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Abstract
Hand gesture recognition is viewed as a significant field of exploration in computer vision with assorted applications in 
the human–computer communication (HCI) community. The significant utilization of gesture recognition covers spaces 
like sign language, medical assistance and virtual reality–augmented reality and so on. The underlying undertaking of a 
hand gesture-based HCI framework is to acquire raw data which can be accomplished fundamentally by two methodolo-
gies: sensor based and vision based. The sensor-based methodology requires the utilization of instruments or the sensors 
to be genuinely joined to the arm/hand of the user to extract information. While vision-based plans require the obtaining 
of pictures or recordings of the hand gestures through a still/video camera. Here, we will essentially discuss vision-based 
hand gesture recognition with a little prologue to sensor-based data obtaining strategies. This paper overviews the primary 
methodologies in vision-based hand gesture recognition for HCI. Major topics include different types of gestures, gesture 
acquisition systems, major problems of the gesture recognition system, steps in gesture recognition like acquisition, detec-
tion and pre-processing, representation and feature extraction, and recognition. Here, we have provided an elaborated list of 
databases, and also discussed the recent advances and applications of hand gesture-based systems. A detailed discussion is 
provided on feature extraction and major classifiers in current use including deep learning techniques. Special attention is 
given to classify the schemes/approaches at various stages of the gesture recognition system for a better understanding of 
the topic to facilitate further research in this area.

Keywords Human–computer interaction (HCI) · Vision-based gesture recognition (VGR) · Static and dynamic gestures · 
Deep learning methods

Introduction

In this period of innovation, where we are profound into the 
information age, technological progression has arrived at 
such a point that nearly everybody in each nook and corner 
of the world independent of any discipline, has interacted 
with computers somehow or the other. However, in general, 
a typical user ought not to need to secure computer educa-
tion to utilize computers for basic undertakings in regular 
day-to-day life. Human–computer interaction (HCI) is a 
field of study which plans to encourage the communication 
of clients, regardless of whether specialists or fledglings, 
with computers in a simple way. It improves user experience 

by distinguishing factors that help to diminish the expecta-
tion to learn and adapt for new users and furthermore gives 
arrangements like console easy routes and other navigational 
guides for common users. In designing an HCI system, three 
main factors should be considered: functionality, usability 
and emotion [73]. Functionality denotes actions or services 
a system avails the user. However, a system’s functionality 
is only useful if the user can exploit it effectively and effi-
ciently. The usability of a system denotes the extent to which 
a system can be used effectively and efficiently to fulfill user 
requirements. A proper balance between functionality and 
usability results in good system design. Taking account of 
emotion in HCI includes designing interfaces that are pleas-
urable to use from a physiological, psychological, social, 
and aesthetic perspective. Considering all three factors, an 
interface should be designed to fit optimally between the 
user, device, and required services. Figure 1 illustrates this 
concept.
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In recent years, significant effort has been devoted to 
body motion analysis and gesture recognition. With the 
increased interest in human–computer interaction (HCI), 
research related to gesture recognition has grown rapidly. 
Along with speech, they are the obvious choice for natural 
interfacing between a human and a computer. Human ges-
tures constitute a common and natural means for nonverbal 
communication. A gesture-based HCI system enables a 

person to input commands using natural movements of the 
hand, head, and other parts of the body [171] (Fig. 2). And 
since the hand is the most widely used body part for ges-
turing apart from face [93], hand gesture recognition from 
visual images forms an important part of this research. 
Generally, hand gestures are classified as static gestures 
or simply postures and dynamic or trajectory-based ges-
tures. Again, dynamic or trajectory-based gestures can be 
isolated or continuous.

Fig. 1  Overview of human–computer interaction [73]

Fig. 2  Classification of different 
gestures based on used body-
part
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Gesture Acquisition

Before going into more depth, we want to first see how to 
acquire data or information for hand gesture recognition. 
The task of acquiring raw data for hand gesture-based HCI 
systems can be achieved mainly by two approaches [36]: 
sensor based and vision based (Fig. 3).

Sensor-based approaches require the use of sensors or 
instruments physically attached to the arm/hand of the user 
to capture data consisting of position, motion and trajecto-
ries of fingers and hand. Sensor-based methods are mainly 
as follows: 

1. Glove-based approach measures position, acceleration, 
degree of freedom and bending of the hand and fingers. 
Glove-based sensors generally constitute flex sensors, 
gyroscope, accelerometer, etc.

2. Electromyography (EMG) measures human muscle’s 
electrical pulses and decode the bio-signal to detect fin-
ger movements.

3. WiFi and radar use radio-waves, broad-beam radar or 
spectrogram to detect the changes in signal strength.

4. Others utilize ultrasonic, mechanical, electromagnetic 
and other haptic technologies.

Vision-based approaches require the acquisition of images or 
videos of the hand gestures through video cameras. 

1. Single camera—it includes webcams, different types of 
video cameras and smart-phone cameras.

2. Stereo-camera and multiple camera-based systems—
a pair of standard color video or still cameras capture 
two simultaneous images to give depth measurement. 
Multiple monocular cameras can better capture the 3D 
structure of an object.

3. Light coding techniques—projection of light to cap-
ture the 3D structure of an object. Such devices include 
PrimeSense, Microsoft Kinect, Creative Senz-3D, Leap 
Motion Sensor, etc.

4. Invasive techniques—body markers such as hand color, 
wrist bands, and finger marker. But the term vision 
based is generally used for capturing images or videos of 
the bare hand without any glove and/or marker. The sen-
sor-based approach reduces the need for pre-processing 
and segmentation stage, which is essential to classical 
vision-based gesture recognition systems.

HCI Systems Architecture

The architecture of HCI systems can be broadly categorized 
into two groups based on their number and diversity of 
inputs and outputs: unimodal HCI systems and multimodal 
HCI systems [83] (Fig. 4). 

1. Unimodal HCI systems Unimodal systems can be (a) 
vision based (e.g., body movement tracking [147], ges-
ture recognition [146], facial expression recognition 
[115, 189], gaze detection [206], etc.), (b) audio based 
(e.g., auditory emotion recognition [47], speaker recog-
nition [105], speech recognition [125], etc.), or (c) based 
on different types of sensors [113].

2. Multimodal HCI systems Individuals for the most part 
utilize different modalities during human to human cor-
respondence. Subsequently, to survey a user’s expec-
tation or conduct extensively, HCI frameworks ought 
to likewise incorporate data from numerous modalities 
[162]. Multimodal interfaces can be arranged utilizing 
blends of data sources, for example, gesture and speech 
[161] or facial posture and speech [86] and so forth. 
Some of the major applications of multimodal systems 

Fig. 3  Human–computer interaction using: a CyberGlove-II (picture courtesy: https:// www. cyber glove syste ms. com/ produ cts/ cyber glove- II/ pho-
tos- video), b vision-based system

https://www.cyberglovesystems.com/products/cyberglove-II/photos-video
https://www.cyberglovesystems.com/products/cyberglove-II/photos-video
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are assistance for people with disabilities [106], driver 
monitoring [204], e-commerce [9], intelligent games 
[188], intelligent homes and offices [144], and smart 
video conferencing [142].

Major Problems

It is an essential ability for computers to perceive the ges-
tures of the hand visually for the future advancement of 
vision-based HCI. Static gesture recognition or pose esti-
mation of the isolated hand, in constrained conditions, is 
roughly a solved problem to quite an extent. Notwithstand-
ing, there are as yet numerous aspects of dynamic hand ges-
tures that must be addressed, and it is an interdisciplinary 
challenge mainly due to three difficulties:

• Dynamic hand gestures vary spatio-temporally with 
assorted and different implications;

• The human hand has a complex non-unbending design 
making it hard to perceive; and

• There are as yet numerous difficulties in computer vision 
itself making it a poorly presented problem.

A gesture recognition system depends on certain subsystems 
associated in arrangement. In view of the arrangement of 
subsystems, the general exhibition of the framework is reli-
ant on the precision of every subsystem. Along these lines, 
generally execution is profoundly influenced by a subsystem 
that is a “feeble connection”. All the gesture-based applica-
tions are dependent on the ability of the device to read ges-
tures efficiently and correctly from a stream of continuous 
gestures. To develop human–computer interfaces using the 
human hand has motivated researchers for continuous hand 
gesture recognition. Two major challenges present in the 
process of continuous hand gesture recognition are—con-
straints related to segmentation and problems in spotting the 
hand gestures perfectly in a continuous stream of gestures. 
But there are many other challenges apart from these which 
we will discuss now. More on constraints in hand gesture 
recognition can be found in [32] by the same authors.

• Challenges in segmentation Exact segmentation of the 
hand or the gesturing body part from the caught record-

ings or pictures still remains a challenge in computer 
vision for some limitations like illumination variation, 
background complexity, and occlusion.

– Illumination variation The precision of skin color 
segmentation techniques is generally influenced by 
illumination variation. Because of light changes, 
the chrominance properties of the skin tones may 
change, and the skin color will appear different 
from the original color. Many methods use lumi-
nance invariant color spaces to accommodate vary-
ing illuminations [27, 66, 89, 90, 173]. However, 
these methods are useful only for a very narrow 
range of illumination changes. Moritz et al. found 
that the skin reflectance locus and the illuminant 
locus are directly related, which means that the 
perceived color is not independent of illumination 
changes [209]. Sigal et al. used dynamic histo-
gram segmentation technique to counter illumina-
tion changes [199, 200]. In the dynamic histogram 
method, a second-order Markov model is used to 
predict the histogram’s time-evolving nature. The 
method is applicable only for a set of images with 
predefined skin-probability pixel values. This 
method is very promising for videos with smooth 
illumination changes but fails for abrupt illumina-
tion changes. Also, this method is applicable to the 
time progression of illumination changes. In many 
cases where the illumination change is discrete, 
and input data is a set of skin samples obtained 
under randomly changed illumination conditions, 
this method performs poorly. Stern et al. used color 
space switching to track the human face under 
varying illumination [208]. King et al. used RGB 
color space and normalized it, and then converted 
it to YCbCr space. Finally, the Cb-Cr components 
are chosen to represent the skin pixel to reduce illu-
mination effects. Kuiaski et al. performed a com-
parative study of the illumination dependency over 
skin-color segmentation methods [111]. They used 
naïve Bayesian classifier and histogram-based clas-
sification [87] over different skin samples obtained 
under four different illumination conditions. It 

Fig. 4  General taxonomy of 
HCI system based on input 
channels
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was observed that dropping the illumination com-
ponent of a color space significantly reduces the 
illumination vulnerability of segmentation meth-
ods as compared with methods based on standard 
RGB color space. However, from the ROC curves 
obtained under different illumination conditions, 
it is evident that no color space is fully robust to 
illumination condition changes. Guoliang et al. 
grouped the skin-colored pixels according to their 
illumination component (Y) values in YCbCr color 
space into a finite number of illumination ranges 
[236]. It is evident from their analysis and previous 
literature review that the chrominance components 
are not independent of the illumination component. 
As shown in Fig. 5, the shape and position of the 
color histogram of the image change significantly 
due to the changes in illumination and the notion 
of independence can only be applied for a very nar-
row range of illumination changes. A Back Propa-
gation Neural Network (BPNN) can be used to fit 
the data, which consists of the mean value of Cb 
and Cr, namely mi , co-variance matrix Ci and the 
mean value of the ith interval of Y, i.e., Yi as given 
below 

 where, i = 1, 2, ..,N  , x
i
 are the Cb-Cr samples 

belong to ith illumination range. Here, Yi s are used as 
input and the Gaussian model Gi(mi,Ci) are the out-
put. The model is then used to classify the skin and 
non-skin pixels for a particular illumination level. 
Bishesh et al. used a log-chromaticity color space 
(LCCS) by taking the logarithm of ratios of color 
channels and obtained intrinsic images to reduce the 
effect of illumination variations in skin color seg-
mentation [53, 100]. However, LCCS gives a correct 
detection rate (CDR) of 64.84% and a false detection 
rate (FDR) of 4.50% , which are not so good results. 
Liu et al. used face detection to get the sample skin 
colors and then applied a dynamic thresholding 
technique to update the skin color model based on 
a Bayesian decision framework [130]. This method 
is dependent on the accuracy of the detected skin 
pixels from the face detection method, and it may fail 
if the face is not detected perfectly or the detected 
face has a mustache, beard, spectacles, or hair fall-
ing over it. Although a color correction strategy is 
used to convert the colors of the frame in the absence 
of a face, this solution is temporary and prone to 
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i

]
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i
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x
i
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x
i
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)T]
,

error. In [190], the authors converted RGB color-
space into HSV and YCbCr color-cues to compen-
sate illumination variation in the skin-segmentation 
method to segment the hand portion from the back-
ground. Biplab et al. has utilized a fusion-based pic-
ture explicit model for skin division to deal with the 
issue of segmentation under differing enlightenment 
conditions [31].

– Background complexity Another serious issue in ges-
ture recognition is the appropriate division of skin-
shaded items (e.g., hands, face) against an intricate 
static/dynamic background. An example of a com-
plex background is shown in Fig. 6. Different types 
of complex backgrounds exist:

• Cluttered background (Static) Although the back-
ground statistics are fairly constant, the back-
ground color and texture are highly varied. This 
kind of background can be modeled using Gauss-
ian mixture models (GMMs). However, to model 
backgrounds of increasing complexity, more 
Gaussians should be included in the GMM.

• Dynamic background The background color 
and texture change with time. Although hidden 
Markov models (HMMs) are often used to model 
signals that have a time-varying structure, unless 
they follow a well-defined stochastic process, their 
application to background modeling is computa-
tionally complex. The precision of skin division 
strategies is restricted because of the presence 
or movement of skin-colored objects behind the 
scenes which increment false positives.

• Camouflage The background is skin-colored or 
contains skin-colored regions, which may abut 
the region of interest (e.g., the face, hands). For 
example, when a face appears behind a hand, this 
complicates hand gesture recognition, and when a 
hand appears behind a face, this complicates face 
region segmentation. These kinds of cases render 
it nearly impossible to segment the hand or face 
regions solely from pixel color information. Fig-
ure 7 shows a case of camouflage. The major prob-
lem with almost all segmentation methods based 
on the color space is that the feature space lacks 
spatial information on the objects, such as their 
shape.

   These are the main issues of hand and face 
segmentation for gesture recognition. As shown 
in Fig. 6a, the background might be cluttered and 
have some skin-colored regions. In these condi-
tions, it is difficult to segment actual skin regions 
(see Fig. 6b, c). Few works have reported signifi-
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Fig. 5  Effect of illumination 
variations on perceived skin 
color: a skin color in low and 
high illumination conditions, b 
2D color histogram in YCbCr 
space, and c 2D color histogram 
in CIE-Lab space
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Fig. 6  Effect of complex 
background on skin color seg-
mentation: a original images, 
b segmentation results, and c 
ground truth
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cant progress in this area. Phung et al. used skin 
texture information along with conventional pixel 
color details for skin region segmentation under a 
complex background [167]. This approach assumes 
that owing to the smooth texture of human skin, 

skin regions in images would be more homogene-
ous and have fewer edges than skin-colored regions 
in the background. The performance of this tech-
nique degrades when skin regions have many edges 
because of complex hand poses. Jhang et al. pro-
posed an adaptive skin color segmentation method 
based on a skin probability distribution histogram 
(SPDH) [246]. The SPDH plots the total pixel 
count with a certain normalized skin probability 
with respect to the corresponding normalized skin 
probability of the pixel group in a particular image. 
Finally, the valley of SPDH is determined using a 
trained artificial neural network (ANN) as the opti-
mum threshold for the image. The whole system’s 
accuracy depends on how accurate the normal-
ized skin probability is. Also, the color deviation 
histogram (CDH) method fails if the background 
color becomes similar to the skin color, as in that 
case, the color deviation will be very small for that 
group of pixels. Wang et al. combined the RGB and 
YCgCb color spaces and the texture information of 
the skin regions to detect the skin [225]. From the 
results, it is very evident that this method fails if 
there is a color similarity between the background 
and the skin regions. Avinash et al. proposed a 
skin color segmentation method by combining HSI 
and YCbCr color spaces with some morphologi-
cal operations with labeling [13]. Their primary 
assumption was that the background color is differ-
ent from the skin color, and thus this method fails 
drastically in the presence of skin-colored back-
grounds. Pisharady et al. used biologically inspired 
features like Gabor wavelet to handle the problem 
of complex background [171] (Fig. 7).

– Occlusion Another major challenge is mitigating the 
effects of occlusion in gesture recognition. In single-
handed gestures, the hand may occlude itself apart 
from some other objects. The problem is more severe 
in two-handed gestures where one hand may occlude 
the other while doing the gestures. The appearance 
of the hand is affected by both kinds of occlusion 
subsequently hampering recognition of gestures. 
In monocular vision-based gesture recognition, the 
appearance of gesturing hands is view dependent. 
As shown in Fig. 8, different hand poses appear to 
be similar in a particular view of observation due to 
self-occlusions. To solve occlusion problems there 
are some possible approaches:

• Use of multiple cameras for static/dynamic ges-
tures.

• Use of tracking-based systems for dynamic ges-
tures.

Fig. 7  Effect of camouflage on skin color segmentation (left column: 
original image, right column: segmented image): a African, b Asian, 
and c Caucasian
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• Use of multiple cameras + tracking-based system 
for dynamic gestures.

– Multiple camera-based gesture recognition Utsumi 
et  al. captured the hand with multiple cameras, 
selecting for gesture recognition the camera whose 
the principal axis is closest to normal to the palm. 
The hand rotation angle is then estimated using an 
elliptical model of the palm [218]. Alberola et al. 
used a pair of cameras to construct a 3D hand model 
with an occlusion analysis from the stereoscopic 
image [6]. In this model, a label is added to each of 
the joints, indicating its degree of visibility from a 
camera’s viewpoint. The value of each joint’s label 
range from fully visible to fully occluded. Ogawara 
et al. fitted a 26-DOF kinematic model to a volu-
metric model of the hand, constructed from images 
obtained using multiple infrared cameras arranged 
orthogonally [158]. Gupta et al. used occlusion maps 
to improve body pose estimations with multiple 
views [63].

– Tracking-based gesture recognition Lathuiliere 
et al. tracked the hand in real time by wearing a dark 
glove marked with colored cues [120]. The pose of 
the hand and the postures of the fingers were recon-
structed using the position of the color markers in 
the image. Occlusion was handled by predicting the 
finger positions and by validating 3D geometric vis-
ibility conditions.

– Multiple cameras with tracking-based gesture rec-
ognition Instead of using multiple cameras and 
hand tracking separately, a fusion-based approach 
using both of them may be suitable for occlusion 

handling. Utsumi et al. used an asynchronous multi-
camera tracking system for hand gesture recognition 
[219]. Though multiple camera-based systems are 
one solution for this problem, these devices are not 
purely accurate. View-invariant 3D models or depth 
measuring sensors can provide some more insight 
into this problem (Fig. 9).

• Difficulties related to the articulated shape of the hand 
The accurate detection and segmentation of the gesturing 
hand are significantly affected by variations in illumina-
tion and shadows, the presence of skin-colored objects in 
the background, occlusion, background complexity, and 
different other issues. The complex articulated shape of 
the hand makes it further tough to model the appearance 
of the hand for both static and dynamic gestures. Moreo-
ver, in the case of dynamic or trajectory-based gestures, 
the tracking of physical movement of the hand is quite 
challenging due to the varied size, shape and color of 
the hand. Generally, it is expected that a generic gesture 
recognition system should be invariant to the shape, size 
and appearance of the gesturing body part.

  The human hand has 27 bones—14 in the fingers, 5 
in the palm, and 8 in the wrist (Fig. 10a). The 9 inter-
phalangeal (IP) joints have one degree of freedom (DOF) 
each for flexion and extension. The 5 metacarpophalan-
geal (MCP) joints have 2 DOFs each: one for flexion 
and extension and the other for abduction or adduction 
(spreading the fingers) in the palm plane. The carpometa-
carpal (CMC) joint of the thumb, which is also called the 
trapeziometacarpal (TM), has 2 DOFs along nonorthogo-
nal and nonintersecting rotation axes [74]. The palm is 
assumed to be rigid. Lee et al. proposed a 27-DOF hand 

Fig. 8  Different hand poses and their side views
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model, assuming that the wrist has 6 DOFs (Fig. 10b). 
As evident from Fig. 10, the hand is an articulated object 
with more than 20 DOF. Now, because of the interde-
pendencies between the fingers, the effective number of 
DOF reduces to approximately six. Their estimation—in 
addition to the location and orientation of the hand—
results in a large number of parameters to be estimated. 
Estimation of hand configuration is extremely difficult 
because of occlusion and the high degrees of freedom. 
Even data gloves are not able to acquire the hand state 
perfectly. Compared with sensors for glove-based recog-

nition, computer vision methods are generally at a disad-
vantage. To get rid of these constraints, [150] has tracked 
air-written gestures only through finger-tip detection. But 
it has the limitation that the detection of sign language 
is not possible. For monocular vision, it is impossible 
to know the full state of the hand unambiguously for all 
hand configurations, as several joints and finger parts 
may be hidden from the view of the camera. Applications 
in vision-based interfaces need to keep these limitations 
in mind and focus on gestures that do not require full 
hand pose information. General hand detection in uncon-

Fig. 9  Multiple camera-based gesture recognition

Fig. 10  Skeletal hand model: a hand anatomy [48], b the kinematic model [123]
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strained settings is a largely unsolved problem. In view of 
this, systems often locate and track hands in images using 
color segmentation, motion flow, background subtrac-
tion, or a combination of these techniques.

• Gesture spotting problem Gesture spotting means locat-
ing the beginning and the end-points of a gesture in a 
nonstop stream of gestures. When gesture boundaries are 
resolved, the gesture can be extracted and grouped. In 
any case, spotting significant patterns from a stream of 
gestures is an exceptionally troublesome errand mainly 
because of two issues: segmentation ambiguity and spa-
tiotemporal variability. For sign language recognition, 
the framework should uphold the natural gesturing of 
the user to empower unhindered collaboration with the 
entity. Prior to taking care of the video into the recogni-
tion framework, the non-gestural movements ought to 
be taken out from the video sequence since these move-
ments regularly blend a motion grouping. Instances 
of non-gestural movements incorporate ”movement 
epenthesis” and ”gesture co-articulation” (appeared 
in Fig. 11). Movement epenthesis occurs between two 
gestures and the current gesture is affected by the pre-
ceding or the following gesture. Gesture co-articulation 
is an unwanted movement that occurs in the middle of 
performing a gesture. In some cases, a gesture could 
be similar to a sub-part of a longer gesture, referred to 

as the “sub-gesture problem” [7]. When a user tries to 
repeat the same gesture, spatiotemporal variations in 
the shape and speed of the hands will occur. The system 
must accommodate these variations while maintaining 
an accurate representation of the gestures. Though static 
hand gesture recognition problem [52, 59, 60, 156, 174] 
is almost a solved one, but to date, there are only a hand-
ful of works are there dealing with these three problems 
of continuous hand gesture recognition system [16–18, 
95, 133, 211, 240].

• Problems related to two-handed gesture recognition The 
inclusion of two-handed gestures in a gesture vocabulary 
can make HCI more natural and expressive for the user. It 
can greatly increase the size of the vocabulary because of 
the different combinations of left and right-hand gestures. 
Previously proposed methods include template-based 
gesture recognition with motion estimation [78] and 
two-hand tracking with colored gloves [10]. Despite its 
advantages, two-handed gesture recognition faces some 
major difficulties:

– Computational complexity The inclusion of two-
handed gestures can be computationally expensive 
because of their complicated nature.

Fig. 11  a Movement epenthesis problem [18] b Gesture co-articulation (marked with redline) [202] c sub-gesture problem (here gesture ‘5’ is a 
sub-gesture of gesture ‘8’) [7]
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– Inter-hand overlapping The hands can overlap or 
occlude each other, thus impeding recognition of 
the gestures.

– Simultaneous tracking of both hands The accurate 
tracking of two interacting hands in a real environ-
ment is still an unsolved problem. If the two hands 
are clearly separated, the problem can be solved as 
two instances of the single-hand tracking problem. 
However, if the hands interact with each other, it is 
no longer possible to use the same method to solve 
the problem because of overlapping hand surfaces 
[160].

• Hand gestures with facial expressions Incorporating 
facial expressions into the hand gesture vocabulary can 
make it more expressive as it can enhance the discrimina-
tion of different gestures with similar hand movements. 
A major application of hand and face gesture recognition 
is sign language. Little work has been reported in this 
research direction. Von Agris et al. used facial and hand 
gesture features to recognize sign language automatically 
[2].

  This approach also has the following challenges:

– The simultaneous tracking of both hand and face.
– Higher computational complexity compared with the 

recognition of only hand gestures.

• Difficulties associated with extracted features It is gen-
erally not recommended to consider all the image pixel 
values in a gesture video as the feature vector. This will 
not only be time-consuming but also it would take a great 
many examples to span the space variation, particularly 
if multiple viewing conditions and multiple users are 
considered. The standard approach is to compute some 
features from each image and concatenate these as a fea-
ture vector to the gesture model. Both the spatial and 
temporal movements of the hand along with its charac-
teristics should be considered by a gesture model. No two 
samples of the same gesture will bring about the very 
same hand and arm movements or similar arrangement 
of visual pictures, i.e., gestures experience the ill effects 
of spatio-transient variety. Spatio-temporal variety exists 
in any event when the same user plays out a similar ges-
ture on various occasions. Each time the user performs a 
gesture, the shape, position of the hand and speed of the 

motion normally change. Accordingly, extracted features 
ought to be rotation-scaling-translation (RST) invariant. 
Yet, different image processing strategies have their own 
imperatives to deliver RST-invariant features. Another 
limitation is that the processing of a lot of image infor-
mation is tedious, and thus a real-time application might 
be troublesome.

Overview of Vision‑Based Hand Gesture 
Recognition System

The essential part of vision-based frameworks is to identify 
and perceive visual signs for correspondence. A vision-based 
plan is more helpful than a glove-based one on account of its 
natural methodology. It tends to be utilized any place inside 
a camera’s field of view and simple to convey. The funda-
mental undertaking of vision-based gesture recognition is 
to get visual data in a specific scene and attempt to separate 
the vital motions. This methodology should be acted in a 
progression of succession, in particular, acquisition, detec-
tion and pre-processing; gesture representation and feature 
extraction; and recognition (Fig. 12). 

1. Acquisition, detection and pre-processing The acquisi-
tion and detection of the gesturing body part is vital for a 
productive VGR framework. The procurement incorpo-
rates capturing gestures utilizing imaging gadgets. The 
fundamental assignment of discovery and pre-process-
ing is essentially the segmentation of the gesturing body 
part from images or videos as precisely as could really 
be expected.

2. Gesture representation and feature extraction The 
assignment of the following subsystem in a hand ges-
ture recognition system is to model or represent the ges-
ture. The performance of a gestural interface is directly 
related to the proper representation of hand gestures. 
After gesture modeling, a bunch of features should be 
extricated for gesture recognition. Diverse sorts of fea-
tures have been distinguished for addressing specific 
sorts of gestures [25].

3. Recognition The last subsystem of an recognition frame-
work has the assignment of recognition or classification 

Fig. 12  The basic architecture of a typical gesture recognition system
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of gestures. A reasonable classifier perceives the incom-
ing gesture parameters or features and gathers them into 
either predefined classes (supervised) or by their close-
ness (unsupervised) [146]. There are numerous classi-
fiers utilized for both static and dynamic gestures, every 
one with its own benefits and constraints.

Acquisition, Detection and Pre‑processing

Gesture acquisition involves capturing images or videos 
using imaging gadgets. The detection and classification of 
moving objects present in a scene is key research in the field 
of action/gesture recognition. The most important research 
challenges are segmentation, detection, and tracking of mov-
ing objects from a video sequence. The detection and pre-
processing stage mainly deals with localizing gesturing body 
parts in images or videos. Since dynamic gesture analysis 
consists of all these subtasks, so this very portion can be 
subdivided into segmentation and tracking or combining 
both of them together. Moreover, in static gestures also seg-
mentation is a vital step. 

1. Segmentation Segmentation is the way toward partition-
ing an image into various distinct parts and in this way 
discovering the region of interest (ROI), which is hand 
for our situation. Precise segmentation of the hand or 
the body parts from the captured images actually stays 
a challenge for some engrossed limitations in computer 
vision like illumination variation, background com-
plexity, and occlusion. A large portion of the segmenta-
tion strategies can be extensively delegated as follows 
(Fig. 13): (a) skin color-based segmentation, (b) region 
based, (c) edge based, (d) Otsu thresholding and so on. 
The simplest method to recognize skin districts of a pic-
ture is through an explicit boundary specification for 

skin tone in a particular color space, e.g., RGB [69], 
HSV [205], YCbCr [28] or CMYK [193]. Numerous 
analysts drop the luminance segment and have utilized 
just the chrominance segment since chrominance signals 
contain skin color information. This is on the grounds 
that the hue-separation space is less sensitive to illu-
mination changes when contrasted with RGB shading 
space [190]. Also, color cues show variations in the 
skin color in different illumination conditions, and also 
skin color changes with the change in human races, and 
so segmentation is more constrained in the presence of 
skin-colored objects in the background. Occlusion also 
leads to many issues in the segmentation process.

  Recently published works of literature show that the 
performance of the model-based approaches (paramet-
ric and non-parametric) is better than explicit bound-
ary specification-based methods [97]. To improve the 
detection accuracy, many researchers have used para-
metric and non-parametric model-based approaches for 
skin detection. For example, Yang et al. [237] used a 
single multivariate Gaussian to model skin color dis-
tribution. But, skin color distribution possesses multi-
ple co-existing modes. So, the Gaussian mixture model 
(GMM) [238] is more appropriate than a single Gauss-
ian function. Lee and Yoo [124] proposed an elliptical 
modeling-based approach for skin detection. The ellip-
tical modeling has less computational complexity as 
compared to GMM modeling. However, many true skin 
pixels may get rejected if the ellipse is small. Whereas 
if the ellipse is larger, many non-skin pixels may be 
detected as skin pixels. Out of different non-parametric 
model-based approaches for skin detection, Bayes skin 
probability map (Bayes SPM) [88], self-organizing map 
(SOM) [22], k-means clustering [154], artificial neural 
network (ANN) [33], support vector machine (SVM) 

Fig. 13  Different skin segmentation techniques



 SN Computer Science (2021) 2:436436 Page 14 of 40

SN Computer Science

[69], random forest [99] are noteworthy. The region-
based approach involves region growing techniques, 
region splitting and region merging techniques. Rotem 
et al. [184] combined patch-based information with edge 
cues under a probabilistic framework. In an edge-based 
technique, basic edge-detecting approaches like Prewitt 
filter, Canny edge detector, Hough transforms are used. 
Otsu thresholding is a clustering-based image threshold-
ing method that converts a gray-level image to a binary 
image using any edge detecting or tracking technique 
so that we have only two objects, i.e., one is hand and 
the other is background [145]. In the case of videos, all 
these methods can be applied with dynamic adaptation.

2. Tracking Tracking can also be considered as a part of 
pre-processing in the hand detection process as both 
tracking and segmentation together help to extract the 
hand from the background. Despite the fact that skin 
segmentation is perhaps the most favored technique for 
segmentation or detection, still, it is not so viable for 
different imperatives like scene illumination variation, 
background complexity, and occlusion [190]. Funda-
mentally, when earlier information on moving objects 
like appearance and shape is not known, pixel-level 
change can, in any case, give viable motion-based cues 
for detecting and localizing objects. Different method-
ologies for moving item discovery utilizing pixel-level 
change can be background subtraction, inter-frame 
difference, or three-frame difference [241]. Stabilized 
background detection consistently is an expensive mat-
ter making it defenseless for long and fluctuated video 
groupings [241]. Aside from this, the choice of tem-
poral distance between frames is a tricky question. It 
essentially relies upon the size and speed of the mov-
ing object. Despite the fact that interframe difference 
methods can easily detect motion, it shows terrible per-
formance in localizing the object. The three-frame dif-
ference [92] approach uses previous, current and future 
frames to localize the object in the current frame. The 
utilization of future frames presents a slack in the global 
positioning framework, and this slack is adequate just if 
the object is far away from the camera or moves slowly 
comparative with the high catch pace of the camera.

  Tracking of the hand can be restricted due to the 
fast movement of the hand and its appearance can alter 
immensely within a few frames. In such cases, model-
based algorithms like mean-shift [56], Kalman filter 
[44], particle filter [30] are some of the methods used 
for tracking. The mean-shift is a purely non-parametric 
mode-seeking algorithm that iteratively shifts a data 
point to the average of data points in its neighborhood 
(similar to clustering). However, tracking often con-

verges to an incorrect object when the object changes 
its position very quickly in the two neighboring frames. 
Because of this problem, a conventional mean-shift 
tracker fails to position a fast-moving object. [152, 185, 
190] used a modified mean-shift algorithm called con-
tinuous adaptive mean-shift (CAMShift) where the win-
dow size is adjusted so as to fit the gesture area reflected 
by any variation in the distance between the camera and 
the hand. Though CAMShift performs well with objects 
that have a simple and consistent appearance, it is not 
powerful in more perplexing scenes. The movement 
model for the Kalman filter depends on the understand-
ing that the speed is moderately little when items are 
moving, and thus, it is demonstrated by a zero mean and 
low variance white noise. One restriction of the Kalman 
filter is the supposition that the state variables depend on 
Gaussian distribution, and along these lines, the Kalman 
filter will give inaccurate assessments for state variables 
that do not follow a linear Gaussian environment. The 
particle filter is for the most part a preferred strategy 
over the Kalman filter since it can consider non-linearity 
and non-Gaussianity. The fundamental thought of the 
particle filter is to apply a weighted sample particle set 
to approximate the probability distribution, i.e., the nec-
essary posterior density function is addressed by a bunch 
of arbitrary examples with related weights and estima-
tion is done based on these samples and weights. Both 
Kalman filter and particle filter have the disadvantage of 
the requirement of previous knowledge in modeling the 
system. Kalman filter or particle filter can be combined 
with the mean shift tracker for precise tracking. In [224], 
authors have detected hand movement using Adaboost 
with the histogram of gradient (HOG) method.

3. Combined segmentation and tracking Here the first step 
is object labeling by segmentation and the second step 
is object tracking. Accordingly, an update for tracking is 
done by calculating the distribution model with various 
label values. Skin-segmentation and tracking together 
can give quite a good performance [68], but researchers 
have adopted other methods too where skin segmenta-
tion is not so efficient.

Gesture Representation and Feature Extraction

Based on spatio-temporal variation, gestures are mainly clas-
sified as static or dynamic. Static gestures are simply the 
pose or orientation of the gesturing part (e.g., hand pose) in 
the space and hence sometimes simply called posture. On 
the other hand, dynamic gestures are defined by trajectory 
or temporal deformation (e.g., shape, position, motion, etc.) 
of body parts. Again dynamic gestures can be either single 
isolated trajectory type or continuous type, occurring in a 
stream, one after another. 
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1. Gesture representation A gesture must be represented 
using a suitable model for its recognition. Based on fea-
ture extraction methods, the following are the types of 
gesture representations: model based and appearance 
based (Fig. 14). 

(a) Model based Here, gestures can be modeled 
utilizing either a 2D model or a 3D model. The 
2D model essentially relies upon either differ-
ent color-based models like RGB, HSV, YCbCr, 
and so forth, or silhouettes or contours obtained 
from 2D images. The deformable Gabarit model 
relies upon the arrangement of active deformable 
shaping. Then again, 3D models can be classified 
into mesh model [98], geometric model, volumet-
ric models and skeletal models [198]. The volu-
metric model addresses hand motions with high 
exactness. The skeletal model diminishes the hand 
signals into a bunch of identical joint angle param-
eters with fragment length. For instance, Rehg 
and Kanade [179] utilized a 27-level degree-of-
freedom (DOF) model of the human hand in their 
framework called ‘Digiteyes’. Local image-based 
trackers are utilized to adjust the extended model 
lines to the finger edges against a solid back-
ground. Crafted by Goncalves et al. [61] advanced 
three-dimensional tracking of the human arm uti-
lizing a two cone arm model and a single camera 
in a uniform background. One significant draw-
back of model-based portrayal utilizing a single 
camera is self-occlusion [61] that often happens 
in articulated objects like a hand. To stay away 
from it, a few frameworks utilize multiple/stereo 
cameras and restrict the motion to small regions 
[179]. But it also has its own disadvantages like 
precision, accuracy, etc. [32].

(b) Appearance based The appearance-based model 
attempts to distinguish gestures either straight-

forwardly from visual images/videos or from the 
features derived from the raw data. Highlights of 
such models might be either the image sequences 
or a few features obtained from the images which 
can be utilized for hand-tracking or classifica-
tion purposes. For instance, Wilson and Bobick 
[228] introduced results utilizing activities, gener-
ally hand motions, where the genuine gray-scale 
images (with no background) are utilized in real-
life portrayal. Rather than utilizing raw gray-scale 
images, Yamato et al. [234] utilized body silhou-
ettes, and Akita [5] utilized body shapes/edges. 
Yamato et al. [234] used low-level silhouettes 
of human activities in a hidden Markov model 
(HMM) system, where binary silhouettes of back-
ground-subtracted images are vector quantized 
and used as input to the HMMs. In Akita’s work 
[5], the utilization of edges and some straightfor-
ward two-dimensional body setup information 
were utilized to decide the body parts in a pro-
gressive way (first, discover legs, then the head, 
arms, trunk) in light of steadiness. While utilizing 
two or three-dimensional primary data, there is 
a prerequisite of individual features or proper-
ties to be extracted and tracked from each frame 
of the video sequence. Consequently, movement 
understanding is truly cultivated by perceiving an 
arrangement of static setups that require previous 
detection and segmentation of the item. Further-
more, since the good old days, sequential state-
space models like generative hidden Markov mod-
els (HMMs) [122] or discriminative conditional 
random fields (CRFs) [19] have been proposed to 
demonstrate elements of activity/gesture record-
ings. Temporal ordering models like dynamic time 
warping (DTW) [7] have likewise been applied 
with regards to dynamic activity/gesture recog-

Fig. 14  Different hand models for hand gesture representation
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nition where matching of an incoming gesture is 
done to a set of pre-defined representations.

   In most literature, e.g., [165], it is mentioned that ges-
tures are represented by either model-based or appear-
ance-based model. The motion-based methods are also 
generally included in the appearance-based methods 
(shown in Fig. 14). But, here, we want to discuss the 
motion-based methods separately. This is because the 
shape and appearance of the body/body-part depend on 
many factors, e.g., illumination variation, image reso-
lution, skin color, clothing, etc. But motion estimation 
should be independent of the shape and appearance of 
the gesturing hand (at least in theory). Optical flow and 
motion templates are the two major motion-based rep-
resentation schemes and can be used directly to describe 
human gesture/action [191]. There are also a few exam-
ples like [191, 192, 232] where these two methods are 
combined together. 

(a) Optical flow Optical flow is the apparent move-
ment or displacement of items/pixels as seen by 
a spectator. Optical flow shows the adjustment in 
speed of a point moving in the scene, likewise 
called a movement field. Here the objective is to 
assess the motion field (velocity vector) which 
can be figured from horizontal and vertical flow 
fields. Preferably, the motion field addresses the 
3D movement of the points of an article across 
2D image frame for a specific frame interval. 
Out of various optical stream procedures found 
in the literature, the most well-known strategies 
are: (a) Lucas–Kanade [134], (b) Horn–Schunk 
[76], (c) Brox 04 [23] and (5) Brox 11 [24], and 
(d) Farneback [51]. The choice of the optical flow 
technique principally relies upon the power of 
generating a histogram of optical flow (HOF) or 
motion boundary histogram (MBH) descriptor. 
HOF gives the optical flow vectors in horizon-
tal and vertical directions. The natural thought of 
MBH is to address the oriented gradients com-
puted over the vertical and horizontal optical 
flow components. When horizontal and vertical 
optical flow segments are acquired, histograms of 
oriented gradients are computed on each image 
component. The result of this interaction is a cou-
ple of horizontal (MBHx) and vertical (MBHy) 
descriptors. Laptev et al. [119] executed a blend 
of HOG-HOF for taking insensible human activ-
ity from motion pictures. [39] additionally pro-
posed to ascertain changes of optical flow that 
focus on optical flow differences between frames 
(motion boundaries). Yacoob and Davis [233] 

utilized optical flow estimations to follow prede-
fined polygonal patches set on interest areas for 
facial expression recognition. [229] introduced 
an incorporated methodology where the optical 
flow is coordinated frame-by-frame over time by 
considering the consistency of direction. In [135], 
the optical flow was used to detect the direction 
of motion along with the RANSAC algorithm 
which in turn helped to further localize the motion 
points. In [95], authors have used optical flow 
guided trajectory images for dynamic hand gesture 
recognition using deep learning-based classifier.

(b) Motion templates Basically, motion templates 
are the compact representation of a gesture video 
where the dynamics of motion of a gesture video 
is encoded into an image. These templates are 
compact representations of videos where a sin-
gle image illustrates the motion information of 
the whole video useful for video analysis. Hence, 
these images are named motion fused images or 
temporal templates or motion templates. There are 
three widely used motion fusion strategies namely 
motion energy image(MEI) and motion history 
image (MHI) [3, 21], dynamic images (DI) [20] 
and methods based on PCA [49]. We will not go 
into the details of these methods, but the same can 
be found in [191] by the same authors.

2. Feature extraction After modeling a gesture, the next 
step is to extract a bunch of features for gesture rec-
ognition. For static gestures, features are obtained 
from image data like color and texture or posture data 
like direction, orientation, shape, and so forth. There 
are three basic features for spatio-temporal patterns 
of dynamic gestures namely location, orientation and 
velocity [242], based on which different features or 
descriptors are utilized in the cutting edge techniques. 
For instance, a few features depend on movement and 
additionally disfigurement data like position, skewness, 
and the speed of hands. Features for dynamic hand sig-
nals are spatial-transient examples. A static hand gesture 
might be seen as a special instance of a dynamic gesture 
with no temporal variation of the hand position as well 
as shape. A gesture model ought to think about both 
spatial and temporal changes of the hand and its motion. 
Generally, no two examples of the same gesture will 
bring about the very same hand and arm movements or 
generate a similar arrangement of visual information, 
i.e., motions experience the ill effects of spatial-tran-
sient variety. There exists spatial-transient variety when 
a user plays out the same gesture on various occasions. 
Each time the user plays out a motion, the shape and the 
speed of the motion for the most part shift. Regardless of 
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whether a similar individual attempt to play out a simi-
lar sign twice, a little variety in speed and position of 
the hands may happen. Subsequently, separated features 
ought to be rotation–scaling–translation (RST) invari-
ant. Different features or descriptors are utilized in the 
classification stage of VGR frameworks. These features 
can be comprehensively classified depending on their 
technique for extraction, for example, spatial domain 
features, transform domain features, curve fitting-based 
features, histogram-based descriptors, and interest 
point-based descriptors. Also, the classifier ought to 
have the capacity to deal with spatio-temporal varia-
tions. As of late, feature extraction procedures based on 
deep learning have frequently been applied for various 
applications. Kong et al. [109] proposed a view-invariant 
feature extraction technique utilizing deep learning for 
multi-view activity acknowledgment. Table 1 gives a 
short review of the properties of various features utilized 
for both static and dynamic motion acknowledgment.

Recognition

The last subsystem of a gesture framework has the assign-
ment of recognition where a reasonable classifier perceives 
the incoming gesture parameters or features and gathers 
them into either predefined classes (supervised) or by their 
closeness (unsupervised). Here, the hand gesture recognition 
techniques have been tried to classify into some categories 
for easy understanding. And based on the type of input data 
and the method, the hand gesture recognition process can be 
broadly categorized into three sections:

• Conventional methods on RGB data
• Depth-based methods on RGB-D data
• Deep networks—a new era in computer vision

Conventional Methods on RGB Data

Vision-based gesture recognition generally depends on three 
stages where the third module consists of a classifier, which 
typically classifies the input gestures. However, each classi-
fier has its own advantages as well as limitations. Here, we 
discuss the conventional methods of classification for static 
and dynamic gestures on RGB data.

• Static gesture recognition Static gestures are basically 
finger-spelled signs in still images without any time 
frame. Unsupervised k-means and supervised k-NN, 
SVM, ANN are the major classifiers for static gesture 
recognition.

– k-means It is an unsupervised classifier that evalu-
ates k center points to minimize error in the cluster-

ing defined by the sum of the distances of all data 
points to their respective cluster centers. For a set 
of observations 

(
�1, �2, ..., �n

)
 , in a d-dimensional 

real vector space, k-means clustering partitions 
the n observations into a set of k clusters or groups 
S = {S1, S2, … , Sk} (k ≤ n) and their centers are 
given by 

 The classifier arbitrarily finds k cluster centers in the 
feature space. Each point in the information dataset 
is assigned to the closest cluster center, and their 
locations are refreshed to the average location value 
for each group. This cycle is then rehashed until a 
halting condition is met. The halting condition could 
be either a user indicated of maximum number of 
cycles or a distance edge for the development of the 
group communities. Ghosh and Ari [59] utilized a k 
means clustering-based radial basis function neural 
network (RBFNN) for static hand gesture recogni-
tion. In this work, k means grouping is utilized to 
decide the RBFNN centers.

– k-nearest neighbors (k-NN) k-NN is a non-parametric 
algorithm where information in the feature space 
can be multidimensional. It is a supervised learning 
scheme with a bunch of labeled vectors as training 
data. The number k essentially decides the number 
of neighbors (close feature vectors) that impact the 
characterization. Commonly, an odd estimation of k 
is picked for two-class characterization. Each neigh-
bor might be given a similar weight or more weight 
might be given to those nearest to the input informa-
tion by applying a Gaussian distribution. In uniform 
voting, a new feature vector is allocated to the class 
to which the majority of its neighbors belongs. Hall 
et al. expected two statistical distributions (Poisson 
and binomial) for the sample data to get the ideal 
estimation of k [67]. The k-NN can be utilized in var-
ious applications, for example, hand gesture-based 
media player control [138], sign language recogni-
tion [64], and so on.

– Support vector machine (SVM) An SVM is a super-
vised classifier for both linearly separable and non-
separable data. When it is not possible to linearly 
separate the input data in the current feature space, 
then SVM maps this non-linear data to some higher 
dimensional space where the data can be linearly 
separated. This mapping from lower to higher 
dimensional space makes the order of the informa-
tion more straightforward and recognition more pre-
cise. On several occasions SVM has been utilized for 

(1)argmin
�

k∑

i=1

∑

�j∈Si
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hand gesture recognition [41, 98, 132, 183]. SVMs 
were initially intended for two-class grouping, and 
an expansion for multi-class arrangement is vital 
for many instances. Dardas et al. [41] applied SVM 
along with bag-of-visual-words for hand gesture 
recognition. Weston and Watkins [226] proposed an 
SVM design to settle a multi-class pattern recogni-
tion problem using a single optimization stage. Be 
that as it may, their optimization procedure found to 
be extremely convoluted to be executed for real-life 
pattern recognition problems [77]. Rather than uti-
lizing a single optimization method, various paired 
classifiers can be utilized to take care of multi-class 
grouping issues, for example, ”one-against-all” and 
”one-against-one” techniques. Murugeswari and 
Veluchamy [151] utilized “one-against-one” multi-
class SVM for gesture recognition. It was tracked 
down that the ”one-against-one” strategy performs 
better compared to the remainder of the strategies 
[77].

– Artificial neural network (ANN) ANN is a statistical 
learning algorithm utilized for different errands like 
functional approximation, pattern recognition and 
classification. ANNs can be used as a biologically 
inspired supervised classifier for gesture recogni-
tion where training is performed utilizing a bunch 
of marked input data. The trained ANN arranges new 
input data into the labeled classes. ANNs can be uti-
lized to perceive both static [59] as well as dynamic 
hand gestures [157, 163]. [157] applied ANN to 
classify gesture motions utilizing a 3D articulated 
hand model. A dataset collected using  Kinect® sen-
sor [163] was used for this. Obtaining info from data 
glove, Kim et al. [102] applied ANNs to perceive 
Korean sign language from the movement of hand 
and fingers. A restriction of traditional ANN design 
is its failure to deal with temporal arrangements of 
features proficiently and successfully [165]. Primar-
ily, it cannot make up for changes in transient moves 

and scales, particularly in real-time applications 
[177]. Out of a few altered structures, multi-state 
time-delay neural networks [239] can deal with such 
changes somewhat utilizing dynamic programming. 
Fuzzy-based neural networks have likewise been uti-
lized to perceive gestures [220].

• Dynamic gesture recognition Dynamic gestures or trajec-
tory-based gestures are gestures having trajectories with 
temporal information in terms of video frames. Dynamic 
gestures can be either a single isolated trajectory type or 
continuous type occurring one after another in a stream. 
Recognition performance of dynamic gestures, espe-
cially the continuous gestures, is basically dependent on 
gesture spotting schemes. Dynamic gesture recognition 
schemes can be categorized into direct or indirect meth-
ods [7]. The approaches in direct method first detect the 
boundaries in time for the performed gestures and then 
apply standard techniques same as isolated gesture rec-
ognition. Typically, motion cues like speed, acceleration 
and trajectory curvature [242]) or specific starting–end-
ing marks [7], an open/closed palm can be applied for 
boundary detection. Whereas, in the indirect approach 
temporal segmentation is intertwined with recognition. 
In indirect methods, typically gesture boundaries are 
detected by finding time intervals that give good scores 
when matched with one of the gesture classes in the 
input sequence. Such procedures are too vulnerable to 
false positives and recognition errors as they have to deal 
with two vital constraints of dynamic gesture recognition 
[146]: 1) spatiotemporal variability, i.e., a user cannot 
reproduce the same gesture at the exact same shape and 
duration and 2) segmentation ambiguity, i.e., problems 
faced due to erroneous boundary detection. Through 
indirect methods, we try to minimize these problems as 
much as possible. Indirect methods can be of two types 
(Fig. 15): non-probabilistic, i.e., (a) dynamic program-
ming/dynamic time warping, (b) ANN; and probabilistic, 
i.e., (c) HMM and other statistical methods, (d) CRF and 

Fig. 15  Conventional dynamic 
gesture recognition techniques
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its variants. Some other common techniques are eigens-
pace-based methods [164], curve fitting [196], finite-state 
machine (FSM) [16, 19] and graph-based methods [194]. 

– Dynamic programming/dynamic time warping 
(DTW) A template matching approach of dynamic 
programming is dynamic time warping (DTW) and 
it has been extensively used in isolated gesture rec-
ognition. It can find the optimal alignment of two 
signals in the time domain. Each element in a time 
series is represented by a feature vector. So, the 
DTW algorithm calculates the distance between each 
possible pair of points in two time series in terms of 
their feature vectors. The steps in a DTW are as fol-
lows:

• Two time series P and Q: 

 where �i , �i are feature vectors for the ith element 
of the corresponding time sequences.

• Construct N ×M  matrix D with distances 
Dij = d(�i, �j).

• Warping path W is a contiguous set of matrix ele-
ments wk = (i, j)k

• Define warping between � and �

 where max(M,N) ≤ K ≤ M + N − 1

• Find: 

   DTW has been applied for gesture classification 
by several authors [7, 80, 127, 211]. Alon et al. [7] 
proposed a DTW-based approach that can handle the 
sub-gesture problem. Lichtenauer et al. [127] intro-
duced a hybrid method by applying statistical DTW 
(SDTW) only for time warping and another classifier 
on the warped features.

– Hidden Markov model (HMM) Though HMM orig-
inally emerged in the field of speech recognition, 
now, it is one of the most widely used techniques 
for gesture recognition with its numerous variants. 
HMM is extensively used because it can be applied 
for modeling the spatiotemporal variability of the 
gesture videos. Since trajectory-based gesture is a 
series of images, so there is a need for past knowl-
edge to help the system to recognize gestures and 
an HMM can help us in this. Before we elaborate 
on HMM, let us understand a traditional Markov 

� = ��,��,… ,��
� =��,��,… , ��,

W = w1,w2,...,wK ,

DTW(P,Q) = min

√∑
wk.

process. A stochastic process has the nth order 
Markov property if the current event’s conditional 
probability density is dependent only on the n most 
recent events. For n = 1 , the process is called a 
first-order Markov process, where the current event 
depends only on the previous event. This is a useful 
assumption for hand gestures, where the positions 
and orientations of the hands are treated as events. 
HMM has two special properties for encoding hand 
gestures—a) it assumes a first-order model, i.e., it 
encodes the present time (t) in terms of the previ-
ous time ( t − 1)—the Markov property of underly-
ing unobservable finite-state Markov process and 
b) a set of random functions, each associated with 
a state, that produces an observable output at dis-
crete intervals. In this way, an HMM is a “doubly 
stochastic” process [176]. The states in the hidden 
stochastic layers are governed by a set of probabili-
ties: 

 i. The state transition probability distribu-
tion � , which gives the probability of 
transition from the current state to the 
next possible state.

 ii. The observation symbol probability dis-
tribution � , which gives the probability 
of observation for the present state of the 
model.

 iii. The initial state distribution � , which 
gives the probability of a state being an 
initial state.

   An HMM is expressed as � =(�,�,�) and is 
described as follows:

  • Let there be a set of N states {s1, . . . , sN} ; 
with a sequence of states Q = {q1, . . . , qT } , 
where t = 1, ..., T  . For a gesture with M observ-
able states, the set of observed symbol or feature 
is given by O = {o1, . . . , oT }.

• The state-transition matrix is � =
{
aij
}
 , where aij 

is the state-transition probability from state qt = si 
at time t to state qt = sj at time t + 1 . 

• The observation symbol probability matrix 
� = {bjk} , where bjk is the probability of symbol 
ok at state sj . 

• The initial probability distribution Π =
{
�j
}
 , 

where 

� = {aij} = P(qt+1 = sj|qt = si), for 1 ≤ i, j ≤ N.

bj(k) = P[ok at t|qt = sj], for 1 ≤ j ≤ N, 1 ≤ k ≤ M.
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   The modeling of a gesture involves two phases—
feature extraction and HMM training. In the first 
phase, a particular gesture sequence is represented 
by a set of feature vectors. Each of these feature vec-
tors describes the trajectory of the hand correspond-
ing to a particular state of the gesture. The number of 
such states depends on the nature and complexity of 
a gesture. In the second phase, the vector set is used 
as an input to HMM. The global HMM structure is 
formed by connecting in parallel the trained HMMs 
(�1, �2, . . . , �G) , where G is number of gestures to 
be recognized. For dynamic gestures, temporal com-
ponents like the start state, the end state, and the set 
of observation sequences (e.g., position) are mapped 
by an HMM classifier using a set of boundary condi-
tions.

  For a given observation sequence, the key issues 
of HMM are,

• Evaluation Given the model � =(�,�,�) . What is 
the probability of occurrence of a particular obser-
vation sequence O = {o1, . . . , oT } = P(O|�)? 
This is the heart of the classification/recognition 
problem. Determination of the probability that 
a particular model will generate the observed 
sequence when there is a trained model for each 
of a set of classes (forward–backward algorithm).

• Decoding Optimal state sequence to produce 
an observation sequence O = {o1, . . . , oT } 
Determination of the optimal state sequence that 
produces the observation sequence (Viterbi algo-
rithm).

• Learning Determine model � , given a training 
set of observations, i.e., find � , such that P(O|�) 
is maximal. Train and adjust the model to maxi-
mize the observation sequence probability such 
that HMM should identify a similar observation 
sequence in the future (Baum–Welch algorithm).

   HMMs are frequently applied for trajectory-based 
gesture recognition [72, 117, 122, 166]. But the main 
disadvantage of HMM is that every gesture model 
has to be represented and trained separately consid-
ering it as a new class, independent of anything else 
already learned.

– Conditional random field (CRF) CRF is basically 
a variant of the Markov model with some added 
advantages. HMM requires strict independence 
assumptions across multivariate features and con-
ditional independence between observations. This 
is generally violated in continuous gestures where 

�j = P
[
q1 = sj

]
, for 1 ≤ j ≤ N. observations are not only dependent on the state, but 

also on the past observations. Another disadvantage 
of using HMM is that the estimation of the obser-
vation parameters needs a huge amount of train-
ing data. The distinction between HMM and CRF 
is that HMM is a generative model that defines a 
joint probability distribution to solve a conditional 
problem thus focusing on modeling the observation 
to compute the conditional probability. Moreover, 
one HMM is constructed per label or pattern where 
HMM assumes that all the observations are inde-
pendent. On the other hand, CRF is a discriminative 
model that uses a single model of the joint prob-
ability of the label sequence to find conditional den-
sities from the given observation sequence. CRFs 
can effortlessly address contextual dependencies 
and have computationally alluring properties. CRFs 
support proficient recognition utilizing dynamic 
programming, and their parameters can be learned 
utilizing convex optimization.

  Both HMM and CRF can be used for labeling 
sequential data. For this, we define a statement for a 
given observation sequence x that, we want to choose 
a label sequence y∗ such that the conditional prob-
ability P(y|x) is maximized, that is: 

 Maximum entropy Markov models (MEMMs) are 
discriminative models, where each state has an expo-
nential model that takes the observation sequence as 
input and outputs a probability distribution over the 
next possible states. 

 Each of the P(yt|yt−1, x) , is an exponential model 
of the form: 

 where Z is a normalization constant and the sum-
mation is overall features. But MEMM suffers 
from Label Bias Problem, i.e., the transition prob-
abilities of leaving a given state are normalized 
for only that state (local normalization). MEMMs 
have a non-linear decision surface in light of the 
fact that the current observation is simply ready to 
choose what successor state has chosen; however, 
the probability mass do not move to that state. To 
stay away from this impact, a CRF utilizes an undi-
rected graphical model that characterizes a single 

(2)y∗ = argmaxyP(y|x).

(3)P(y|x) =
∏T

t=1
P(yt|yt−1, x).

(4)P(y|x) = 1

Z(xt, yt−1)
exp

(
∑

a

�afa(xt, yt)

)
,
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log-linear distribution over the joint vector of a 
whole class label sequence given a specific obser-
vation sequence and accordingly the model has a 
linear decision surface. Let G = (V ,E) be a graph 
such that Y = (Yv), v�V  so that Y is indexed by verti-
ces of G. Then (X, Y) is a conditional random field, 
when conditioned on X, the random variables Yv 
obey the Markov property with respect to the graph: 
p(Yv|X, Yw,w ≠ v) = p(Yv|X, Yw,w ∼ v)  ,  w h e r e 
w ∼ v means that w and v are neighbors in G. Given 
by Hammersley and Clifford, it states that the prob-
ability distribution of x satisfies the Markov property 
with respect to graph G(V, E) if and only if, it can be 
factored according to G: 

 where Z is the normalization constant and �C is the 
potential function over clique C. 

 where f(.) is the feature vector defined over the 
clique and � is the corresponding weight vector for 
those features. Bhuyan et al. [19] proposed a rec-
ognition method applying CRF through a novel set 
of motion chain code features. Sminchisescu et al. 
[203] have compared performance analysis applying 
algorithms based on CRF and MEMM for discerning 
human motion in video sequences. Undirected con-
ditional model CRF and directed conditional model 
MEMM with different windows of observations are 
compared with HMM. Both MEMM and HMM have 
trouble in perceiving long-range observation depend-
encies that become useful in discriminating among 
various gestures. It is seen that CRFs have better 
recognition performance compared to MEMMs, 
which in turn, typically outperformed traditional 

(5)P(x) =
1

Z

∏
C
�C,

(6)P(x) =
1

Z

∏

C

exp(�T
C
f (C)) =

1

Z
exp(

∑

C

�T
C
f (C)),

HMMs. This is because CRF applies an undirected 
graphical model to overcome the problem of label 
bias present in maximum entropy Markov models 
(MEMMs) where states with low-entropy transition 
distributions effectively ignore their observations. 
The main constraint of CRF is that training is more 
time-consuming ranging from several minutes to 
several hours for models having longer windows of 
observations (as compared to seconds for HMMs, 
or minutes for MEMMs), on a standard desktop PC.

– Some other classification methods Here, we discuss 
some other classification techniques that have also 
been used in the classification of gestures. Patward-
han and Roy [164] presented an eigenspace-based 
methodology to represent trajectory-based hand ges-
tures containing both shape and trajectory informa-
tion which are rotation, scale and translation (RST) 
invariant. Shin et al. [196] presented a curve-fitting 
based geometric framework utilizing Bezier curves 
by fitting the curve to the 3D motion trajectory of the 
hand. The gesture velocity is interlinked in the algo-
rithm to enable trajectory analysis and classification 
of dynamic gestures having variations in velocity. 
Bhuyan et al. [16, 19] represented the keyframes of 
a gesture trajectory as a sequence of states ordered 
in the spatial-transient space, which constitutes a 
finite state machine (FSM) that classifies the input. 
Graph-based frameworks are also applied as a pow-
erful scheme for pattern recognition problems but 
have been practically left unused for a long period 
of time due to their high computational cost. [194] 
used graphs for gestures matching in an eigenspace 
to handle hand occlusion (Fig. 16).

Fig. 16  a HMM b a directed conditional model or MEMM c a conditional random field accommodates arbitrary overlapping features or long-
term dependency of observation sequence [203]
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Depth‑Based Methods on RGB‑D Data

Depth information is largely invariant to illumination vari-
ation and skin colors and offers a quite clear segmentation 
from the background. So, the major problems in segmenta-
tion like illumination variation and occlusion can be han-
dled nicely with the help of depth information to a great 
extent. Due to these advantages, depth measuring cameras 
have been used in the field of computer vision for many 
years. However, the applicability of depth cameras was 
restricted because of their excessive cost and low quality. 
With the introduction of low-cost color-depth (RGB-D) 
cameras like  Kinect® by Microsoft, Leap Motion Control-
ler (LMC) by Leap Motion, Intel  RealSense®,  Senz3D® 
by Creative and  DVS128® by iniLabs, a new revolution 
was evolved in gesture recognition by providing high-
quality depth images that can handle issues like complex 
background and variation in illumination. Out of all these, 
hand gesture recognition on  Kinect®-based dataset and 
‘one-shot learning’ with RGB-D data, are the prominent 
methods mostly discussed in depth-based hand gesture 
recognition.

• Kinect®-based methods  Kinect® has a combined RGB 
and IR camera along with depth sensor [248]. It uses 
the infrared projector and sensor for depth computation 
and an RGB camera for capturing RGB data only. The 
infrared projector projects a predefined pattern on the 
items and a CMOS sensor captures the deformations in 
the reflected pattern. Depth information is then calcu-
lated by mapping a three-dimensional view of the scene 
obtained from the deformation information.  Kinect® 
acquire RGB-D information by consolidating organized 
light with two exemplary computer vision strategies: 
depth from focus and depth from the stereo. The skeletal 
information got from these RGB-D sensors is changed 
over to more significant and undeniable features, and 
algorithms are created for the robust gesture classifica-
tion. Classification of hand gestures is particularly dif-
ficult because of the complex articulation and relatively 
smaller area of the hand region.  Kinect® is helpful in 
tending to these central issues in computer vision [163, 
181, 212]. It has also diverse applications ranging from 
gaming to classroom [71, 116].

• Other depth sensor-based methods Leap motion con-
troller (LMC) and Intel  RealSense® are the most used 
RGB-D sensor for HCI applications apart from  Kinect®. 
 RealSense® is more robust to self-occlusions and it can 
capture pinching gestures. LMC is another RGB-D sen-
sor and its purpose is to locate 3D fingertip positions 
instead of the whole-body depth information as the case 
with  Kinect® sensor. It can detect only fingertips lying 
parallel to the sensor plane, but with high accuracy. In 

[133] feature vector with depth information is computed 
using a leap motion sensor and fed into the hidden con-
ditional neural field (HCNF) to classify dynamic hand 
gestures. Leap motion sensors can also be applied in dif-
ferent utilization, e.g., virtual environments [178] and 
sign language recognition [172].

• One-shot learning methods on RGB-D data Using Deep 
Learning, human-level performance has become achieve-
able on complex image classification tasks. However, 
these models rely on a supervised training paradigm and 
their achievement is heavily dependent on the availability 
of labeled training data. Also, the classes that the mod-
els can recognize are limited to those they were trained 
on. This makes these models less useful in realistic sce-
narios for the classes where enough labeled data is not 
available during training. Also, since it is practically not 
possible to train on images of all possible objects, so 
the model is expected to recognize images from classes 
with a limited amount of data in the training phase or 
precisely with a single example. So, in the case of a small 
dataset, ‘one-shot learning’ may be very useful. Various 
researchers [108, 221, 230] have used one-shot learning 
in both deep learning and non-deep learning paradigm 
for recognition of hand gestures, especially with RGB-D 
data. Wu et al. [230] presented a framework to learn 
gestures from just one learning sample for each class, 
in particular, ’one-shot learning’. Features are obtained 
depending on extended motion history image (Extended 
MHI) and the gestures are recognized based on the maxi-
mum correlation coefficient. The extended MHI is used 
to improve the presentation of MHI by making up for the 
immobile regions and repeated activities. A multi-view 
spectral embedding (MSE) scheme is utilized to meld 
the RGB and depth information in an actually significant 
way. The MSE calculation finds the natural connection 
among RGB and depth features, improving the recogni-
tion rate of the algorithm. In [136], authors used a meth-
odology consolidating MHI with statistical measures and 
frequency domain transformation on depth images for 
one-shot-learning hand gesture recognition. Due to the 
availability of the depth information, the background-
subtracted silhouette images were obtained using a sim-
ple mask threshold.

Deep Networks: A New Era in Computer Vision

Though the idea of artificial intelligence (AI) is quite 
ancient, modern AI first came into the picture around the 
mid-twentieth century. The AI aims at developing intelli-
gence in machines so as to make them work and respond like 
humans. This can be achieved when the machines are made 
to have certain traits, e.g., reasoning, problem solving, per-
ception, learning, etc. Machine learning (ML) is one of the 
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cores of AI. There are a large number of applications of ML 
in many aspects of modern human society. Consumer prod-
ucts like cameras and smartphones are the best examples 
where ML techniques are being employed increasingly. In 
the field of computer vision, ML techniques have been vig-
orously used in different applications like object detection, 
image classification, face recognition, gesture and activity 
recognition, semantic segmentation, and many more. In con-
ventional ML, engineers and data scientists have to identify 
useful features and they have to handcraft the feature extrac-
tor manually which requires considerable engineering skills 
and domain knowledge. To identify important and power-
ful features, they must have considerable domain expertise. 
The issue of “handcrafting features” can be addressed if 
good features can be learned automatically. This automatic 
learning of features can be done by a learning method called 
“representation learning”. These are methods that enables a 
machine to automatically learn the representations that are 
crucial for detection or classification.

Recently, deep learning has shown outstanding perfor-
mance outperforming “non-deep” state-of-the-art methods 
in action and gesture recognition fields. Deep learning, a 
subfield of ML, is based on representation learning methods 
having multiple levels of representation. Deep learning is a 
part of ML algorithms, in which extraction of multiple levels 
of features is possible. In several fields, such as computer 
vision, deep learning methods have been proved to have 
much better performance than conventional ML methods. 
The main reason for deep learning having an upper hand 
over ML is the fact that the feature learning mechanism at 
these different levels of representation is fully automatic, 
thereby allowing the computational model to implicitly 
capture intricate structures embedded in the data. The deep 
learning methods are said to have deep architecture because 
of the non-uniform processing of information at different 
levels of abstraction where higher-level features are inter-
preted in the form of lower-level features. This has propelled 
the advancement of learning powerful and successful por-
trayals straightforwardly from raw data and deep learning 
gives a conceivable method of naturally learning different 
levels of image specific features by utilizing different layers. 
Deep networks are fit for discovering remarkable dormant 
constructions inside unlabeled and unstructured raw data 
and can be utilized for both feature extraction as well as clas-
sification [110]. The recent popular deep learning methods 
like convolutional neural network (CNN), recurrent neural 
network (RNN) and long short-term memory (LSTM) have 
demonstrated competitive performance in both image/video 
representation as well as classification. But deep learning 
approaches have mainly two inherent requirements: huge 
data for training purposes and expensive computation. But 
in this modern era, the abundance of high quality, easily 
available labeled datasets from different sources along with 

parallel graphics processing unit (GPU) computing, also 
played a vital role in the success of deep learning by fulfill-
ing its requirements. We will see all these methods one by 
one, but before that let’s talk about one major problem of 
deep learning which is the requirement of huge data and 
how various researchers have tried to overcome it through 
the data augmentation process when the database is limited.

• The need for data augmentation in deep learning meth-
ods Contrary to the hand-crafted features, there is devel-
oping interest towards feature learned and represented 
by deep neural networks [12, 29, 37, 43, 58, 85, 94, 
101, 110, 121, 129, 148, 149, 153, 169, 201, 215, 217, 
223, 249, 250]. But the fundamental necessity in deep 
learning methods is loads of data set examples. Vari-
ous researchers have stressed the significance of utiliz-
ing diverse training samples for CNNs/RNNs [110]. For 
datasets with restricted variety, they have proposed data 
augmentation techniques in the training stage to forestall 
CNNs/RNNs from overfitting. Krizhevsky et al. [110] 
utilized different data augmentation procedures in the 
preparation of the recognition problem of 1000 groups. 
Simonyan and Zisserman [201] utilized some spatial aug-
mentation on every image frame to prepare CNNs for 
video-based human action classification. Notwithstand-
ing, these data augmentation strategies were restricted 
to only spatial varieties. Pigou et al. [169] transiently 
deciphered video outlines apart from applying spatial 
changes to add varieties to the video sequences contain-
ing dynamic movement. Molchanov et al. [148] applied 
space-time video augmentation methods to keep away 
3D-CNN from overfitting.

• Convolutional neural networks (CNN) In 1962, D.H. 
Hubel and T.N. Weisel proposed the prototype of Cat’s 
visual cortex, which later on helped in the development 
of CNNs. The first neural network architecture for vis-
ual pattern recognition was presented by K. Fukushima 
in 1980 and was given the nickname “neocognitron” 
[57]. This network was based on unsupervised learning. 
Finally, in the late 90s, Yann LeCunn and his collabo-
rators developed CNN which showed exciting results 
in various recognition tasks [121]. But till 2012, CNN 
was not that much evolved due to the requirements of 
deep learning methods mentioned above. After the work 
of Krizhevsky et al. [110], various researchers applied 
CNN in various domains for classification as well as 
other purposes. Generally, 2D-CNN is used in the case of 
images that can access only spatial information, whereas, 
for video processing, 3D-CNN (C3D) is quite effective 
which can extract both spatial as well as temporal infor-
mation. A fusion-based approach with CNN as trajectory 
shape extractor of a gesture video and CRF as tempo-
ral feature extractor is proposed by [235]. In [190], the 
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authors used CNN for recognition of hand gestures using 
trajectory-to-contour-based images obtained through skin 
segmentation and tracking method. In [245], the authors 
used pseudo-color-based MHI images as input to con-
volutional networks. [96] proposed a model for isolated 
gesture recognition using optical flow where the trajec-
tory-contour of the moving hand with varied shape, size 
and color is detected and the hand gesture is classified 
through a VGG16 CNN framework.

• 3D-CNN (C3D) model 2D-CNN can handle 2D images 
for various tasks like recognition acting on the raw data 
directly. Whereas 3D-CNN models, also called C3D, act 
on videos for gesture or action detection. The framework 
obtains features from spatial as well as temporal dimen-
sions by acting convolutions in 3D, thereby capturing 
the spatial as well as movement data present in the video 
sequence. [85] introduced a C3D network for human 
action recognition. To examine the progression of short 
video clips and normalize the framework’s reactions 
for all the clips, Tran et al. [215] employed a C3D to 
learn the spatio-temporal features from sliced video clips 
and then fuse these features to make the final classifica-
tion. [223] used a temporal segment network that works 
on video segments called snippets for spatio-temporal 
evaluation in action recognition. 3D-CNN (C3D) is quite 
effective which can extract both spatial as well as a piece 
of temporal information at less expense of both data and 
processing computation compared to RNN/LSTM [101, 
192].

• Two-stream model Ciregan et  al. [37] explained the 
advantage of utilizing multiple CNNs in parallel in 
improving the performance of the whole network by 
30–80% for different image grouping errands. Also, 
for large-scale video arrangement, Karpathy et al. [94] 
found that the best outcomes can be obtained by joining 
two separate layers of CNNs trained with original and 
spatially trimmed video clips. Simonyan and Zisserman 
[201] proposed different streams of CNNs for spatial and 
transient data extraction which are later intertwined in 
the late-fusion scheme. Here in one stream optical flow 
is used for activity acknowledgment. To perceive sign 
language gestures, Neverova et al. [153] utilized CNNs 
to consolidate tone and depth information from hand 
areas and upper-body skeletons. Two stream model with 
two C3D layers that takes RGB and optical flow com-
puted from the RGB stream as inputs were used by [101] 
for action recognition. [250] used a hidden two-stream 
CNN model where input is a crude video sequence that 
can explicitly detect the activity class without comput-
ing optical flow directly. Here the network predicts the 
motion information from consecutive frames through a 
temporal stream CNN that makes the network 10× faster 

[250], without computing optical flow which is time-
consuming.

• Long-term video prediction—RNN/LSTM/GRU  CNN 
can handle restricted local temporal data, and conse-
quently, people have moved towards RNN, which can 
deal with worldly information utilizing repetitive associa-
tions in hidden layers [12]. Be that as it may, the major 
disadvantage of RNN is its short-term memory, which 
is inadequate for genuine real-life varieties in gestures 
or actions. To take care of this issue, long short-term 
memory (LSTM) [58] was presented which can handle 
longer-range temporal structures. Gestures or actions, 
in a video sequence, can be considered as a sequential 
temporal evaluation of body/body-part in a space-time 
representation. So, 3D-CNN/RNN/LSTM is the network 
generally applied in video-based action/gesture recogni-
tion. In addition to 3D-CNNs, recurrent neural networks 
have also been applied for dynamic hand gesture clas-
sification [149, 249]. [29] has extracted hand trajectory 
and hand posture features from RGB-D data and then a 
two-stream recurrent neural network (2S-RNN) is used 
to fuse multi-modal features. The spatio-temporal graphs 
are good for representing long-range spatio-temporal 
variations. Hence, a combination of high-level spatio-
temporal graphs and RNN can also be applied to resolve 
the issue of spatio-temporal representation in RNN [84]. 
The long short-term memory problem and vanishing/
exploding problem of RNN can be handled to some 
extent by adding ‘gates’ in LSTM. Hence networks based 
on LSTM can be efficiently utilized for the representation 
of dynamic gestures [43, 129, 217]. However, in both 
RNN and LSTM, the problem of vanishing/expand-
ing gradient is much acute compared to CNN and they 
become more data-hungry. Gated recurrent units (GRU) 
are simplified LSTM units with adaptive gate parameters 
with fewer parameters which makes the training process 
faster. [197] presented a skeleton-based dynamic hand 
gesture acknowledgment technique that separates geo-
metric features into various parts and uses a gated recur-
rent unit-recurrent neural network (GRU-RNN) for each 
featuring part. Since each divided feature component has 
fewer dimensions than the whole element, the number of 
hidden units needed for optimization is decreased. Sub-
sequently, the plan accomplished improved recognition 
performance with fewer parameters.

Thus, more or less, deep learning procedures can give excep-
tional execution in both feature extraction and recognition 
tasks due to their inherent feature learning ability. The pow-
erful and effective algorithms of deep networks are fit for 
tackling complex pattern recognition and optimization tasks.
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Hand Gesture Databases

The advancement of standard hand gesture datasets is an 
essential requirement for the dependable analysis and veri-
fication of hand gesture recognition techniques. There are a 
few freely accessible hand gesture databases that are created 
with the end goal of hand motion investigation and simi-
lar examinations. Several authors have come out with such 
lists of databases [11, 12, 35, 170]. But most of them have 
not given a detailed analysis of the same in a concise way, 
though all of them tried to include the most-used hand and 
human activity databases. In this work, we have tried to col-
late a comprehensible list of the 50 most used freely acces-
sible hand gesture databases with their brief description in 
two tables. Table 2 mainly gives the content and descrip-
tion, whereas Table 3 gives the link of the publicly available 
sources.

Applications, Recent Advancements 
and Future Scopes of VGR Systems

Gesture Interface for Vision‑Based HCI System

The approach of vision-based hand gesture is more intrin-
sic and suitable compared to other glove-based approaches 
used in HCI since it can be used in the field of vision of a 
camera anywhere and at any time. The operator does not 
need to master any special hardware and, thus, it is easier 
to deploy. A vision-based approach also enables a variety 
of gestures to be used that can be updated in the software. 
Computer vision methods can enable HCI that is difficult or 
impossible to achieve with other modalities. Visual informa-
tion is important in human–human communication because 
meaning is conveyed through identity, facial expression, 
posture, gestures, and other visually observable attributes. 
Therefore, intuitively it is possible to have natural HCI by 
sensing and perceiving these visual cues from video cam-
eras placed appropriately in the environment. The major 
benefit of VGR is that it requires modest gadgets in terms 
of cost as input devices. Even an advanced camera can be 
incorporated with a solitary chip. Large-scale manufactur-
ing is thus a lot simpler in contrast to other info gadgets like 
data gloves with mechanical components. Furthermore, the 
expense of image processing equipment can be minimized 
since most computers now have a central processing unit 
and graphics processing unit fast enough to perform these 
computer vision tasks. While other information gadgets like 
a mouse, joystick, and trackpad are restricted to a particular 
capacity; camera-based computer vision techniques are flex-
ible enough to offer an entire scope of conceivable future 
applications in a human–computer association as well in 

user validation, video conferencing, and distance schooling. 
Another significant benefit of computer vision is that it is 
non-intrusive. Cameras are open information gadgets that do 
not need direct contact with the user to detect activities. The 
user can communicate with the computer without wires and 
without controlling mediator gadgets. Moreover, humans are 
more comfortable in communicating with body postures or 
gestures as compared to using some mechanical techniques 
like clicking the mouse or pressing the keyboard, or touching 
a touch-sensitive screen and thus experience more comforta-
ble and better natural interactions than with traditional inter-
action techniques. These are the major advantages of a VGR 
system, including a natural, contact-free method of inter-
action. However, vision-based gesture interfaces also have 
many disadvantages, including user fatigue, cultural differ-
ences, the requirement of high-speed processing, and noise 
sensitivity. Nevertheless, it is more difficult to use because 
current computer vision schemes are still limited in process-
ing such highly articulated, non-convex, and flexible objects 
like the human hand. Vision-based recognition is amazingly 
difficult not just in light of its assorted settings, different 
translations, and spatio-transient varieties yet additionally 
as a result of the complex non-unbending properties of the 
human hand. The current classifiers utilized for vision-based 
motion recognition are not prepared to handle all the motion 
characterization issues at the same time. Every one of them 
has at least one downside restricting the general execution 
of the motion recognition strategies.

Applications and Recent Advancements

Despite all the drawbacks, the number of VGR systems is 
assumed to increase more in daily life; and as such, inter-
active technology needs to be designed effectively to pro-
vide a more natural way of communication. Therefore, cur-
rently, vision-based gesture recognition has become a major 
research field in HCI and there is a various real-life imple-
mentation of VGR. More specifically hand gestures-based 
VGR systems can provide a noncontact input modality. The 
widespread use of gesture-based interfaces for vision-based 
HCI is possible due to the advantages mentioned above. One 
of the forward leaps in VGR is the presentation of Microsoft 
 Kinect® as a contact-less interface [248]. The Kinect has 
huge potential in different applications, for example, medical 
care [82], educational training [116], and so on. Be that as it 
may, its poor open-air execution and depth resolution limits 
its convenience. As of late, SoftKinetic’s Gesture Control 
Technology is consolidated in BMW vehicles to permit driv-
ers to explore the in-vehicle infotainment framework easily 
[1]. Most as of late executed and some proposed utilization 
of VGR incorporate sign language recognition [127], virtual 
reality (VR) [187], virtual game [112], augmented reality 
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(AR) [180], smart video conferencing [142], smart home 
and office [155], medical services and clinical help (MRI 
navigation) [82], robotic surgery [213], wheelchair control 
[104], driver observing [204], vehicle control [168], inter-
active presentation module [244], virtual study hall [71], 
web-based business (e-commerce) [9], etc. A portion of the 
significant applications (see Fig. 17) of hand gesture-based 
HCI applications are illustrated below:

• Augmented reality and virtual reality Hand gestures 
can be very useful for realistic manipulations of virtual 
objects in virtual environments [187] and as an interface 
for virtual gaming [112]. Many problems like detection, 
registration and tracking can be solved using augmented 
reality techniques [180].

• Sign language recognition Hand gestures are useful for 
sign language recognition for the deaf–mute community 
[127]. The system mainly acts as an interpreter between 
the deaf/mute and others.

• Vehicle monitoring and vehicle control Gesture-based 
interfaces may be used to operate a vehicle [168], and 
also for driver monitoring [204].

• Healthcare and medical assistance Gesture-based inter-
faces have many applications in healthcare and medicine, 
for example, MRI navigation in the operating room [82], 
and medical volume visualization tasks, browsing radi-
ology images may be some of the possible applications. 
Gestures can also be used to train physicians in robotic 
surgery [213] and medical assistance for physically disa-
bled persons, including hand gesture-based wheelchair 
control [104].

• Information retrieval Gesture-based interfaces can also 
be used for day-to-day information retrieval from the 
internet [166].

• Education Gesture interfaces for controlling presenta-
tions (e.g.,  powerpoint®) is helpful for teachers [244]. 
Gesture-based interfaces can be used for window menu 
activation.

• Desktop, television control and tablet PC applications 
Gesture interfaces can be useful in controlling desktop, 
television, etc. and also for tablet PC applications [155].

Future Scope

Gestures can be made universal and users can apply user-
friendly gestures in place of multi-step interactions for 
communication. With a worldwide focus on reducing the 
risk of spreading bacteria and viruses, this sort of solu-
tion would undoubtedly be welcomed by all. Moreover, as 
the world adapts to the new changes after the COVID-19 
pandemic, touch-less technology can be the ‘new normal’ 
in such situations to minimize the risk of a global health 
crisis. For instance, in airports, if cameras and hardware Ta
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are already embedded, passengers can take benefit from 
hand tracking and gesture recognition to control menus 
without physically touching a platform. Though there are 
some other touch-less technologies such as voice recog-
nition, language and pronunciation become a barrier in 
many instances. Moreover, people are focusing on using 
smartphones to minimize contact when it comes to aspects 
such as check-in. However, with smartphones, passengers 
still often have to touch a screen, which gives a chance 
of risk. Additionally, at airport border control, it is often 
forbidden to use a smartphone. So, there are further limits 
to these existing features. In addition, on roads drivers can 
control auto navigation through simple in-air movements. 
In such cases, hand-tracking and gesture recognition tech-
nology can provide a hardware-agnostic solution to these 
problems.

Another major challenge to overcome for a gesture rec-
ognizer system is the implementation of an efficient real-
time application. A good gesture recognizer should fulfill 
the following requirements, and the most important aspect 
is computational efficiency for real-time implementation:

• Robustness The system should be robust to real-world 
conditions like noisy visual information, changing illu-
mination, cluttered and dynamic backgrounds, occlusion, 
and so on.

• Scalability The core of the system should be adaptive to 
different scales of applications like sign language recog-
nition, robot navigation, virtual environments, and so on.

• Computational efficiency The system should be compu-
tationally efficient.

• User’s tolerance The system should detect the mistakes 
performed by the user and ask the user to repeat them 
until the mistake is corrected.

As shown in Fig. 18, the real-time implementation of gesture 
recognition algorithms can be made by using graphics pro-
cessing units (GPUs) alone or in combination with general-
purpose CPUs to increase the processing speed.

Conclusion

Hand gesture recognition is a significant field of explora-
tion in computer vision with different applications in HCI. 
Applications incorporate desktop tools, computer games, 
healthcare, medical assistance, robotics, sign language, 
vehicle monitoring, and virtual reality environments. 
Interfaces support unimodal or multimodal connection by 
utilizing computer vision, speech recognition, wearable 
sensors, or a mix of these and different advancements. 
Utilizing more than one modality can make the interac-
tion more natural and accurate, but it also increases the 
system complexity. Both static and dynamic gestures give 
a helpful and normal human–computer interface. Dynamic 
gestures can be grouped depending on their implications 
and appearances. They can be obtained primarily from 
vision-based frameworks or from wearable-sensor-based 
gloves. In principle, vision-based gesture interfaces should 
be preferred to data gloves because of their simplicity and 
low cost. While glove-based gesture recognition is almost 
a tackled issue, vision-based gesture recognition is yet in 

Fig. 17  Applications of hand gesture recognition systems: a virtual 
reality, b gesture-based interaction with robots (Picture courtesy 
http://www.robots-dreams.com/pc-based-robosapien-control-project), 
c desktop computing application, d virtual computer games using 
gesture, e sign language recognition, f vehicle control (picture cour-

tesy: http://www.automotiveworld.com/news-releases/3D-gesture-rec-
ognition-virtual-touch-screen-bring-new-meaning-vehicle-controls/), 
g gesture controlled robotic surgery (Pic. courtesy: http://www.
purdueexponent.org/campus/collection_daa8e8c2-3e15-11e0-bb90-
0017a4a78c22.html) and h television and desktop controlling
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its developing stage. Vision-based gesture recognition 
typically depends on the proper segmentation of the ges-
turing body parts. Image segmentation is altogether influ-
enced by factors including physical movement, variations 
in illumination and shadows, and background complexity. 
The complex enunciated state of the hand makes it dif-
ficult to represent the appearance of gestures. Moreover, 
the variety of gesture boundaries due to spatial-transient 
differences of hand gestures makes the spotting and recog-
nition process more troublesome. Recognition of static, as 
well as dynamic gestures, becomes more difficult if there is 
occlusion. Occlusion estimation is a challenging problem 
in its own right and an active area of research. Impediment 
assessment is a difficult issue by its own doing and a func-
tioning space of exploration. Occlusions can be estimated 
using multiple cameras or tracking-based methods. The 
inclusion of depth information in gesture recognition can 
make the recognition process more accurate. Deep learn-
ing techniques have acquired another point of view for 
different applications of computer vision. Deep learning 
strategies can be used in both feature extraction and rec-
ognition inferable from their underlying feature learning 
ability in finding salient latent structures within unlabeled 
and unstructured raw data.

This paper surveyed the main approaches in vision-based 
hand gesture recognition for HCI. Major topics were differ-
ent classes of gestures and their acquisition; gesture system 
architectures; and applications and recent advances of ges-
ture-based human–computer interfaces in HCI. A detailed 
discussion was provided on the features and major classifiers 
in current use. Also, a brief description of different hand 
gesture databases is listed with their available source links. 
The scope of gesture naturalness and expressiveness can be 
enhanced by including facial expressions or allowing the use 
of both hands. However, this increases the size of the gesture 
vocabulary, inherently increasing the complexity.
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