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Abstract

Background: Improved understanding of how prenatal exposure to environmental mixtures 

influences birth weight or other adverse outcomes is essential in protecting child health.

Objective: We illustrate a novel exposure continuum mapping (ECM) framework that combines 

the self-organizing map (SOM) algorithm with generalized additive modeling (GAM) in order 

to integrate spatially-correlated learning into the study mixtures of environmental chemicals. We 

demonstrate our method using biomarker data on chemical mixtures collected from a diverse 

mother-child cohort.
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Methods: We obtained biomarker concentrations for 16 prevalent endocrine disrupting chemicals 

(EDCs) collected in the first-trimester from a large, ethnically/racially diverse cohort of 

healthy pregnant women (n=604) during 2009-2012. This included 4 organochlorine pesticides 

(OCPs), 4 polybrominated diphenyl ethers (PBDEs), 4 polychlorinated biphenyls (PCBs), and 4 

perfluoroalkyl substances (PFAS). We applied a two-stage exposure continuum mapping (ECM) 

approach to investigate the combined impact of the EDCs on birth weight. First, we analyzed 

our EDC data with SOM in order to reduce the dimensionality of our exposure matrix into a 

two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles observed 

within our data. We define this map as the ‘exposure continuum map’, as the gridded surface 

reflects a continuous sequence of exposure profiles where adjacent nodes are composed of similar 

mixtures and profiles at more distal nodes are more distinct. Lastly, we used GAM to estimate 

a joint-dose response based on the coordinates of our ECM in order to capture the relationship 

between participant location on the ECM and infant birth weight after adjusting for maternal 

age, race/ethnicity, pre-pregnancy body mass index (BMI), education, serum cotinine, total plasma 

lipids, and infant sex. Single chemical regression models were applied to facilitate comparison.

Results: We found that an ECM with 36 mixture profiles retained 70% of the total variation in 

the exposure data. Frequency analysis showed that the most common profiles included relatively 

low concentrations for most EDCs (~10%) and that profiles with relatively higher concentrations 

(for single or multiple EDCs) tended to be rarer (~1%) but more distinct. Estimation of a 

joint-dose response function revealed that lower birth weights mapped to locations where profile 

compositions were dominated by relatively high PBDEs and select OCPs. Higher birth weights 

mapped to locations where profiles consisted of higher PCBs. These findings agreed well with 

results from single chemical models.

Conclusions: Findings from our study revealed a wide range of prenatal exposure scenarios 

and found that combinations exhibiting higher levels of PBDEs were associated with lower birth 

weight and combinations with higher levels of PCBs and PFAS were associated with increased 

birth weight. Our ECM approach provides a promising framework for supporting studies of other 

exposure mixtures.
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Introduction

Endocrine disrupting chemicals (EDCs) interfere with hormone action that may influence 

a broad range of health outcomes such as growth and development, organ function, 

metabolism, and reproduction (1, 2). In 2020, the Endocrine Society noted that thousands 

of manufactured chemicals in use today are EDCs and that exposures are ubiquitous (3). 

Early life exposures are of particular concern, as exposures during sensitive developmental 

windows can have lasting effects throughout the life course and exposures among pregnant 

women are common (4, 5).
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Birth weight is an important indicator of fetal growth that has been shown to be a 

determinant of health risk later in life for a broad range of outcomes (6). Multiple 

studies of persistent EDCs have found links between maternal exposures and alterations 

of birth weight, with several finding that increased EDC exposure associates with lower 

birth weights (7–9). In Europe, studies of persistent EDCs, including polychlorinated 

biphenyls (PCBs), organochlorine pesticides (OCPs), and poly- and perfluorinated alkyl 

substances (PFASs), found that even low-level exposures associated with lower birth weight 

(9, 10). In contrast, other studies in both Canada and the United States, which included 

polybrominated diphenyl ethers (PBDEs) as well as PCBs, OCPs, and PFASs, reported 

mostly null associations between EDCs and birth weight (11, 12). However, these studies 

evaluated EDCs independently, an approach that may not be appropriate for chemicals that 

behave like hormones (13). Studies that estimate independent effects may also underestimate 

health risks associated with combined exposures to EDCs (14). Thus, these conflicting 

findings may be due in part to the application of traditional analytic approaches to exposures 

that are chronic, low-dose, and involve multiple chemicals simultaneously. As such, the 

full scope of how prenatal exposures to EDCs influence children’s health remains largely 

unknown as limited assessment of “real-world” exposure mixtures results in an incomplete 

understanding of potential interactive or cumulative effects. This provides an impetus to 

develop new and innovative modeling approaches that can provide a more comprehensive 

understanding of complex exposure scenarios consisting of EDC mixtures.

The study of environmental mixtures presents a complex research area with broad ranging 

objectives (14). Here, we focus on one approach to the analysis of multiple exposures, 

namely dimension reduction. Dimension reduction involves the transformation of data 

from high-dimensional space to low-dimensional space, where meaningful properties of the 

original data are retained (15). A common technique is principal component analysis (PCA), 

which has been applied in studies involving large numbers of exposures in order to reduce 

dimensionality through identification of profiles (a.k.a., component loadings) that reflect 

primary modes of variance in the data (9, 16, 17). Here, the meaningful property is variance 

and the approach is well suited to address issues of multicollinearity; however, identifiability 

can be difficult (14). Another strategy has been to partition study populations into distinct 

subgroups using cluster analysis to assess measures of statistical distance between shared 

exposure attributes (17, 18). The meaningful property is grouping and interpretation is 

a key advantage as cluster profiles (a.k.a., centroids) reflect summaries of attributes and 

cluster assignments can be used as a categorical metric in subsequent analyses. However, 

parsimonious solutions provided by traditional techniques (e.g. k-means, hierarchical 

clustering) can be problematic for evaluation of dose-response relationships as outliers and 

intra-class heterogeneity within broadly defined groupings are of concern (17, 19). It is 

important to note that these techniques capture different features in the data, as PCA centers 

on explaining variation and clustering targets grouping structure, thus results may not always 

agree (17). Another key distinction is that PCA, or more broadly, factor analysis, is a 

continuous underlying measure whereas latent cluster analysis results in discrete structure. 

Both account for heterogeneity. Clusters partition the heterogeneity into within and between 

cluster heterogeneity. Application of either approach can construct exposure metrics that 

feature exposure estimates/measures that are accurate, precise, and capture a range of 
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exposure levels in the population under study (20). However, moving forward, exposure 

data will continue to grow in complexity and therefore analytic techniques that can handle 

more complex, high-dimensional settings will be favored (21).

Herein we demonstrate propose an ‘exposure continuum map (ECM)’ framework that seeks 

to enhance the study of complex chemical mixtures with by integrating intuitive clustering 

algorithms with novel spatially-correlated learning approaches to improve inferences. 

Conceptually, spatially-correlated learning improves statistical inferences by incorporating 

information from neighboring features in effort to improve estimation. In effect, this pooling 

of information may help compensate for limited sample size (e.g., rare exposures) and 

scenarios with high variation (e.g., outliers) often observed in environmental mixtures 

studies. Such strategies have a long and successful history outside of geography as a broad 

range of fields from text mining to cognitive neuroscience have realized the benefits of 

adopting such principles into the study of complex relationships (22–24).

We apply our ECM framework in a diverse birth cohort study of healthy pregnant women 

in order to analyze associations between prenatal exposure to EDC mixtures and birth 

weight. The motivating hypothesis is that variation in prenatal exposure to EDC mixtures 

will associate with variation in the birth weight. To address this question, we will identify 

profiles of EDC mixtures that occurred, their frequency distributions, and assess if certain 

combinations more strongly associate with birth weight than others.

Methods

Study population.

This study uses data originally collected from participants enrolled in the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development’s (NICHD) Fetal 

Growth Studies – Singleton Cohort (11, 25). The primary objective of the Fetal Growth 

Studies was to establish fetal growth standards within the US using a diverse cohort of 

healthy women (25). The study ran from July 2009 through January 2013 at 12 clinical sites 

throughout the United States and included 2334 women, ages 18 to 40 years, with low-risk 

pregnancies. Women were recruited in the first trimester, carried a singleton gestation, 

and reported not to consume alcohol or tobacco products (25). Education, race/ethnicity, 

and pre-pregnancy body mass index (BMI), were self-reported at time of enrollment along 

with collection of blood samples. Full details on the Fetal Growth Studies cohort and data 

collection are available elsewhere (25). For this study, we use a subset of FGS participants 

who also participated in the Environmental Influences on Child Health Outcomes (ECHO) 

program (5). This population, which we define as the ECHO-FGS cohort, consisted of 1116 

mother-child pairs recruited from May 2017 through April 2019 from ten of the original 

twelve study sites.

Exposure measures.

Maternal blood samples were collected from participants at 8-12 weeks gestation during 

FGS enrolment and plasma concentrations for 76 EDCs were determined at the Wadsworth 

Center New York State Department of Health (Albany, NY USA) as previously described in 
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detail (11). A full description of findings have been published, with results revealing broad 

ranges of quantification among the targeted chemicals in the cohort (11). For this study, 

we desired our mixture data to be as balanced and complete as possible and thus selected 

the most prevalent exposures among each chemical class for analysis. This included four 

OCPs: hexachlorobenzene (HCB; 90%), oxychlordane (74%), trans-nonachlor (91%), and 

dichlorodiphenyldichloroethane (p,p’-DDE; 99%); four PBDE congeners: BDE47 (93%), 

BDE99 (62%), BDE100 (72%), and BDE153 (42%); four PCB congeners: PCB 138/158 

(94%), PCB153 (94%), PCB170 (73%) and PCB180 (95%); and four PFAS substances: 

perfluorohexanesulfonic acid (PFHXS; 100%), perfluorononanoic acid (PFNA; 100%), 

perfluorooctanoic acid (PFOA; 100%), and perfluorooctanesulfonic acid (PFOS; 100%).

Birth weight and Maternal Covariates.

Infant birth weight was measured using an electronic infant scale or beam balance scale 

and was recorded in grams (g) (11). Sociodemographic, reproductive/obstetric, and lifestyle 

factors from the original study and the ECHO-FGS were selected a priori for adjustment as 

confounding variables based on literature evidence suggesting causal associations with both 

gestational EDC exposure and birth weight. We extracted covariate data from interviewer

administer study questionnaires, including maternal age at the time of biospecimen 

collection (years), self-reported pre-pregnancy BMI (kg/m2), race/ethnicity (non-Hispanic 

White (NHW), non-Hispanic Black (NHB), Hispanic, Asian/Pacific Islander (A & PI)), 

education (dichotomized as completion of secondary/high school or not) as an indicator of 

socioeconomic status, and infant sex (male, female). Plasma cotinine concentration (ng/ml) 

was used as an indicator of tobacco smoke exposure and total plasma lipids (ng/ml) were 

also included.

Statistical Analyses

The analyses below involved data from a subset of ECHO-FGS (n=604) participants 

with complete observations for all 16 EDCs. For all measures we used machine-read 

concentration values for EDCs without imputation of values below the LOQ (26). Data 

preparation for each variable involved log transformed (log (x+1)) to reduce skewness and 

then standardization to have a mean zero and standard deviation of one.

Estimation of Individual EDC Health Effects—In order to facilitate comparison 

with traditional approaches, we first performed single chemical analysis by fitting linear 

regression models between individual EDCs (p=16) and birth weight. This is expressed as:

Y i = Ziβ + γEDCi + ∈i (1.0)

where Yi is the subject birth weight for participant i; β is the vector of regression parameters 

for covariates Zi; γ is the coefficient of single chemical exposure for each EDC; and ϵi is 

an error term. Covariates included maternal age (years), pre-pregnancy BMI (kg/mg2), race/

ethnicity, education, infant sex, log (x+1) transformed serum cotinine concentration (ng/

mL), and total plasma lipids (ng/mL) were also included as a covariate (27). We corrected 

p-values for a false discovery rate using methods outlined elsewhere (28).
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Estimation of EDC-Mixture Health Effects—Next, we used our two-stage exposure 

continuum mapping (ECM) approach to investigate the combined association of the EDCs 

with birth weight. In Stage 1, we analyzed our EDC data with a self-organizing map 

(SOM) (29) in order to reduce the dimensionality of our 604 x 16 exposure matrix into 

a two-dimensional grid (i.e., map) where nodes depict the types of EDC mixture profiles 

observed within our data. We define this map as the ‘exposure continuum map’, as the 

gridded surface reflects a continuous sequence of exposure profiles where adjacent nodes 

are composed of similar mixtures and extremes are more distinct. This ‘spatially correlated’ 

arrangement results in locations having neighborhood structure that can be leveraged into 

subsequent analysis. In addition, the compact, low-dimensional map is also useful for data 

exploration and visualization as it allows for larger numbers of profiles to be more easily 

understood. This is important because it offers users the ability to represent data as a high

resolution continuum of categorizations, a key distinction from the discrete clusters/factors 

produced with traditional methods (16, 18, 30). This work builds on previous studies of air 

pollution and chemical exposures and is the first study to leverage the organized structure 

of a SOM to explore health effects (Pearce, Waller et al. 2014, Pearce, Waller et al. 2015, 

Pearce, Waller et al. 2016, Doherty, Pearce et al. 2020).

To determine an appropriate number of profiles for our ECM, we fit maps of size 2 to 100 

nodes and used Akaike’s Information Criterion (AIC) as well as the % of total variation 

explained (R2) to determine the final map size that adequately captures the variability 

(>70%) in the exposure data. Exposure profiles projected on the ECM were visualized using 

radial bar charts to enhance interpretation of the discovered patterns; profile classifications 

were used to assess the frequency distribution of participants within each type.

Next, we integrated the profile coordinates [U, V] from our ECM as a smooth bivariate 

interaction term within a generalized additive model (GAM) in order to assess whether 

location on our map associated with variation in our outcome after control of confounders. 

We employed GAMs (31) for this task as we desired penalization of our smoothers and it 

has proven robust in spatial settings where coordinate-based smooth terms have been used 

to model spatial effects (32). Here, the result is a 3-dimensional response surface that can 

be interpreted as a joint-dose response function for outcome to variability across the total 

mixture (33). In addition, the spatial smoothing alleviates challenges imposed by mixture 

profiles with smaller sample sizes. We express this model as:

Y i = Ziβ + s Ui, V i + ∈i (1.1)

where Yi is the subject outcome at locations Ui, Vi; β is the vector of regression parameters 

for covariates Zi; s(Ui, Vi) is a tensor product smooth term of the ECM coordinates; and ϵi 

is an error term. Smooth functions were developed through a combination of model selection 

and automatic smoothing parameter selection using penalized regression splines, which 

optimize the fit and make an effort to minimize the number of dimensions in the model (34). 

The choice of the smoothing parameters was made through restricted maximum likelihood 

(REML) and confidence intervals were estimated using an unconditional Bayesian method 

(34).
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All analyses were conducted within the R environment for statistical computing (35) using 

the ECM R package available on Github: https://github.com/johnlpearce/.

Results

Study Population

Descriptive summaries for the 604 participants in our study population reveal that mothers 

were diverse across race/ethnic groups but generally similar in age and body composition 

(Table 1.) Geographically, the majority resided in the Northeast (n=289), followed by the 

Southeast (n=180), Midwest (n=79), and West (n=56), respectively. Modest variability 

in education, plasma cotinine, and total plasma lipids was also observed. The average 

birth weight for participant offspring was 3264 (SD=480) grams, with the lowest average 

observed for NHB and the highest for NHW. Gestational age at delivery was similar across 

the cohort. Distributions of the log transformed maternal serum concentrations for the 

16 endocrine disrupting chemicals (EDCs) measured during 1st trimester for our study 

population were consistent with previous findings (11) (see APPENDIX).

Statistical Analyses

Estimation of Individual EDC Health Effects—Results from single chemical analysis 

(Model 1.0) found no significant p-values for associations between infant birth weight and 

individual EDCs after FDR correction and adjustments. However, beta estimates (95% CIs) 

suggested lower birth weights were associated with increasing maternal exposure to both 

PBDE47 and PBDE100 (Figure 1). Furthermore, increasing birth weights were associated 

with all PCBs (Figure 1). Confidence intervals for all other EDCs included the null.

Estimation of Mixture Health Effects

Exposure Continuum Map.—Results from our map size evaluation revealed that a 6X6 

ECM with 36 profiles had the lowest AIC and explained > 70% of the variation in our 

exposure data. Broad examination revealed the ECM consisted of a range of exposure 

scenarios, with rarer extremes located in the corners and more common scenarios near 

the center of the map (Figure 2). More specifically, we found the right central section of 

the map captured EDC profiles that were most common (~27%) and exhibited patterns 

with relatively low concentrations (i.e., below average). The upper right side of the ECM 

illustrates a collection of rarer profiles where participants’ samples contained relatively 

higher concentrations for p,p’-DDE and HCB, both OCPs. Moving towards the upper left, 

we find modestly frequent profiles where participants’ samples contained the highest PCBs 

within our cohort. In the left central section, we find profiles with smaller numbers of 

participants whose samples contained relatively higher levels of certain OCPs. The bottom 

left corner identifies participants of the cohort with samples that contained the highest 

reported PFAS concentrations. The bottom right corner reveals participants with samples 

containing the highest PBDE concentrations. Overall, the ECM reveals that the ECHO

FGS participants experienced widespread exposure to multiple classes of EDCs, but that 

concentrations between chemical classes do not seem to be highly correlated. This agrees 

with similar studies that have reported that exposure to high levels of one EDC class does 

not appear to be consistently predictive of exposure levels within other EDC classes (36).

Pearce et al. Page 7

Environ Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/johnlpearce/sommix


Joint-Dose Response.—Results from Model 1.1 identified that our joint-dose response 

function to the total EDC mixture had marginally significant (F=1.8, p=0.07) association 

with birth weight after covariate adjustment. Looking at the function in 3-dimensions 

(Figure 3) shows adjusted birth weights were higher on the upper left, modest across the 

center and upper right, and lowest towards the bottom right corner (Figure 3. Overlaying the 

ECM (Figure 2) reveals higher birth weights occurred where profiles exhibited higher PCB, 

OCP, and PFAS concentrations. The peak response occurred where PCB exposures were 

also the highest. The lowest birth weights occurred where participants were found to have 

the highest PBDE exposures. The flatter central section corresponds to areas of the ECM 

representative of less extreme exposures.

Discussion

The primary objective of this study was to demonstrate how an exposure continuum 

mapping (ECM) framework that integrates self-organizing maps with generalized additive 

modeling can be used for health investigations involving exposure to complex mixtures. We 

found a key benefit of ECM was the ability to construct a joint-dose response function that 

allowed us to visualize how our response varied across changes in combinations observed 

across the total mixture. This novel tool relies on spatially correlated learning to assess 

mixture effects as the organizational structure provide by SOM is modeled as bivariate 

smooth term within a generalized additive model. We illustrated our ECM approach through 

application to biomarker data collected from an ethnically/racially diverse cohort of healthy 

pregnant women (n=604) in order examine associations between prenatal exposure to EDC 

mixtures and birth weight (25). These data are well-suited for our work as they represent 

validated biomarker measures for multiple EDCs and measures of birth weight that have 

been assessed in prior studies (11, 37). Our results revealed a varying response of birth 

weight to variation in prenatal exposure to EDC mixtures, a finding that supports growing 

evidence that EDC mixtures have different associations with fetal growth than individual 

EDCs (37, 38). Overall, we found the ECM offers opportunity to enhance understanding 

of the often-nuanced behavior of complex environmental exposures by providing a novel 

framework for characterizing exposure and exploring of joint health effects to the overall 

mix.

While most previous studies examined class-specific EDC mixture effects independently 

(37, 38), we focused on examining the effect of joint exposure to multiple EDC classes. 

This a distinguishing feature that differs from previous studies that examined class 

specific EDC mixture effects independently (14). Another advantage is that our framework 

provided an exposure characterization (Figure 2) that allowed us to understand which 

EDC mixture combinations occurred in our cohort and their frequency distributions. For 

example, application of ECM allowed us to see that lower birth weights were associated 

with exposures exhibiting higher concentrations of PBDEs and p,p’-DDE and that these 

exposures occurred in ~9 percent of the study population (Figures 2&3). This finding is 

generally consistent with recent literature (37, 38); however, our results have the benefit 

of showing that the strongest response with lower birth weight occurred for rarer exposure 

patterns that contained multiple classes of EDCs. Such findings improved our understanding 

of how complex EDC exposures occurred in our study population and allowed us to 
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identify that relatively low exposures are quite common and that profiles comprised of high 

exposures are distinct and rare (Figures 2 & 3). Another important aspect of this study is the 

finding of a total mixture effect when associations identified by our single chemical models 

were null (Figure 1). Findings across the two approaches were generally consistent but 

results suggest that our mixture approach may have greater sensitivity than single chemical 

models. Overall, we found our results to be informative and interpretable, characteristics we 

feel are useful for investigations involving exposure to complex environmental mixtures.

There is a wide range of settings in which the ECM approach, coupled with spatial 

learning, might be preferred for investigations involving complex mixtures, involving 

exposure to EDCs. To begin, we believe that exposure characterization and estimation of 

joint-dose response relationships presents a comprehensive suite of information that can 

enhance epidemiologic investigations and risk assessments involving complex mixtures 

(39, 40). An important aspect of our approach is that the development of our exposure 

metric involves an unsupervised dimension reduction as we seek to identify patterns 

using information within the exposure matrix only, a strategy that differs from supervised 

approaches such as Bayesian kernel machine regression (BKMR) and weighted quantile 

sum (WQS) regression, where health outcome information is incorporated into the mixtures 

models. While supervised approaches may have the benefit of targeting outcome-relevant 

combinations, formulating important contrasts in exposure features based on the response of 

the outcome does raise some concerns about bias and computation can be difficult. On the 

other hand, unsupervised learning approaches may suffer from a lack of health specificity 

but have the benefit of identifying patterns based on contrasts within the observed data. 

Identification of features in the data based on contrasts in exposure can support identification 

of prevalent exposures that are useful for subsequent analyses across multiple health 

outcomes and for identifying exposure reduction interventions. Another distinction to note 

is that our application of SOM focused on capturing distance-based profiles of mixtures that 

occur in the data rather than identifying correlations among multiple variables. This differs 

from dimension reduction methodologies like PCA, as chemical combinations that occur 

may not always contain constituents that correlate (17). Of course, other methodologies seek 

to identify distance-based patterns of occurrence, such as k-means clustering, but are often 

applied using strategies that focus on parsimonious solutions that emphasize distinction 

(17, 30). Such strategies are ideal if broad groupings are desired; however, an inability to 

construct dose-response relationships in subsequent analyses has been a point of criticism 

(14). Our approach provides improvement to this particular aspect of mixtures research, 

as implementation of our higher resolution ECM into a GAM offers a highly flexible tool 

for using exposure groupings to explore a joint dose-response (Figure 3). The results are 

highly intuitive and the smoothing of the risk surface across neighboring units results in a 

pooling across regions, a strategy often applied in small area health statistics to investigate 

rare events (41).

However, this analysis has limitations. First, we note that our study cohort included only 

healthy pregnant women with full term pregnancies without major chronic conditions before 

pregnancy. The results may not be generalizable to all pregnant women, as enrollment 

did not include women with comorbidities who may be more susceptible to EDCs. We 

suspect that our null findings may be partially explained by a ‘healthy cohort’ effect, 
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as our population may have been more resilient to environmental exposures than others 

given enrollment of low-risk pregnancies only. Studying the effect of EDC mixtures in 

populations that are high risk for a low/high birth weight delivery is an important future 

direction. Another possible limitation relates to our exposure data. While we chose to 

analyze highly prevalent EDCs (36), we may have missed less prevalent EDCs that could 

have been important to our health outcomes. Integration of more sophisticated variable 

selection strategies would likely improve identification of health-relevant exposure profiles 

and is the anticipated focus of future work. There is also the possibility of confounding 

from unmeasured variables (e.g., social determinants, diet) that could have influenced our 

findings. Another concern was that we combined multiple exposure variables that have 

varying degrees of measurement error, a problem that may result in bias towards the null 

(42).

Conclusion

In summary, we found our ECM approach provides a promising framework for supporting 

studies of exposure mixtures. Results from our ‘real world’ application revealed that a wide 

range of prenatal exposure mixtures occurred and that rarer combinations exhibiting higher 

levels of PBDEs and p,p’-DDE were associated with lower birth weights. The method is 

applicable to other environmental mixtures and settings.
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APPENDIX

AP_Figure_1. 
Standardized boxplot distributions of log transformed maternal serum concentrations 

for the 16 endocrine disrupting chemicals (EDCs) measured during 1st 

trimester for our cohort. Standardized concentrations provide a sense of relative 

variability across chemicals measured on different scales. Abbreviations: OCPs, 

organochlorine pesticides; HCB, hexachlorobenzene; oxychlordane; trans-Nonachlor, 

p,p-DDE, dichlorodiphenyldichloroethane; (P)BDE, (poly)brominated diphenyl ether; 

PCBs, polychlorinated biphenols; PFASs, poly- and perfluoroalkyl substances; PFOA, 

perfluorooctanoate; PFOS, perfluorooctane sulfonate (Format: color).
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Figure 1. 
Model 1.0 single chemical model beta coefficients (95% CIs) for associations between 

EDCs and birth weight. (Format: color)
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Figure 2. 
An Exposure Continuum Map (ECM) that illustrates the types of chemical mixture profiles 

measured in biomarkers collected among mothers (n=604) in our study population in 

2009-2012. Pie segments reflect the normalized mean value of concentrations among 

participants assigned to each profile. Node [IDs] provided in order to reference profiles. 

Relative frequencies (%) are provided on the bottom of each profile. (Format: color)
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Figure 3. 
The estimated joint-dose response function from Model 1.1 that illustrates the relationship 

between birth weight and location on our exposure continuum map after controlling for 

select confounders. (Format: bw)
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Table 1.

Characteristics among mothers in our study population (n=604).

Characteristics

Overall NHW NHB Hispanic A & PI

(n=604) (n=186) (n=184) (n=137) (n=97)

100% 31% 31% 23% 16%

Mothers -

 Age (years), mean (SD) 28.5 (5.8) 31.2 (4.0) 24.5 (5.5) 28.6 (5.8) 30.6 (4.5)

 Pre-pregnancy BMI (kg/m2), mean (SD) 23.6 (3.0) 23.4 (2.7) 24.1 (3.4) 24.0 (5.5) 22.9 (2.8)

 Education, n (%):

 Less than or up to high school 162 (27%) 7 (1%) 80 (13%) 58 (10%) 17 (3%)

 More than high school 442 (73%) 179 (29%) 104 (17%) 79 (13%) 80 (13%)

 Parity, n (%):

 Primiparous 286 (47%) 100 (17%) 89 (15%) 87 (14%) 42 (7%)

 Multiparous 318 (53%) 86 (14%)) 95 (16%) 50 (8%) 55 (9%)

Region, n (%):

 Northeast 289 (48%) 78 (13%) 55 (9%) 98 (16%) 58 (10%)

 Southeast 180 (30%) 53 (9%) 114 (18%) 8 (1%) 5 (1%)

 Midwest 79 (13%) 44 (7%) 11 (2%) 12 (2%) 12 (2%)

 West 56 (9%) 11 (2%) 4 (%) 19 (3%) 22 (4%)

 Plasma cotinine (ng/mL), mean (SD) 1.06 (10.4) 0.7 (8.9) 2.8 (16.5) 0.1 (0.3) 0.03 (0.1)

 Total Plasma Lipids (ng/mL), mean (SD) 607 (99.5) 626 (107) 569 (89) 617 (97) 627 (87)

Children -

 Sex, n (%)

 Femal 290 (48%) 82 (14%) 95 (16%) 69 (11%) 44 (7%)

 Male 314 (52%) 104 (17%) 89 (14%) 68 (11%) 53 (8%)

 Birth weight (g), mean (SD) 3264 (480) 3370 (496) 3145 (479) 3265 (448) 3275 (447)

 Gestational age at delivery (weeks), mean (SD) 39.2 (1.6) 39.1 (1.5) 39.0 (1.7) 39.3 (1.8) 39.3 (1.5)

NHW: non-Hispanic white; NHB: non-Hispanic black; A&PI: Asian and Pacific Islander
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