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Abstract

Purpose of Review—In this review, we seek to summarize the literature concerning the use of 

single-cell RNA-sequencing for CNS gliomas.

Recent Findings—Single-cell analysis has revealed complex tumor heterogeneity, 

subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment 

influence in the disease process.

Summary—Although bulk RNA-sequencing has guided our initial understanding of glioma 

genetics, this method does not accurately define the heterogeneous subpopulations found within 

these tumors. Single-cell techniques have appealing applications in cancer research, as diverse 

cell types and the tumor microenvironment have important implications in therapy. High cost 

and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued 

innovation will improve accessibility and expand our of knowledge gliomas.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) provides an opportunity to access information 

about cellular biology at unprecedented resolution. scRNA-seq allows the user to analyze 

the transcriptome from individual cells as reviewed in Wang et al. [1], including single-cell 

detection of novel transcripts [2, 3], developmental changes [4•], alternative expression [5], 

splicing variants [6], or underlying mutations [7]. This provides a unique opportunity to 

determine the interplay between intrinsic cellular processes and environmental stimuli. Bulk 

RNA-seq averages the expression profiles of potentially diverse cells, leading to loss of 

contribution from heterogeneous or rare populations. The resulting sequences from scRNA­
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seq can be compared between cells, depicting specimen heterogeneity or identification of a 

rare population of cells.

Gliomas, the most common primary central nervous system (CNS) tumors in adults, are 

known for their heterogeneity and rapid clinical progression [8]. Histologically, identical 

tumors can have varied underlying mutations and can, therefore, respond very differently to 

the same treatments [9]. Personalized genomic dissection of CNS tumors will better enable 

the identification of actionable targets for molecularly guided therapies [9]. Thus far, over 70 

oncogenetic variants have been identified in CNS tumors through conventional methods [10] 

with some gene expression profiles linked to clinical outcomes [11, 12]. Molecular marker 

identification in glioma has defined clinically relevant sub-classifications. For example, the 

presence of mutations in IDH1 and IDH2 are consistent with an improved prognosis [13]. 

Uncovering and harnessing this tumor heterogeneity will allow a more personalized medical 

response in the oncologic treatment of CNS tumors.

Widespread implementation of scRNA-seq has been difficult due to difficult isolation 

procedures, cost, and complex bioinformatics interpretation. The first step in the process 

involves creating a single-cell suspension by dissociating target tissue samples, without 

disrupting or degrading their gene expression patterns. Individual cells are commonly 

isolated using microfluidic devices [14–16], manual picking [17–19], or fluorescence­

activated cell sorting [20–22]. Single-cell suspension, isolation, and collection are often 

time-intensive techniques and techniques vary based on tissue of interest. scRNA-seq 

involves isolating and lysing single nuclei, reverse transcription, cDNA amplification, and 

transposase Tn5-based fragmentation for library sequencing preparation [7]. As technology 

improves and cost decreases [23], scRNA-seq utilization will increase, improving our 

understanding of heterogeneous tissues.

Single-Cell RNA-Sequencing of Normal Brain Tissue

scRNA-seq is well suited to disentangling the brain’s cell diversity and rare subpopulations 

[1]. Bulk RNA-seq has created high quality databases using human and mouse brain tissue 

instrumental in our understanding of the main brain cell subtypes (http://web.stanford.edu/

group/barres_lab/brainseq2/brainseq2.html) [15–17]; however, the signal from rare brain 

cell populations may not be detectable with this method. In a study of 3005 single cells 

from normal mice brains, Zeisel et al. identified 47 distinct subclasses of cells, including 

16 subclasses of interneurons and 7 subclasses of pyramidal cells, in the somatosensory 

cortex and CA1 hippocampus [14]. Oligodendrocytes that were thought to be all the 

same were divided into six different classes. This level of diversity has been identified 

in other cellular types and brain regions, including the primary visual cortex, dentate gyrus, 

striatum, corpus callosum, amygdala, hypothalamus, zona incerta, SN-VTA, and dorsal 

horn [4•, 14, 24–27]. In an analysis of 466 normal human adult and fetal temporal lobe 

cells, Darmanis et al. found that scRNA-seq was capable of classifying cells as astrocytes, 

oligodendrocytes, oligodendrocyte precursor cells (OPCs), neurons, microglia, and vascular 

cells [28•]. Although most scRNA-seq studies thus far in neural tissue have been descriptive 

[29] (Table 1), scRNA-seq is an important technique to define the functional diversity within 

the brain.
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Single-Cell RNA-Sequencing of Glioma

Overview

In adults, there are three main categories of gliomas, determined by genetic and histologic 

features: glioblastoma (GBM), astrocytoma, and oligodendroglioma. GBM is most 

frequently IDH-wild-type, while IDH1 and/or IDH2 mutations are found in astrocytoma, 

and oligodendroglioma [35]. Gain of chromosome 7 and loss of chromosome 10 are the 

earliest and most common genetic alterations in GBM analyzed by bulk RNA-seq [36]. 

Similarly, these genetic alterations have been confirmed in individual tumor cells using 

scRNA-seq [30, 31, 33••]. Astrocytomas with IDH mutations (IDH-A) frequently have 

ATRX and TP53 mutations, while oligodendrogliomas (IDH-O) have mutations in the TERT 

promoter and loss of chromosome arms 1p and 19q [37]. Venteicher et al. found that most of 

the variation in expression by malignant cells in IDH-1 mutant tumors is attributable in the 

aforementioned genetic events, such as loss of chromosome arm 1p when scRNA-seq was 

employed [34••].

Bulk RNA-seq fails to accurately define the expression profiles of the diverse cell 

subpopulations in glioma, leading to an underappreciation of heterogeneity and a 

misclassification of tumors. Verhaak classifications in GBM defined tumors as proneural, 

neural, classical, or mesenchymal, predominantly using differences in bulk gene expression 

of EGFR, NF1, PDGFRA, and IDH1 [38]. scRNA-seq has highlighted inconsistencies in the 

model as GBMs are likely mixtures of these classifications [31, 32•]. Genetic heterogeneity 

in glioma is attributed to transcriptional variation in cell signaling, proliferation, the 

complement system, immune response, and hypoxia in the malignant and non-malignant 

cells comprising the tumor. In an analysis of 430 cells from 5 GBM samples, Patel et al. 

reported that cells from the same tumor sample varied in correlation (r = 0.2 to r = 0.7), 

highlighting intratumoral diversity [30]. The documented heterogeneity could potentially 

explain classification switching seen in recurrent GBM following treatment. Similarly, 

individual cells obtained from IDH-mutant tumors contain mixtures of both astrocytes and 

oligodendrocytes [30, 34••].

Tumor heterogeneity is further demonstrated through mosaic expression of target genes. 

Receptor tyrosine kinases (RTKs) such as EGFR, PDGFRA, and PDGFA are frequently 

amplified and rearranged in GBM [39, 40]. However, tyrosine kinase inhibitors (TKIs) have 

shown limited efficacy. Single-cell genomics have highlighted variable expression of RTKs 

in GBM. Cells within GBM express different TKI resistant EGFR and PDGFRA variants 

[31]. Additionally, individual tumor cells may co-express multiple EGFR variants [33••]. 

Interestingly, most neoplastic cells do not express CD274, PDCD1LG2, CD80, or CD86, 

which suggests that checkpoint inhibitors, therapeutics directed against these targets, could 

have limited efficacy in GBM [33••]. scRNA-seq revealed inconsistent expression of drug 

targets which may have contributed to treatment failure.

Spatial localization of individual cells within glioma accounts for a portion of their 

heterogeneity. Cells positioned in the center of the glioma are likely to be hypoxic while 

cells on the edge and periphery of the tumor are well perfused. Darmanis et al. confirmed 

the magnetic resonance image-guided surgical resection of tumor core (N = 2343) and 
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surrounding (N = 1246) cells using classical hypoxic genes [33••]. Additionally, the genetic 

expression of neoplastic cells surrounding the tumor core and malignant cells within the 

core differs. Peripheral neoplastic cells expressed high levels of PRODH, FGFR3, and 

LMO3, involved in proline catabolism for ATP production, cell survival signaling and 

inhibition of TP53-mediated apoptosis, respectively [33••]. Müller and colleagues described 

an infiltrating phenotype for neoplastic cells on the tumor periphery, overexpressing genes 

involved in cell survival (survivin) and genomic instability (Aurora B kinase), as well 

as genes involved in downstream cell adhesion [31]. Notably, these findings involved 63 

cells from a single patient. Tumor cell localization contributes to heterogeneity and has 

implications in targeted therapeutics.

Proliferating Glioma Subpopulations

Most of the cells in glioma are non-proliferative; however, a population of proliferating, 

undifferentiated progenitor cells has been hypothesized as the drivers of GBM spread 

and recurrence following treatment [41]. Darmanis et al. found that 7.7% (80/1029) of 

neoplastic cells in the core and 1.6% (1/62) neoplastic cells in the tumor periphery 

proliferate in GBM [33••]. These proliferating cells resembled oligodendrocyte progenitor 

cells (OPCs), which are typically found in the developing brain. Oligodendrogliomas were 

reported by Tirosh and colleagues to have two distinct differentiated non-proliferative 

linages, representing an astrocyte and oligodendrocyte population. Notably, a third 

population of undifferentiated proliferating cells (~ 10% of 4347 cells) resembling neural 

progenitor cells (NPCs) were found instead of OPCs in all their tumor samples [4•]. 

Similarly, Venteicher et al. found that IDH-mutant cells shared the same developmental 

hierarchy, each consisting of non-proliferating astrocytic and oligodendrocytic lineages, 

as well as proliferating undifferentiated cells that resembled NPCs [34••]. Comparing the 

undifferentiated populations from IDH-mutant tumors revealed high similarity, indicating 

the possibility of a shared cell of origin for the tumor types [34••]. The OPC-like 

and NPC-like cells from GBM, and IDH-mutant tumors expressed neurodevelopmental 

transcription factors, such as SOX2, SOX4, SOX9, SOX11, NFIA, and NFIB at high 

levels [4•, 30, 33••, 34••]. Top expressed genes involved in neurogenesis were, ASCL1, 

CHD7, CD24, POU3F2, BOC, and TCF4 [4•, 30, 33••, 34••]. Single-cell expression analysis 

has consistently supported NPCs and OPCs as the drivers of tumor growth and implies 

that induced differentiation of these cells could be an effective therapy. This potentially 

important treatment target could not be identified using bulk—RNA-seq analysis alone.

Immune Cells in the Tumor Microenvironment

The tumor microenvironment (TME) is composed of extracellular matrix, fibroblasts, 

vascular cells, neurons and immune cells. Darmanis et al. found that only 44% of 

tumor core-originating cells segregated to neoplastic cell clusters [33••]. Analyzing 

6 oligodendroglioma tumor samples using scRNA-seq revealed that only half of the 

differentially expressed genes identified by bulk RNA-seq were expressed by malignant 

cells, suggesting a significant influence from the TME [34••]. Most of the expression 

differences in the TME were microglia/macrophage-specific genes and neuron-specific 

genes. These findings indicate that the TME may represent a significant portion of bulk 

RNA-seq analysis.
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Immune cells in the TME are uniquely positioned to influence glioma behavior and tissue 

organization. Most immune cells within the TME are macrophages and mircroglia (> 95%), 

while the remaining cells are primarily dendritic cells (~ 4.5%) [32•, 33••]. Macrophages 

were reported to be preferentially found in the tumor core (813 macrophages/365 microglia) 

and microglia were located in the surrounding cells (85 macrophages/574 microglia) [33••]. 

Pro-inflammatory markers were expressed in the tumor periphery (IL1A/B), while more 

anti-inflammatory (IL1N1) and pro-angiogenic (TGFBI) factors were expressed in the tumor 

core by macrophages and microglia [33••]. Although there seems to be a distinction in the 

gene expression of macrophages and microglia in glioma, the differences occur along a 

spectrum. These results suggest that the properties of the TME influence immune cell gene 

expression despite cell origin [34••].

scRNA-seq has begun to define the complex interactions between TME immune and 

neoplastic cells. For example, Wang et al. reported that NF1 deficiency was associated with 

increased tumor-associated macrophage/microglia infiltration and that the mesenchymal 

subtype of GBM was associated with increased M2 tumor promoting macrophages [32•]. 

However, a causal relationship has not been explored for either of these findings to 

date. Higher-grade IDH-mutant tumors were preferentially associated with macrophage-like 

expression states in the TME [34••]. These findings are likely due the high degree of 

angiogenesis and permeability of the blood brain barrier found in high grade lesions, 

although more research must be done to further define this relationship. Finally, IDH-A 

tumors have been reported to contain more immune cells than IDH-O tumors and this 

difference was not accounted for by tumor grade or endothelial cell contamination [34••]. 

Taken together, these findings highlight the need for more comprehensive studies exploring 

TME immune cell and neoplastic cell relationships.

Conclusion

Bulk RNA-seq expression profiles have been instrumental in our initial understanding 

of brain biology and glioma, but provide limited insight into tissue heterogeneity 

and identification of rare cellular subtypes. scRNA-seq has revealed complex tumor 

heterogeneity and expanded our understanding of cancer progenitor cells and TME 

interactions. Significant cost and technical challenges are current barriers to wide spread 

implementation. A better understanding of the molecular features of CNS tumors through 

scRNA-seq will aid in the development of novel treatment strategies.
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