
.2

27
.0

32
.4

01

Fe
ca

l P
ro

pi
on

at
e 

(u
m

ol
/g

 D
M

, n
=

9)
75

.2
4 

±
 4

7.
74

80
.0

7 
±

 4
4.

04
65

.3
5 

±
 3

4.
61

99
.4

2 
±

 6
5.

21
.7

00
.0

27
.1

98

Fe
ca

l B
ut

yr
at

e 
(u

m
ol

/g
 D

M
, n

=
9)

36
.5

9 
±

 2
4.

68
49

.0
6 

±
 3

3.
91

45
.1

8 
±

 2
7.

16
60

.1
0 

±
 3

7.
31

.0
56

.1
28

.8
11

Fe
ca

l T
ot

al
 S

C
FA

 (
um

ol
/g

 D
M

, n
=

9)
32

3.
84

 ±
 1

79
.4

9
39

0.
44

 ±
 1

79
.5

5
33

7.
49

 ±
 1

82
.7

1
49

5.
15

 ±
 2

80
.9

2
.2

15
.0

30
.2

82

Fe
ca

l I
nd

ol
es

 (
ug

/g
 D

M
, n

=
9)

15
5.

64
 ±

 6
6.

61
13

2.
22

 ±
 1

04
.9

9
13

8.
43

 ±
 6

9.
36

12
9.

51
 ±

 7
3.

44
.6

09
.5

60
.7

98

Fe
ca

l P
-C

re
so

l (
ug

/g
 D

M
, n

=
9)

25
0.

77
 ±

 1
38

.3
7

20
7.

38
 ±

 1
48

.1
1

17
4.

73
 ±

 8
2.

17
17

8.
54

 ±
 1

84
.6

1
.1

11
.6

77
.4

83

Pl
as

m
a 

In
do

xy
l S

ul
fa

te
 (

uM
, n

=
12

)
12

5.
86

 ±
 4

2.
58

11
6.

60
 ±

 5
3.

79
11

5.
78

 ±
 6

2.
26

12
1.

90
 ±

 6
2.

01
.7

72
.8

22
.2

10

Pl
as

m
a 

P-
C

re
sy

l S
ul

fa
te

 (
uM

, n
=

12
)

17
6.

57
 ±

 1
03

.7
5

17
6.

00
 ±

 1
32

.9
3

18
5.

18
 ±

 1
15

.1
7

16
2.

63
 ±

 1
08

.3
7

.7
65

.4
27

.3
95

SD
, s

ta
nd

ar
d 

de
vi

at
io

n;
 G

 ×
 T

, g
ro

up
-b

y-
tim

e 
in

te
ra

ct
io

n;
 S

C
FA

, s
ho

rt
-c

ha
in

 f
at

ty
 a

ci
ds

.

Fe
ca

l e
xc

re
tio

n 
of

 S
C

FA
s 

w
as

 q
ua

nt
if

ie
d 

in
 9

 o
ut

 o
f 

th
e 

12
 s

ub
je

ct
s 

th
at

 c
om

pl
et

ed
 th

e 
st

ud
y,

 a
s 

th
e 

re
st

 o
f 

th
e 

sa
m

pl
es

 w
er

e 
no

t o
bt

ai
ne

d 
w

ith
in

 1
 h

ou
r 

of
 th

e 
fe

ca
l s

am
pl

e 
co

lle
ct

io
n.

B
ol

d 
de

pi
ct

s 
st

at
is

tic
al

 s
ig

ni
fi

ca
nc

e.

J Ren Nutr. Author manuscript; available in PMC 2022 September 01.


	Abstract
	Introduction
	Methods
	Intervention Protocol
	Fecal Sample Collection and Gastrointestinal Symptoms
	DNA Extraction and Fecal Microbiota Analyses
	Fecal dry Matter, SCFAs, Phenols, and Indoles
	Blood Sample Collection and Plasma Metabolites
	Dietary Intake
	Statistical Analysis

	Results
	Phosphate Binders and BMI Category Are Key Determinants of Gut Microbiota Composition
	Inulin Did Not Alter Fecal Microbial Diversity
	Inulin Supplementation Induced Minor and Similar Modifications to the Gut Microbiota Composition to Maltodextrin
	Inulin and Maltodextrin Increased Fecal SCFAs but Did Not Decrease Indole and Phenol Metabolites in Feces or Serum
	Supplement Adherence, Dietary Intake, and Gastrointestinal Symptoms

	Discussion
	Practical Application

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.

