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Glaucoma a debilitating disease, is globally the second most common kind of permanent blindness. Primary
open-angle glaucoma (POAG) is its most prevalent form and is often linked with alterations in the myocilin gene
(MYOC). MYOC encodes the myocilin protein, which is expressed throughout the body, but primarily in trabecu-
lar meshwork (TM) tissue in the eyes. TM is principally involved in regulating intraocular pressure (IOP), and
elevated IOP is the main risk factor associated with glaucoma. The myocilin protein’s function remains unknown;
however, mutations compromise its folding and processing inside TM cells, contributing to the glaucoma phe-
notype. While glaucoma is a complex disease with various molecules and factors as contributing causes, the role
played by myocilin has been the most widely studied. The current review describes the present understanding of
myocilin and its association with glaucoma and aims to shift the focus toward developing targeted therapies for

treating glaucoma patients with variations in MYOC.

Introduction

Glaucoma: Glaucomas are a group of visual impairment
disorders distinguished by the gradual atrophy of retinal
ganglion cells (RGCs). The axons of RGCs form the optic
nerve, which transmits visual stimuli from the eye to the
brain. RGC degradation results in the thinning and gradual
cupping of the neuroretinal rim, eventually leading to an
enlarged optic disc, a hallmark for the diagnosis of glau-
coma [1,2]. Most patients affected by glaucoma display no
symptoms until advanced vision loss has occurred, making
it the second most common cause of irreversible blindness
after cataracts worldwide [3]. Currently, approximately 80
million people suffer from glaucoma [4,5]. The latest study
assessing the global incidence and future prognosis of glau-
coma estimates that by 2040 the number of people suffering
with glaucoma will increase to almost 112 million [5].

Glaucoma is generally classified into two major subtypes,
open-angle glaucoma (OAG) and closed-angle glaucoma
(CAG), determined by the appearance of the iridocorneal
angle formed between the iris and the cornea in the anterior
compartment of the eye. Both types of glaucoma are further
categorized into primary and secondary forms based on the
underlying cause of the disease. The origin of primary forms
of glaucoma is not discernible, while secondary forms of
glaucoma are attributable to an identifiable cause, such as eye
injury, cataracts, diabetes, or the prolonged use of steroids, all
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of which are associated with the risk of developing secondary
glaucoma [6,7].

Primary OAG (POAG) is the most prevalent form of
glaucoma, constituting approximately 74% of glaucoma cases
globally [4,5,8]. In the US, >80% of glaucoma patients are
classified as having OAG [9,10]. Several population-based
studies have recognized both physiologic and genetic predis-
posing factors behind POAG, such as elevated intra-ocular
pressure (IOP), age, race, and family history [5,11-18]. The
risk of developing POAG increases with advancing age,
but some subgroups of patients are diagnosed with a rather
exceptional form of the disorder known as juvenile-onset
OAG (JOAQG). This is an early onset form of glaucoma that
displays a Mendelian pattern of inheritance; this is in contrast
to POAG, which is a complex genetic disease with multifac-
torial risk factors [19]. Genetic alterations in myocilin are
responsible for nearly 4% of POAG cases and >10% of JOAG
cases [20,21].

While myocilin has been studied often due to its asso-
ciation with inherited cases of glaucoma, its biologic func-
tion remains enigmatic. A comprehensive analysis of past
and recent research efforts focusing on the physiologic role
myocilin plays in causing the disease phenotype is attempted
in this review. The pathophysiology of glaucoma is complex,
and recent studies have revealed new insights that have
helped in gaining a better understanding of this disease. A
clear understanding of the structure of and physiologic role
played by myocilin can help in developing targeted therapies
to treat glaucoma.
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Identification of myocilin as a gene associated with OAG:
IOP is instrumental in preserving the shape of the eye and
allowing the precise projection of images onto the retina.
IOP levels are maintained by an equilibrium between the
formation and drainage of aqueous humor (AH) in the ante-
rior region of the eye. AH is formed in the ciliary body and
secreted into the anterior chamber of the eye from which it
is drained into the bloodstream via two distinct routes. In
humans, most of the drainage occurs through the sieve-
like trabecular meshwork (TM) into the Schlemm’s canal,
which is the conventional route. A relatively minor amount
of AH exits via the unconventional uveal sclera route [22].
The effective regulation of AH discharge across the TM is
necessary to maintain normal IOP. Elevated IOP levels are
observed in most OAG patients, making it the key predis-
posing factor behind this disease. In OAG eyes, there is
increased resistance to AH outflow, which causes elevated
IOP, and IOP remains the only modifiable risk factor for
slowing and treating glaucoma [23-25]. However, a third of
OAG patients are diagnosed without elevated IOP (<21 mm
of Hg) and are referred to as having normal tension glaucoma
(NTG) [26,27]. Interestingly, advancement of the disease has
decreased via treatment focused on reducing IOP levels, even
in NTG patients [25,28,29].

Efforts to ascertain the genes implicated in the initia-
tion of ocular hypertension were first undertaken in the early
1990s, and genetic linkage and cellular protein expression
studies were conducted in parallel by different research
groups. Linkage analysis of a family with a history of JOAG
led to the detection of the first locus associated with OAG.
This locus was termed GLC1A and was mapped to the q
arm of chromosome 1 [30]. Cell culture studies conducted
by Fauss et al. in 1993 and by Polansky et al. in 1997 led to
the identification of a protein progressively expressed upon
long-term treatment with dexamethasone, a drug associated
with steroid-induced glaucoma [31-33]. This polypeptide was
formerly called the trabecular meshwork-inducible gluco-
corticoid response (TIGR), as its expression was induced by
treatment with the glucocorticoid dexamethasone. Subse-
quently, the coding sequence for TIGR was mined from a
cDNA library created from the mRNA of human TM cells
treated with the same drug [31,34,35]. Simultaneously, in
an independent study, an analogous gene was cloned from
a human retina cDNA library. The protein produced by this
gene displayed homology to the non-muscle protein myosin
and was therefore termed myocilin [36]. Later, in 1998, the
Human Genome Organization (HUGO)’s Gene Nomenclature
Committee formally assigned the name myocilin to the TIGR
gene and its protein product [31].
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Myocilin:

The MYOC gene—The human myocilin gene (MYOC)
is approximately 17kb in size and is comprised of three
exons and two introns. MYOC is positioned on the long arm
of chromosome 1, specifically on segment 1q24.3—1q25.2
[35,36]. Several mRNAs extending in size from 1.8-2.3 kb
are transcribed from this gene. The variation in transcript
length arises due to the discrepancy in the use of three poly-
adenylation sites present at the 3’ end of the gene [37-39].
A typical TATA-box promoter and several transcription
regulatory elements, such as NF-kB and E-box, are found in
the region proximately upstream of the myocilin transcrip-
tion initiation site [35,37,40,41]. Myocilin is transcribed in
numerous tissues within and outside the eye, but the highest
mRNA level is observed in the TM tissue [31,37,38,41,42].
The cornea, iris, ciliary body, and retinal epithelium also
exhibit significant expression of the MYOC gene [36-38]. In
addition to the eyes, skeletal muscle and heart tissues display
major myocilin expression levels [35,38,40]. Myocilin expres-
sion is influenced by several molecules, including steroids,
transforming growth factor-p1 (TGF-B1), and the protein
optineurin in cultured TM cells [41-43]. Stress, principally
mechanical and oxidative stress, also induce myocilin expres-
sion [25,33,42].

The myocilin protein: The MYOC gene yields a secreted
glycoprotein build of 504 amino acids [35,38,44]. The
myocilin protein exhibits an isoelectric point (pI) of 5.2, has
a predicted molecular weight of 55.3 kDa, and is visible as
a doublet on denaturing PAGE flanked by 53 and 57 kDa
[35,36]. The 57 kDa fragment is an outcome of N-linked
glycosylation occurring at the amino acid positions 57-59
(Asn-Glu-Ser) in the polypeptide chain [41,44]. Structurally,
the protein is composed of three major homology regions:
the N-terminal coiled-coil (CC) domain, which includes the
leucine zipper (LZ) motifs (amino acids 33—201); the interme-
diate linker region (amino acids 202—243); and the C-terminal
olfactomedin (OLF) domain (amino acids 244-504). The
protein also includes an N-terminal signal sequence (amino
acids 1-32), which is partly responsible for the extracellular
secretion of myocilin [35,45]. While myocilin is known to be
secreted in vitro in cultured cell lines expressing this protein
[44,46-49] and in vivo by its presence in AH [46,48,50-
52], it has also been reported to be present inside the cells
expressing it. Intracellularly, myocilin is localized within the
endoplasmic reticulum (ER) [47,49,53-55], the golgi apparatus
(GA) [53,55,56], and mitochondria [57-59]. It is also present
cytosolically inside exosomal vesicles associated with micro-
tubules [60-62]. Extracellular proteins are processed in the
ER and GA of cells before their departure via the secretory
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pathway; therefore, the presence of myocilin in the ER and
GA is not surprising [41,63]. Apart from the traditional secre-
tory pathway, some synthesized myocilin is also secreted
into the extracellular milieu by means of exosomal vesicles
[41,63,64].

Intracellular processing of the myocilin protein: Normally,
40% of synthesized myocilin undergoes proteolytic cleavage
between arg226 and ile227 inside the ER, yielding a 35 kDa
C-terminal OLF domain fragment and a 20 kDa fragment
comprising the N-terminal CC domain [48,65]. The OLF
domain is co-secreted with unprocessed full-length myocilin
into the media of cultured TM cells, while the N-terminal
domain is maintained intracellularly inside the ER [48,66].
The OLF domain is the site of more than 90% of all disease-
causing myocilin variations [20,37,67].

Three-dimensional structure of myocilin: Due to the diffi-
culty encountered in the in vitro production and recovery of
native myocilin protein, elucidation of its three-dimensional
(3D) structure required almost two decades of research. Even
as of now, the complete crystal structure of the complete
human myocilin protein remains unknown. However, the
crystal structures of a part of the N-terminal CC domain and
the complete C-terminal OLF domain have been determined
for the mouse and human myocilin proteins, respectively
[68,69]. The 3D structure of the myocilin C-terminal OLF
domain was obtained first and was observed to be a five-
bladed B-propeller. Propellers are widely recognized as sites
mediating interactions within two or more proteins, a role
that seems presumable for the OLF domain of myocilin [68].
Molecular examinations of the N-terminal CC domain of
myocilin suggest it exhibits an exceptional three-way struc-
ture, a Y-shaped parallel dimer-of-dimers with a distinct
tetrameric region at its N-terminal that bifurcates into dimers
at its C-terminal [69]. Subsequently, the crystal structure of
the C-terminal region of the mouse myocilin N-terminal
CC domain was obtained, and the presence of an a-helical
parallel dimer was proven [69]. Based on these recent studies,
a unique structure for the full-length myocilin protein has
been proposed, wherein the N-terminal of the protein emerges
as a tetrameric stem that further divides at obtuse angles into
two parallel dimers-of-dimers attached to paired C-terminal
OLF domains via the linker regions [69].

Alterations in myocilin: Today, more than 100 disease-
causing alterations in MYOC have been identified (myocilin)
[70]. These alterations in MYOC can cause it to exhibit
distinct phenotypes, such as having a varying age of disease
onset, being prevalent among individuals of a particular race,
or being influenced by environmental or epigenetic factors
[20,67,71-74]. As briefly noted above, normally the wild
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type (WT) myocilin protein is secreted into the extracellular
environment after it has been folded and processed inside
the ER of TM cells. However, data from several cell culture
and animal model studies have revealed that certain variant
myocilin proteins are unable to undergo proper proteolytic
processing and are therefore identified and retained by the
cellular homeostasis machinery inside the ER of TM cells
[46,47,49]. Most of the disease-associated variations are local-
ized in the OLF domain of myocilin where they cause struc-
tural alterations in protein conformation [68]. WT myocilin
is found to be cleaved by calpain II, an intracellular calcium-
dependent protease localized in the ER [66]; it is suggested
that the specificity of calpain action is mainly governed by
the secondary and tertiary conformational determinants of
its substrate. Therefore, structural changes arising in the
OLF domain through the misfolding of mutants hinders the
action of calpain and prevents proteolytic cleavage of the full-
length protein [66]. It has also been found that alterations in
the amino acid sequence of myocilin cause it to misfold and
expose an otherwise cryptic carboxy terminal peroxisomal
targeting sequence-1 (PTSI). The exposure of this PTS-1 site
results in the aberrant transportation of myocilin variants into
peroxisomes, thus interfering with the clearance of misfolded
proteins by the ubiquitin—proteasome machinery [75].

Mpyocilin and glaucoma pathogenesis: The results of
numerous empirical studies support the conclusion that a gain-
of-function mechanism is involved in myocilin-associated
glaucoma pathogenesis [45,46,48,75-80]. Disease-causing
myocilin variants are prone to aggregate and accumulate
inside the ER [47]. When both WT and mutant myocilin are
present in a heterozygous state inside TM cells, proteolytic
processing and the secretion of WT myocilin molecules are
also impeded. This occurs due to interactions resulting in the
formation of hetero-oligomers between the WT and mutant
protein molecules [45,46,81].

The accumulation of overexpressed, misfolded, and
aggregated protein molecules results in ER stress and the
initiation of the unfolded protein response (UPR) by the ER’s
homeostasis machinery. When the UPR pathway is unable to
remove misfolded proteins through proteolysis via the protea-
some, cells are unable to recover from ER stress. This leads
to apoptosis and cell death [82], followed by the degradation
of TM tissue [47,83,84]. Under normal conditions, autophagic
mechanisms can take over the clearance of cellular myocilin
in TM cells [64], but in glaucomatous patients the autophagic
machinery is dysregulated via mTOR-dependent signaling
[85].

ER stress is also linked with other forms of glaucoma
that are not attributable to alterations in MYOC, such as
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steroid-induced glaucoma and complex POAG [86,87].
Steroid-induced glaucoma and POAG share similar clinical
presentation features in patients, such as increased resistance
to AH outflow and morphological and biochemical changes in
the TM tissue [88]. ER stress in steroid-induced ocular hyper-
tension has been attributed to the deposition of extracellular
matrix (ECM) proteins in TM cells. Synthesis and processing
of ECM proteins occur in the ER; treatment with glucocor-
ticoids such as dexamethasone increases the secretory load
of TM cells, exceeding their normal ER capacity and thereby
inducing ER stress [89]. As dexamethasone is also known to
promote the expression and accumulation of myocilin in TM
cells, it was postulated that increased myocilin levels might
cause obstruction of AH outflow and elevate IOP levels in
steroid-induced glaucoma. However, data from recent studies
suggests WT myocilin alone is not responsible for elevating
IOP levels in a mouse model of steroid-induced ocular hyper-
tension [90] and indicates the role of other ECM proteins,
such as fibronectin, in pathogenesis [89].

In addition to the above factors, another contributing
role of mutated myocilin in glaucoma pathogenesis has been
revealed. Several ECM proteins have been found to accu-
mulate in the glaucomatous TM tissue [91]. The elevation
of ECM proteins in TM tissue is also thought to contribute
to the pathogenesis of POAG by increasing resistance to
AH outflow [92,93]. Recently, Kasetti et al. revealed the
involvement of myocilin variants in promoting intracellular
deposition of fibronectin, elastin, and type I'V collagen within
the ER of TM cells due to misfolded myocilin-induced ER
stress [93]. Their study also pointed toward the negative effect
altered myocilin has on the function of matrix metalloprotein-
ases (MMPs); functional forms of MMP-2 and MMP-9 were
found to be reduced in TM cells expressing MYOC variants
[93]. Decreased activity of these MMPs can result in reduced
turnover of ECM proteins and can lead to their enhanced
deposition in TM tissues expressing mutated MYOC.

Protein misfolding is considered the mechanism behind
the accumulation of protein molecules inside the ER and the
resulting ER stress. This is because when TM cells trans-
fected with mutant myocilin are grown at temperatures below
30 °C, a provision that favors appropriate protein folding,
the misfolding of mutants is reversed and they are secreted
in the same manner as WT myocilin [47]. The ER stress
response and associated cell toxicity as a consequence of
misfolded myocilin constitute the broadly accepted mecha-
nism for the pathogenesis of myocilin-associated glaucoma
[47,49,75,80,84,94].

Physiologic function of myocilin: Although the association
between myocilin and glaucoma was established over two
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decades ago and continues to be widely studied, the normal
physiologic function of myocilin remains elusive. Initially,
researchers speculated that myocilin controls IOP levels
[34]. Its abundance in TM and ciliary body tissues, which
are involved in the AH drainage pathway and thus the main-
tenance of IOP levels, is consistent with this proposition
[95]. However, in separate studies with mouse models where
myocilin expression was increased [96] or completely abro-
gated [78], no changes in IOP levels were observed, and glau-
coma was absent in these animals. The results of these studies
imply that myocilin is not obligatory for normal IOP regula-
tion [97]. Further observations, such as the non-appearance
of glaucoma in an aged female homozygous for the Arg46Ter
myocilin alteration [98] and in individuals hemizygous for
the MYOC gene [99], confirmed that native myocilin is not
essential for IOP regulation and that functional redundancy is
provided by other proteins. Ongoing research by many groups
focuses on discerning the role of myocilin in the eye and in
other tissues where it is present, but its definitive function
remains elusive. Because myocilin is present both extracel-
lularly and intracellularly under physiologic conditions, in
the following subsections we describe its functional activities
separately based on its localization.

i. Extracellular role—Findings from recent studies
support an understanding of myocilin’s role as a matricel-
lular protein [100-102]. Matricellular proteins are extracel-
lular but are not a part of the ECM structurally; they are
primarily involved in regulating cell-matrix interactions. It
is well recognized that ECM turnover in the TM influences
the drainage capacity of AH, and matricellular proteins are
surfacing as key leads [102]. Recent studies have shown that
myocilin interacts with other matricellular proteins, such
as hevin and secreted protein acidic and rich in cysteine
(SPARC) via its C-terminal OLF domain [102]. Hevin
displays anti-adhesive properties in the ECM, which could be
facilitated by opposing the adhesion mediated by fibronectin.
It has also been reported to bind collagen and modulate its
fibrillogenesis [102]. SPARC is a multifunctional protein
participating in diverse processes, such as tissue remodeling,
cellular differentiation and proliferation, cell migration,
morphogenesis, and anti-angiogenesis [103]. SPARC has also
been reported to influence the expression of MMPs and, like
hevin, displays counter-adhesive properties [104]. Myocilin,
SPARC, and hevin exhibit similar expression profiles in
different ocular tissues, and this co-expression facilitates
their in vivo interaction. It is suggested that the collective
and coordinated activity of these three proteins regulates cell
adhesion and ECM homeostasis in TM tissue [104]. Myocilin
co-localizes and interacts with the ECM proteins fibronectin
and laminin, which are involved in regulating several biologic
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functions, including cell adhesion, cytoskeletal organization,
and signal transduction; hence, it may also influence AH
outflow via this pathway [100].

ii. Intracellular activity—Recently, myocilin has also
been found to function in the ligand-mediated endocytosis
of GPR-143, a G-protein-coupled receptor (GPCR) that func-
tions in the retinal pigment epithelium (RPE) pigmentation
pathway. This suggests that intracellular myocilin is involved
in cell signaling processes [105,106]. Myocilin has also been
reported to have a function in the Wnt signaling pathway
through which it can regulate the actin cytoskeleton [107,108]
and initiate changes in the pathway to AH outflow in the
TM [108]. Functional redundancy is observable, as the Wnt
proteins are capable of taking over the function of myocilin
in regulating Wnt signaling [107]. Intracellular myocilin also
affects mitochondrial function, and the overexpression of
myocilin in TM cells decreases adenosine triphosphate (ATP)
synthesis and triggers apoptotic events [57]. In addition to
its role in eye tissue, in skeletal muscle tissue myocilin has
been reported to interact with al-syntrophin, a constituent of
the dystrophin-associated protein complex (DAPC), via its
N-terminal domain. The interaction between myocilin and
al-syntrophin results in muscle hypertrophy via the activa-
tion of regulatory pathways controlling muscle size [109].

Recent studies: A better understanding of myocilin aggrega-
tion and associated toxicity: As described previously, varia-
tions in the WT myocilin sequence contribute to the glaucoma
phenotype due to the failure to clear aggregates formed as
a result of protein misfolding. Recent research efforts have
identified the reason for this failure in the normally efficient
proteostasis machinery. It has been observed that mutant
myocilin interacts with the heat-shock protein-90 (HSP-90)
homolog in the ER, glucose-regulated protein 94 (Grp94),
and the aberrant interaction between them prevents the clear-
ance of toxic aggregates formed by the myocilin protein [110].
Under normal physiologic conditions, the Grp94 chaperone
protein is inactive [111], but when the ER is under stress it is
employed to maintain quality control by providing assistance
in the proper folding of proteins [94]. The nature of misfolded,
detergent-insoluble [112] aggregates formed by myocilin was
discovered to be amyloidogenic [113] and is suggested to be
the cause of anomalous Grp94 activity with mutant myocilin
and the failure of its proteasomal clearance [94,110]. In vitro
studies have further proved that Grp94 enhances the amyloid
aggregation potency of WT myocilin and is incorporated
into the end-stage aggregates formed [114]. When inhibition
studies of Grp94 were conducted, they proved effective in
clearing mutant myocilin through autophagy, as well as by
lowering the cellular toxicity accompanying mutant myocilin
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overexpression, both in vitro and in vivo [114-117]. Another
recent study found that mutant myocilin interacts with another
chaperone protein, aB crystallin, leading their co-aggregation
into ThT-positive amyloid aggregates. This suggests that this
interaction similarly prevents the ubiquitin-mediated protea-
some degradation of mutant myocilin [118].

Amyloid formation is the cause of several incapacitating
ailments, such as Alzheimer’s disease, Parkinson’s disease,
type II diabetes, and Huntington’s disease, which collectively
constitute a major health burden to the modern world [119].
Most of these diseases are associated with aging, in addition
to being frequently allied with the accretion of misfolded and
aggregated proteins, triggering oxidative stress that ultimately
culminates in untimely cell death [82]. Myocilin-associated
glaucoma is essentially a result of similar protein misfolding
and associated cytotoxicity. However, aggregates formed by
myocilin are exceptional, as no recognized disease-causing
proteins are known to form amyloid fibrils inside the ER of
cells and mediate toxicity [94,120,121].

Myocilin-related glaucoma is a new addition to the
group of diseases arising as a result of protein misfolding
and amyloid formation. This opens an avenue to explore the
amyloidogenicity of myocilin as a molecular origin for both
hereditary and sporadic cases of glaucoma. Prospective treat-
ments could include drugs that impede the amyloid fibrilla-
tion of myocilin, destroy existing fibrils, or prevent the inter-
action between myocilin variants and the chaperone proteins
in the ER that enhance its fibrillogenesis [94,113-115].

Current treatments for glaucoma and the need to target
myocilin: Despite the clinical heterogeneity of glaucoma, IOP
has remained the only treatable factor [7,122]. The topical
administration of drugs formulated as eye drops that either
diminish the production of AH or increase its drainage is the
principal choice of pharmacological therapy to regulate IOP
levels. In instances where such pharmacological interventions
are not efficient, surgical options such as trabeculectomy
and laser trabeculoplasty, which have their own risks and
durability issues, are employed [122,123]. A brief overview
of the different glaucoma medications currently in use,
including their mechanisms of action, is provided in Table
1. Although these treatments are helpful, in most cases they
are unsuccessful in completely halting disease progression
[123,124] due to the complex and heterogeneous pathology
of glaucoma, which is difficult to address using traditional
therapies [7,123].

The present review focuses on inherited glaucoma caused
by alterations in MYOC that accounts for 5% of all glaucoma
cases and affects approximately three million people world-
wide [8,19,20,125]. Variations in MYOC remain the most
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prevalent cause of inherited glaucoma and are currently the
most well understood in terms of the underlying pathogen-
esis; however, there are no targeted glaucoma treatments for
individuals with MYOC variants [7]. Researchers have tried
to understand the genotype—phenotype relationship between
MYOC variants and POAG patients and have found that cases
of advanced glaucoma are positively correlated with varia-
tions in the MYOC gene [126]. IOP levels in such patients are
often not amenable to control by traditional pharmacological
treatments and frequently require surgery to prevent vision
loss [127-129]. The Gln368Ter variant of myocilin is the most
common disease-associated version found in POAG patients,
correlating with 1.6% of POAG cases that exhibit elevated
IOP levels [20]. The prevalence of the GIn368Ter form of
myocilin in the general population is approximately 1 in
600-700 people [130,131]. This myocilin variant has been
studied for disease penetrance in several population and
family studies [131-134]. It is reported to display a relatively
high penetrance in patients with a family history of POAG
compared to the general population, and this penetrance
increases with advancing age, placing individuals carrying
this variant of myocilin at a higher risk of developing glau-
coma [135]. Few reports are available to compare the efficacy
of traditional glaucoma therapies in treating POAG patients
with or without variations in MYOC. However, similar studies
where the clinical course has been compared in POAG
patients with or without GIn368Ter variants of MYOC have
yielded contrasting results. In the study by Craig et al., mean
IOP levels, the rate of filtration surgery, and other clinical
parameters were observed to be higher in glaucoma patients
with GIn368Ter MYOC truncations than in those without
them [128]. This is in contrast to the study by Graul et al.,
which reports that the frequency of laser trabeculoplasty and
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surgery was found to be similar in POAG patients with or
without the GIn368Ter MYOC variant [136]. The GIn368Ter
variant of myocilin exhibits a relatively mild form of disease
phenotype. Studies with myocilin variants displaying a more
severe glaucoma phenotype, such as Pro370Leu, reveal an
insensitiveness to current pharmacological therapies aimed
at reducing IOP levels; therefore, surgical intervention is
required to prevent visual field loss [129,137]. The high preva-
lence and penetrance of GIn368Ter MYOC variants reported
[131] along with the risk of disease advancement even after
pharmacological interventions [128] indicates the need for
better genetic testing to identify carriers of such MYOC vari-
ants and the need to develop targeted therapies to tackle the
imminent health burden.

POAG is one of the most common and heritable human
diseases [138] that is treatable without much loss of visual
acuity, provided there is early diagnosis. However, up to
50% of POAG patients remain undiagnosed until significant
vision loss has already occurred because glaucoma is usually
asymptomatic in its early stages [17]. POAG features such as
its chronicity, heritability, and treatability make it an ideal
candidate for genetic risk profiling [124].

The clinical utility of predictive gene testing for
myocilin-associated glaucoma has been investigated, and
such testing is suggested to be a potent diagnostic tool in
screening, enabling timely therapy, and thus preventing vision
loss in high-risk patients with MYOC variations [139,140].
However, because variations in MYOC are responsible for
causing only a fraction of POAG cases and population testing
is likely to be cost-intensive, genetic testing for MYOC vari-
ants is currently limited only to familial and early-onset cases
of POAG/JOAG [141,142]. Recommendations for genetic

TABLE 1. AN OVERVIEW OF THE DIFFERENT CATEGORIES OF DRUGS THAT ARE ADMINIS-
TERED AS OCULAR DROPS FOR MAINTAINING IOP LEVELS BY THE CLINICIANS

Category Example Mode of Action Observations
Increase TM outflow by causing the
Cholinergic drugs Pilocarpene ciliary muscles to contract Effective but causes side effects like dim vision

a-adrenergic

. Brimonidine
receptor agonists

B-Adrenergic

Decrease AH production, and increase
outflow via uveal sclera route

Allergic reaction is prominent

Rare systemic effects such as bradycardia and
fatigue

First choice of clinicians, least side effects

Oral administration is more efficient butcauses
side effects such as paresthesia of the hands and

Levobunolol, Reduce AH inflow, by inhibiting its
receptor antago- -y ol roduction in the ciliary bod
nists (B-blockers) p y body
Prostaglandin Latanoprost, Causes ECM morphogenesis via action

& Tafluprost, of MMP’s, increases outflow facility via

analogs .

Bimatoprost uveal sclera pathway
Carbonic anhy- Brinzolamide, .
drase inhibitors Dorzolamide Decrease AH production

feet
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testing in eye disorders have been prepared by the Amer-
ican Academy of Ophthalmology, which suggests genetic
screening for MYOC variants only if results support disease
surveillance and treatment [143]. The guidelines discourage
direct-to-consumer (DCT) genetic testing and recommend
consulting a genetic counsellor before and after conducting
a genetic test; moreover, only certified laboratories must be
engaged in carrying out such tests.

A recent study by Craig et al. used genome-wide associa-
tion studies (GWAS) to identify new risk loci for glaucoma
and to build a genetic risk calculation model in the form of
a polygenic risk score (PRS). The study demonstrates that
the developed PRS improves glaucoma risk stratification and
screening remarkably across different population cohorts;
however, further evaluations are required to investigate its
wider applicability [144]. In future, results from such PRS
evaluations can also help in delivering MYOC variant genetic
testing to a wider population (exhibiting a high PRS score).
This might help in the timely delivery of tailored medications
to the identified high-risk patients (with variations in MYOC)
in a cost-effective manner, while adequate monitoring and
treatment of patients in the lower-risk group occurs.

As outlined above, patients with variations in MYOC
have a medical need that is not adequately met by currently
available remedies. Recently, with a better understanding of
the mechanism by which amino acid variations in myocilin
contribute to the disease phenotype, exploratory work has
begun to develop better therapies for such patients. The
different approaches (see Table 2) investigated thus far are as
follows: (i) administering chemical chaperones to promote
stability and the secretion of mutant proteins, thus relieving
ER stress [145-148]; (ii) gene editing to prevent the expression
of the mutated gene/protein [76]; (iii) inhibiting amyloid-
like aggregation using small molecules [149]; and (iv) most
recently, blocking the interaction between Grp94 and mutant
myocilin by selective Grp94 inhibitors [114-117]. Prom-
ising results have been obtained, and in the future effective
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therapies might be available for glaucoma patients who have
variations in MYOC.

In addition to the efforts regarding MYOC, recent studies
have yielded drugs that likewise offer more efficiency and
specificity in terms of their mode of action. Greater efficacy
and specificity are a result of targeting the conventional or
TM drainage pathway, which is not the case with traditional
drugs used to treat glaucoma. Traditional pharmaceuticals
employed as glaucoma treatments primarily modulate the
non-conventional (i.e., the uveal sclera) pathway of AH
drainage, which, as described previously, serves as an auxil-
iary route for draining AH. Netarsudil and latanoprostene
bunod have recently become available to patients after
successful Food and Drug Administration trials [150-153].
While netarsudil is a Rho-associated protein kinase (ROCK)
inhibitor, latanoprostene bunod is a nitric oxide (NO) releaser
and a soluble guanylate cyclase (sGC) modulator. ROCK
inactivity is associated with the disruption of focal adhe-
sions and the actin cytoskeleton [154-156], while the activa-
tion of GCs reduces the size of TM and Schlemm’s canal
cells [123,157]. Thus, both these drugs increase AH outflow
facility via direct action on its conventional drainage pathway
and can offer benefits to a wider range of glaucoma patients.

Concluding remarks: Due to the efforts of several research
groups spanning more than two decades of intense investiga-
tion, we have a better understanding of myocilin and its role
in causing glaucoma. While no definitive function has been
assigned to this protein, knowledge of its importance in main-
taining ECM homeostasis has become more robust. Several
binding proteins with similar functions have been identified
that hint at a functional redundancy and might be the reason
for the normal development of people who lack this protein
due to inherent changes. The past decade has been seminal
in terms of elucidating the structure of myocilin. The avail-
ability of structural data holds potential for future research
related to the influence different MYOC mutations have on
the structural integrity of this protein and the manifestation of
glaucoma. In addition to mutation studies, the availability of

TABLE 2. A SUMMARY OF THE DIFFERENT APPROACHES DIRECTED AGAINST MYOCILIN FOR TREATING MYOCILIN ASSOCIATED GLAUCOMA.

Method Mode of Action

References

Treatment with chemical
chaperones

CRISPR-Cas9 mediated
gene editing

mutant myocilin

Inhibiting myocilin

aggregation preventing myocilin aggregation

Inhibition of grp94-myocilin

interaction autophagy

Relieve ER stress by promoting folding of

Cutting the expression of mutant myocilin

Small molecules promoting stability and

Promoting clearance of mutant myocilin via

Yam et al. 2007 [146], Burns et al. 2016 [145], Zode et al.
2011 [147], Zode et al. 2012 [148]

Jain et al. 2017 [76]

Orwig et al.. 2014 [149]

Stothert et al. 2014 [114], Crowley et al. 2016 [115],
Stothert et al. 2017 [117], Huard et al. 2018 [116],
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structural data will help in expediting the search for binding
partners, thus expanding the functional profile of myocilin,
and in conducting drug discovery studies for POAG and
JOAG patients with MYOC mutations.
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