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Fused in sarcoma (FUS) encodes an RNA-binding protein
with diverse roles in transcriptional activation and RNA
splicing. While oncogenic fusions of FUS and transcription
factor DNA-binding domains are associated with soft tissue
sarcomas, dominant mutations in FUS can cause amyotrophic
lateral sclerosis. FUS has also been implicated in genome
maintenance. However, the underlying mechanisms of its ac-
tions in genome stability are unknown. Here, we applied gene
editing, functional reconstitution, and integrated proteomics
and transcriptomics to illuminate roles for FUS in DNA
replication and repair. Consistent with a supportive role in
DNA double-strand break repair, FUS-deficient cells exhibited
subtle alterations in the recruitment and retention of double-
strand break–associated factors, including 53BP1 and
BRCA1. FUS−/− cells also exhibited reduced proliferative po-
tential that correlated with reduced speed of replication fork
progression, diminished loading of prereplication complexes,
enhanced micronucleus formation, and attenuated expression
and splicing of S-phase–associated genes. Finally, FUS-
deficient cells exhibited genome-wide alterations in DNA
replication timing that were reversed upon re-expression of
FUS complementary DNA. We also showed that FUS-
dependent replication domains were enriched in transcrip-
tionally active chromatin and that FUS was required for the
timely replication of transcriptionally active DNA. These
findings suggest that alterations in DNA replication kinetics
and programming contribute to genome instability and func-
tional defects in FUS-deficient cells.

Fused in sarcoma (FUS, also referred to as translocated in
liposarcoma) is a member of the FET (FUS, EWSR1, and
TAF15) family of RNA- and DNA-binding proteins that play
important roles in transcription and splicing (1, 2). Originally
described as an oncogenic fusion to the CCAAT/enhancer-
binding protein homologous protein (CHOP) transcription
factor in myxoid liposarcoma (3, 4), FUS rose to prominence
with the discovery that inherited, and de novo mutations in its
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ORF cause dominant forms of amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD) (5–7). Although
the underlying mechanisms are still unclear, the preponder-
ance of ALS/FTD-associated mutations in FUS interferes with
its nuclear import and folding, leading to the accumulation of
cytosolic FUS aggregates that disrupt cellular function through
loss-of-function (LOF) and gain-of function mechanisms
impacting protein translation and nuclear transport among
other processes (2, 8–11).

FET proteins share a common domain structure that in-
cludes an N-terminal low-complexity domain (LCD), a Gly-rich
region, one or more arginine–glycine—glycine repeat (RGG)
domain, an RNA recognition motif with RNA- and DNA-
binding activity, a zinc-finger domain, and a carboxyl-terminal
PY-type nuclear localization signal that interacts with trans-
portin nuclear import receptors that are essential for proper
FUS folding (1, 8, 12–14). The LCD is also of particular interest
as it exhibits strong transcriptional coactivation potential
in vitro, and the fusion of this domain to the CHOP DNA-
binding domain drives gene deregulation and oncogenesis in
myxoid liposarcoma (1, 15). The LCD also mediates protein–
protein interactions and participates in FUS oligomerization
and liquid demixing (14, 16–19) that may be central to its
normal roles in transcription and splicing and pathologic roles
in ALS/FTD (2).

In addition to their accepted roles in RNA processing,
several lines of evidence support a role for the FET proteins in
the cellular DNA damage response (DDR). FUS participation
in the DDR was first inferred from chromosome instability and
mild radiosensitive phenotypes of FUS−/− mice (20–22). FET
proteins are capable of promoting invasion and pairing of a
homologous ssDNA sequence with a dsDNA molecule in vitro
(22–24), which suggests a possible role for FET proteins in the
D-loop formation step of homology-directed repair (HDR) of
DNA double-strand breaks (DSBs). Other studies showed that
the FUS LCD is phosphorylated in response to DNA damage
by DNA damage–activated protein kinases DNA-PKcs and
ATM (17, 25), which are important regulators of the nonho-
mologous end joining (NHEJ) pathway of DSB repair.
Consistent with a direct or an indirect role for FUS in DSB
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repair, we and others showed that shRNA-mediated depletion
of FUS reduced the repair of HDR and NHEJ reporter sub-
strates (26–28).

A role in the DDR is further suggested by poly(ADP)-ribosyl
(PAR) polymerase (PARP)–dependent localization of FUS to
sites of microirradiation-induced DNA damage (26–28). FUS
is capable of interacting directly with PAR chains through its
RGG domain (26), and the FET proteins are heavily PARylated
in response to genotoxic stress (29). Mechanistically, it was
reported that FUS mediates the recruitment of histone
deacetylase 1, KU70, NBS1, and phosphorylated H2AX
(γH2AX), and ATM at sites of DNA damage and that this
recruitment pathway as well as FUS-dependent repair was
compromised by ALS/FTD-associated mutations (27). It has
also been proposed that FUS organizes DSBs in a PARP-
dependent manner for their subsequent repair (30); while
Wang et al. (31) reported that FUS recruits DNA ligase III
downstream of PARP activation to repair single-strand breaks
(SSBs) and that ALS-associated mutations in FUS disrupt SSB
repair activity. Finally, it was recently reported that FUS reg-
ulates the response to transcription-associated recombinant
DNA damage via association with topoisomerase 1 in the
nucleolus (32). Despite these studies, the molecular mecha-
nisms linking FUS to the different repair pathways in which it
has been implicated remain unclear and the extent to which
FUS-dependent RNA processing may contribute to reported
DDR phenotypes in FUS-deficient cells is not known.
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Here, we probed FUS-dependent genome protection using
transcriptomic, proteomic, and functional analysis of FUS−/−

cell lines reconstituted with FUS complementary DNAs
(cDNAs). Our findings suggest that FUS plays particularly
important roles in DNA replication where it contributes to
replicon initiation and coordinates DNA replication timing
(RT). These studies provide new insights into FUS-mediated
genome protection in mitotically active cells.
Results

Generation and phenotypic characterization of FUS−/− cells

To discern roles of FUS in genome protection, we dis-
rupted FUS gene loci in U-2 OS osteosarcoma cells using
CRISPR–CAS9 followed by genetic reconstitution with a
retroviral vector encoding the untagged FUS ORF (see
Experimental procedures section). To ensure rigorous results,
we studied multiple FUS−/− clones and selected a recon-
stituted FUS−/−:FUS line with physiological levels of FUS
expression (Fig. 1, A–C). Notably, protein levels of TAF15
and EWSR1 were not upregulated in FUS−/− U-2 OS cells,
diminishing concerns about functional compensation.

FUS knockdown cells displayed mild IR sensitivity and
modest defects in the repair of NHEJ and HDR reporter sub-
strates (26), whereas a second study reported that FUS
knockdown suppressed γH2AX and 53BP1 focus formation
(27). We assessed time courses of γH2AX and 53BP1
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accumulation and dissolution at IR-induced foci in FUS+/+,
FUS−/−, and FUS−/−:FUS U-2 OS cells exposed to 2 Gy IR. The
initial recruitment of 53BP1 to IR-induced nuclear foci was
enhanced in FUS−/− cell lines, and 53BP1 foci persisted longer
in FUS−/− cells relative to FUS+/+ cells (Fig. S1, A and C), and
this was rescued in FUS−/−:FUS U-2 OS cells. The enhanced
and prolonged accumulation of 53BP1 at IR-induced foci may
reflect persistent DSBs. While no obvious γH2AX focus for-
mation/dissociation defect was observed between FUS−/− and
FUS+/+ cells, we observed reduced γH2AX focus formation in
FUS−/−:FUS U-2 OS cells relative to FUS−/− cells (Fig. S1, B
and C). Although the reason for discrepant findings between
FUS+/+ and FUS−/−:FUS U-2 OS cells is unclear, it may reflect
slightly increased FUS expression levels in FUS−/−:FUS U-2 OS
cells relative to FUS+/+ cells (Fig. 1C).

We also investigated recruitment of the critical HDR fac-
tor, BRCA1. On a per-cell basis, the number of BRCA1 foci
was comparable between FUS−/−, FUS+/+, and FUS−/−:FUS
cells, suggesting FUS is not an essential component of the
BRCA1 recruitment pathway (Fig. S2, A and C). On the other
hand, the frequency of cells displaying IR-induced BRCA1
foci was significantly reduced in FUS−/− cells, and this was
corrected by FUS reexpression (Fig. S2, B and C). Reduced
BRCA1 focus formation was also seen in H460 cells stably
transduced with FUS shRNA but not cells transduced with
TAF15 or EWSR1 shRNA (Fig. S2, D and E), indicating a
selective role for FUS. Because BRCA1 focus formation is
largely restricted to S/G2 phase, these findings may indicate
perturbed S-phase dynamics in FUS deficiency (see later).
Despite the changes in 53BP1 and BRCA1 recruitment to IR-
induced foci, FUS−/− cells did not exhibit significant hyper-
sensitivity to mechanistically distinct genotoxins, including
hydroxyurea (HU, replication stress), mitomycin C (MMC,
DNA crosslinker), camptothecin (top1 inhibitor), and cal-
icheamicin γ1 (CLM, radiomimetic). In fact, FUS−/−:FUS cells
were slightly more resistant than FUS+/+ cells to MMC and
CLM (Fig. S3). These findings suggest that FUS fulfills sup-
portive rather than essential roles in DSB repair.
FUS−/− cells exhibit defects in DNA replication

FUS−/− U-2 OS cells exhibited reduced colony outgrowth
and proliferative potential that was corrected by FUS reex-
pression (Fig. 1, D and E). Reduced proliferative capacity was
observed in multiple FUS−/− U-2 OS clones as well as FUS-
deficient NCI-H460 lung adenocarcinoma cells (Fig. S4,
A and B). Finally, FUS−/− U-2 OS reconstituted with a FUS
construct lacking the N-terminal LCD exhibited reduced col-
ony growth rates relative to FUS−/−:FUS cells (Fig. S4, C and D).
This finding implies that biochemical activities associated with
the LCD, including transcriptional activation (15, 33) and phase
separation/oligomerization (19, 34), contribute to its
replication-associated functions.

Following synchronous release from G1/S phase arrest,
FUS−/− cells exhibited reduced reentry and progression through
S phase, which was particularly pronounced at the 6 h time
point (Fig. 2A, Fig. S5, A–C). The S-phase delay of FUS−/− cells
was further revealed through 5-ethynyl-20-deoxyuridine (EdU)
incorporation experiments. Specifically, FUS−/− cells exhibited
reduced S-phase entry 6 h following release from a double
thymidine block and accumulated in G2/M to a lesser degree
than FUS+/+ or FUS−/−:FUS cells 12 h following release (Fig. 2B;
see Fig. S5D for additional time points). These experiments also
revealed slightly reduced levels of EdU incorporation in
asynchronously growing FUS−/− cells relative to FUS+/+ or
FUS−/−:FUS cells (Fig. 2B).

To ascertain impacts of FUS deficiency on replication fork
(RF) dynamics, we performed DNA fiber analysis (35), on
FUS−/−, FUS+/+, FUS−/−:FUS cells sequentially labeled with
5-iodo-20-deoxyuridine and 5-chloro-20-deoxyuridine (CldU).
FUS−/− cells exhibited significant reductions in CldU track
lengths indicative of reduced DNA replication rate (Fig. 3A).
FUS−/− cells also showed delayed RF restart following release
from a transient HU block (Fig. 3B). Both replication velocity
and replication restart phenotypes were rescued by FUS
reexpression.

Because a reduced rate of DNA replication can lead to
micronucleus formation and genomic instability (36), we
measured micronuclei in FUS+/+, FUS−/−, and FUS−/−:FUS U-2
OS cells treated with a low dose of the DNA polymerase alpha
inhibitor aphidicolin. FUS−/− cells exhibited increased rates of
micronucleus formation relative to FUS+/+ and FUS−/−:FUS
U-2 OS cells (Fig. 3C), suggesting that FUS enhances genome
stability under replication stress.
Reduced S-phase gene expression in FUS-deficient cells

We performed RNA-Seq to establish gene expression
correlates for DNA replication defects of FUS-deficient cells
(Table S1). We identified 710 genes that were differentially
expressed between FUS+/+ and FUS−/− cells that were cor-
rected by FUS reexpression (Fig. S6, A and B and Table S3).
Gene set enrichment analysis revealed that cell cycle, DNA
repair, and DNA replication processes were downregulated,
whereas immunomodulatory pathways were upregulated in
FUS−/− cells (Fig. S6C and Fig. 4, A and D). DNA replication–
associated genes that were downregulated in FUS−/− cells
included GINS4, MCM4, RFC3, RCF4, and TIMELESS (Fig. 4,
B and C). DNA repair–related genes, including WRN,
PRKDC, FANCD2, FANCA, and RAD52, were also down-
regulated in FUS−/− cells (Fig. 4, E and F). Interestingly, the
NHEJ factor 53BP1 was upregulated in FUS−/− cells
(Fig. S6E). A subset of gene expression changes evident in
RNA-Seq data were confirmed by quantitative PCR (qPCR;
Fig. S6, D and E). Downregulation of S-phase genes may
contribute to reduced proliferative potential of FUS−/− cells
and/or may be a downstream consequence of DNA replica-
tion abnormalities.

We next considered the possibility that FUS regulates the
alternative splicing of suites of genes involved inDNA replication
and repair. We thus compared alternative splicing patterns be-
tween FUS+/+, FUS−/−, and FUS−/−:FUS cells. We identified 434
splicing events that differed between FUS−/− and FUS+/+ cells
including alternative 50 splice site selection, exon skipping events,
J. Biol. Chem. (2021) 297(3) 101049 3
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Figure 2. FUS is required for S-phase progression. A, DNA replication progression was analyzed by PI staining and flow cytometry. Cells were syn-
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analysis. B, DNA progression was monitored by EdU incorporation under the same conditions as in (A). Additional time points are presented in Fig. S5D. EdU,
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Fused in sarcoma regulates DNA replication
altered 30 splice site selection, and intron retention (Fig. S6F and
Table S6). While DNA repair was not overrepresented in Gene
Ontology (GO) terms, we nonetheless identified a handful of
genes with annotated roles in DNA repair and replication that
exhibited FUS-dependent splicing changes (Fig. S6,G andH). For
4 J. Biol. Chem. (2021) 297(3) 101049
instance, both origin recognition complex 3 (ORC3) and sup-
pressor of cancer cell invasion (SCAI) saw increased inclusion of
poison cassette exons predicted to terminate their respective
ORFs and/or promote mRNA degradation via nonsense-
mediated mRNA decay (Fig. S6, I–N). ORC3 is a component of
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Fused in sarcoma regulates DNA replication
the eukaryotic origin recognition complex, whereas SCAI is a
negative regulator of the NHEJ factor RIF1 and has been impli-
cated in restricting chromatin access to DSB factors (37, 38).
Although functional implications are unclear, the inclusion of
poison cassette exons may reduce ORC3 and/or SCAI gene
dosage. We also identified an alternative cassette exon in the
ubiquitin E3 ligase TRIP12 that was increased in FUS−/− U-2 OS
cells relative to controls and rescued by FUS reexpression
(Fig. S6,O–Q). TRIP12 has been implicated in the ubiquitylation
of the p53 regulator ARF and RNF168 (39, 40), and its FUS-
dependent alternative splicing may alter its activity toward
ARF, RNF168, or other targets.
J. Biol. Chem. (2021) 297(3) 101049 5
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FUS regulates prereplication complex loading and associates
with DNA replication factors

Given their reduced DNA replication rate, we investigated
whether FUS−/− cells exhibited defects in the chromatin loading
of replication licensing factors, including theORC,CDC6,CDT1,
and the MCM replicative helicase (41). Mitotically arrested
FUS+/+, FUS−/−, and FUS−/−:FUS cells were released into early G1

phase, and soluble and chromatin fractions (CFs) were analyzed
by immunoblotting. FUS-deficient cells showed normal cell
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Reasoning that FUS may play direct roles in pre-RC loading
and or DNA repair, we performed quantitative proteomic
analysis of FUS complexes using a chromatin immunoprecip-
itation (IP) procedure in which endogenous FUS–chromatin
complexes were digested with nuclease prior to IP with
α-FUS antibodies and analysis by quantitative MS (42).
The same chromatin IP procedure was carried out using
FUS−/− cells as a negative control. Gene set enrichment analysis
using all identified FUS interactants revealed RNA processing,
DNA repair, and DNA replication as functional processes that
were statistically overrepresented in the dataset of FUS-
interacting proteins (Fig. S7A, Tables S4 and S5). The abun-
dance of RNA-binding proteins in FUS complexes is consistent
with other published studies (43, 44). Nucleotide excision
repair and DNA strand elongation were among the most
significantly enriched pathways within the DNA replication/
repair gene sets (Fig. S7, B and C). We plotted those proteins
within DNA repair and replication GO terms that showed a
nominal 1.3-fold enrichment in IPs from FUS+/+ cells relative
to FUS−/− cells (Fig. 6A). Proteins of interest include DSB repair
factors (DNA-PK, Ku70, Ku80, and PNKP), single-strand break
repair/base excision repair proteins (PARP1, FEN1, PNKP, and
APEX1), DNA replication factors (DNA polymerase δ [POLδ
or POLD1], proliferating cell nuclear antigen [PCNA], and
UHRF1), and topoisomerases (TOP1 and TOP2α). The pres-
ence of single-strand break repair/base excision repair factors,
including PARP, is consistent with the ability of FUS to bind to
PAR chains (26), whereas the presence of POLδ but not POLε
in FUS IPs is interesting given their participation in lagging
strand and leading strand DNA synthesis, respectively (45). We
carried out validation co-IP assays to confirm that endogenous
FUS interacted with TOP1, PCNA, POLδ1, and FEN1 in un-
synchronized (Fig. 6B) or synchronized S phase cells (Fig. 6C)
and further validated association between FUS and POLδ1,
PCNA, and FEN1 in proximity ligation assays (Fig. 6, D and E).

The replication defects in FUS−/− cells and interaction
with DNA replication factors raised the possibility that FUS
directly participates in DNA replication. To investigate this
possibility, we carried out an isolation of proteins on nascent
DNA (iPOND) assay that measures the association of pro-
teins with nascently synthesized DNA (46). Human embry-
onic kidney 293T (HEK293T) cells were pulse labeled with
EdU and then chased with thymidine in the absence or the
presence of 2 mM HU prior to formaldehyde crosslinking
and isolation of EdU–protein complexes. As expected, the
abundance of the PCNA sliding clamp in EdU-labeled
complexes decreased during the thymidine chase period as
the replisome advanced beyond the region of nascent EdU-
labeled DNA (Fig. S8). Although FUS was also observed in
EdU-labeled DNA, its abundance was slightly increased
following thymidine chase, as was histone H3 (Fig. S8). A
similar iPOND labeling pattern has been described for DNA-
binding proteins such as HMGA1 and LaminB1 that main-
tain high-order chromatin (47). This result suggests that FUS
is proximal to replication factors on chromatin but does not
translocate with the active replisome.
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FUS regulates DNA RT

Chromosomal replication is stochastically initiated from or-
igins that fire with characteristic heritable timing (41). RT can
be qualitatively evaluated according to the pattern 5-bromo-20-
deoxyuridine (BrdU) or EdU incorporation following synchro-
nized release from a double thymidine block (48). Early S-phase
cells exhibit a uniform EdU incorporation pattern (Fig. 7A,
white arrows); middle S-phase cells exhibit perinuclear and
perinucleolar EdU incorporation (Fig. 7A, yellow arrows); and
late S-phase cells exhibit large puncta of EdU incorporation
(Fig. 7A, green arrows). Origins with shared firing kinetics are
topologically organized into chromatin subdomains in a process
that requires RIF1 (49–54); however, few other timing regula-
tors have been identified.

We noted that the frequency of mid-S phase staining pat-
terns was reduced �50% in FUS−/− cells relative to FUS+/+ cells
(Fig. 7, A and B), suggesting a potential RT defect. To rule out
the apparent defect was not because of delayed S-phase entry of
FUS−/− cells, we carried out a time course analysis of FUS+/+,
FUS−/−, and FUS−/−:FUS cells released from thymidine block
for 4, 6, or 8 h. FUS−/− cells exhibited reduced frequencies of
the mid-S-phase staining pattern at all three time points, even
though the frequency of late S-phase patterns more than
doubled from 4 to 8 h (Fig. 7, C and D). Importantly, FUS
reexpression largely reversed the mid-S phase RT defect of
FUS−/− cells (Fig. 7, C andD). From this, we conclude that FUS-
deficient cells harbor RT defects that cannot be solely attrib-
uted to reduced rates of replication.

To follow up on the EdU labeling studies, we measured
genome-wide RT in FUS+/+, FUS−/−, and FUS−/−:FUS U-2 OS
cells using a Sort-Seq workflow (55) in which propidium iodide
(PI)–stained FUS−/−, FUS+/+, and FUS−/−: FUS U-2 OS cells
were sorted into G1- and S-phase fractions prior to genomic
DNA isolation and deep sequencing (see Experimental
procedures section). The read ratios between S- and G1-
phase cells were used to establish relative DNA copy number
between samples, with a higher ratio reflecting earlier repli-
cation (Fig. 8A). Using a fixed-window method of read binning,
we found that FUS−/− cells exhibited widespread changes in
RT relative to FUS+/+ and FUS−/−:FUS cells that was consistent
across two biological replicates (Fig. 8, B and C). FUS defi-
ciency impacted RT bidirectionally and was highly chromo-
some and position dependent. For example, within the same
30 Mb interval of Chr18, FUS−/− cells exhibited advanced RT
(Fig. 8B, tan shading) and delayed RT (Fig. 8B, blue shading).

Genome-wide bidirectional RT switches were further
confirmed by RT distribution differences between FUS+/+ and
FUS−/− cells in both biological replicates (Fig. 8, D and E).
Although the RT distribution of FUS−/− cells skewed slightly
earlier than FUS+/+ cells when examined across all chromo-
somes (Fig. 8F [replicate 2] and Fig. S9A [replicate 1]), RT
directional changes were highly chromosome dependent. For
example, while Chr2 did not show significant RT distribution
differences between FUS+/+ and FUS−/− cells, the RT distri-
butions of Chr5 an Chr20 skewed early and late, respectively,
in FUS−/− cells relative to FUS+/+ cells (Fig. 8, G–I [replicate 2]
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Fused in sarcoma regulates DNA replication
and Fig. S9, B–D [replicate 1]). In summary, our data indicate
that FUS influences genome-wide RT in a chromosomal
context-dependent manner.
Characterization of FUS-dependent replication domains

We next used the unsupervised Segway deep learning tool
(56–58) to de novo segment replication domains (RDs) in FUS+/+,
FUS−/−, and FUS−/−:FUS cells (see Experimental procedures sec-
tion). Three nonoverlapping contiguous segments were used to
assign RT profiles into early replication domains (ERDs); late
replication domains (LRDs), and mid replication domains
10 J. Biol. Chem. (2021) 297(3) 101049
(MRDs) spanning the transition between the early and late zone
(Fig. 9A). Genomic coverage of all three types of RDs did not
significantly change between FUS−/− cells relative to FUS+/+ cells
(Fig. 9B). However, the average size of LRDs was significantly
decreased inFUS−/− cells (Fig. 9C).Todeterminewhich fractionof
ERDs, MRDs, and LRDs were dependent on FUS, overlapping
RDs in FUS+/+ and FUS−/−:FUS cells were intersected and then
subtracted from corresponding RDs in FUS−/− cells using bed-
tools. This analysis revealed that 11.36%, 39.73%, and 21.85% of
total ERDs, MRDs, and LRDs, respectively, were FUS dependent
(Fig. 9D), and we refer to these regions as ERD-FUS, MRD-FUS,
and LRD-FUS (Fig. 9D). ERD-FUS, MRD-FUS, and LRD-FUS
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Figure 8. FUS influences genome-wide RT. A, whole genome-wide replication timing profile of U-2 OS cells. The RT was calculated based on copy number
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Fused in sarcoma regulates DNA replication
represented 4.37%, 9.26%, and 6.53% of whole genome sequence,
respectively, and, in total, approximately 20% of the U-2 OS
genome exhibited FUS-dependent RT. Finally, RT signals of FUS-
associated RDs were centered, and the distribution and heat map
analysis were performed and showed they were correctly identi-
fied (Fig. 9E and Fig. S9, E–G).
Consistent with earlier studies (59–61), a positive correlation
between gene activation and RT was found, with ERDs exhib-
iting active gene expression and LRDs exhibiting repressed gene
expression (Fig. 9F and Fig. S9H). However, overall transcrip-
tion signals were comparable between FUS−/− cells and FUS+/+

cells across ERD-FUS, MRD-FUS, and LRD-FUS domains
J. Biol. Chem. (2021) 297(3) 101049 11
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Figure 9. Characterization of FUS-dependent replication domains (RDs). A, RT profiles were segmented into three states by nonsupervised package
Segway as early RD (ERD), middle RD (MRD), and late RD (LRD). The domain numbers in each sample were plotted and labeled. The two biological replicates
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(Fig. 9F). We next explored whether RT was changed proximal
to genes showing FUS-dependent regulation by RNA-Seq. We
found RT of annotated gene regions was delayed in FUS−/− cells
relative to FUS+/+ and FUS−/−:FUS cells (Fig. 9G). This pattern
of delayed timing was observed across the entirety of the gene,
including the transcription start site, coding sequence, and
termination site, and was observed for both upregulated and
downregulated genes. To determine whether delayed RT was
restricted to those genes regulated by FUS, we compared rela-
tive RT across all annotated genes. As shown in Fig. S9, I and J,
a similar pattern of delayed RT was observed in FUS−/− cells
relative to FUS+/+ and FUS−/−:FUS cells. These results imply
that FUS plays a particularly important role in the early repli-
cation of transcriptionally active chromatin.

Finally, we examined FUS-dependent RDs for gene func-
tional enrichment. Surprisingly, given the non-neuronal nature
of U-2 OS cells, we found that LRD-FUS were highly enriched
in nervous system development–related genes and, more
specifically, genes encoding ion-gated channels (Fig. 9, H and I
and Fig. S10, A and B). We further explored the transcription
of genes in the top ten enriched GO terms in FUS-dependent
LRDs (LRD-FUS) (Fig. S10, A and C). Despite being enriched
in LRD-FUS, only ten of 55 genes showed significant expres-
sion differences between FUS+/+ and FUS−/− cells, and only a
handful of these were rescued by FUS reexpression (Fig. S10,
D–F). While the upregulation of repressed neuronal genes
might be expected to occur in late-replicating chromatin, the
neuron-related genes in LRD-FUS intervals exhibited both
upregulation and downregulation in FUS−/− cells. These
findings may be relevant to understanding FUS-dependent
gene regulation in neurons.
Discussion

FUS DNA repair functions have been deduced from its
PARP-dependent recruitment to sites of microirradiation; its
co-IP with repair proteins; and the modest chromosome
instability and DSB repair defects of FUS-deficient cells
(21, 26–28, 30–32, 62). Despite these results, a unifying role
for FUS in genome protection has yet to emerge. Using
FUS−/− cells with and without reconstitution, we found that,
while FUS may play a supporting role in DSB repair, it is
more prominently required for timely DNA replication,
which plausibly contributes to genome instability and
DDR-related phenotypes ascribed to FUS-deficient cells.

FUS is among the first factors recruited to sites of micro-
irradiation, which is driven through association of FUS RGG
domains with PAR chains (26–28, 30, 63). FUS is also
reportedly required for the assembly of IR-induced 53BP1 foci
(27), despite the fact that FUS does not accumulate at these
structures (26). Results in Fig. S1A clearly show that FUS is not
required for 53BP1 focus formation. In fact, 53BP1 foci
gene regions across a ±0.5 Mb window. RT signal was calculated by log2 ratio
score normalization. Only FUS-regulated genes (listed in Table S3) annotation
FUS-dependent RDs. The FUS-dependent RDs were extended 3000 bases in bot
extracted and used for GO analysis. I, GO analysis in molecular function level of
TES, transcription end site; TSS, transcription start site.
recruitment was more persistent in FUS−/− cells relative to
FUS+/+ controls. This result appears to be congruent with the
findings of Altmeyer et al. (63) who reported that over-
expression of the EWSR LCD suppressed IR-induced 53BP1
focus formation. It is conceivable that FUS inhibits local as-
sembly of 53BP1 complexes and/or limits their lateral spread
along damaged chromatin. By contrast, FUS−/− cells exhibited
reduced recruitment of BRCA1 (Fig. S2), which mediates HDR
and mutually antagonistic to the 53BP1-RIF1 pathway (64).
Despite these modest molecular defects, FUS deficiency does
not confer sensitivity to mechanistically distinct genotoxins,
including IR, camptothecin, MMC, or CLM (Figs. S3 and S4).
Our findings are at odds with a recent report by Levone et al.
(65) that FUS−/− HeLa cells are sensitive to DSB-inducing
agents and that FUS is required for the recruitment of
53BP1, Ku80, and other DSB repair factors to DNA damage.
The use of p53-wildtype (U-2 OS) versus p53-inactivated
(HeLa) cells or different cell survival assays might underlie
differences in genotoxin sensitivity between the studies,
whereas discrepant 53BP1 recruitment findings may be related
to the use of microirradiation, which induces supra-
physiological levels of DSBs and SSBs (66).

FUS−/− cells exhibited reduced proliferative potential char-
acterized by reduced RF speed (Fig. 3A), delayed RF restart
(Fig. 3B), reduced expression of S-phase–associated genes (Fig.
4C), and reduced loading of pre-RC complexes (Fig. 5B).
Participation of FUS in DNA replication was suggested by the
presence of DNA replication factors in FUS–chromatin com-
plexes (Fig. 6). The association of FUS with lagging strand
synthesis factors POLδ1, PCNA, and FEN1, but not leading
strand POLε, further suggested that FUS may play a role in the
deposition or removal of RNA primers and/or the ligation of
single-strand nicks on the lagging strand. It is worth noting
that PARP, which was also present in FUS–chromatin com-
plexes, contributes to the ligation of Okazaki fragments on the
lagging strand (67). It is also conceivable that FUS plays a role
in the postreplication repair of stalled RFs given established
roles for POLδ in this process (68). A speculative model
depicting a role for FUS in lagging strand synthesis is pre-
sented in Figure 10A. Alternatively, because FUS did not stably
associate with translocating replisomes in the iPOND assay
(Fig. S8), it is possible that FUS impacts DNA replication by
influencing local chromatin structure or through splicing
regulation. Indeed, we identified a handful of DNA replication/
repair genes whose alternative splicing was altered in FUS
deficiency (Fig. S6, F–Q). For instance, the inclusion of a
poison cassette exon in ORC3 is upregulated in FUS−/− cells
relative to FUS+/+ cells (Fig. S6K). Establishing a causal role for
splicing changes in the growth and repair defects of FUS-
deficient cells awaits future study.

To our knowledge, this is the first study to implicate FUS in
the control of RT, a stable cellular characteristic that is
of S/G1 samples in 20 kb bin after CPM normalization and followed with Z
was used. H, Gene Ontology (GO) enrichment in biological function level of
h ends, and then, the gene list under the extended FUS-dependent RDs was
extended FUS-dependent RDs. FUS, fused in sarcoma; RT, replication timing;
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Figure 10. Working model of FUS in replication progression and replication timing. A, based on FUS chromatin proteomics, FUS specifically interacts
with POLδ but not POLε. Many replication-coupled single-strand break (SSB) repair factors (PCNA, FEN1, and PARP1) were also enriched with FUS on
chromatin. From this, we speculate that FUS facilitates Okazaki fragment processing and PARP-dependent repair of single-strand gaps on the lagging strand
(67). Defects in this pathway may contribute to reduced RF speed, RF restart defects, and micronucleus formation. B, speculative model for FUS-dependent
RT. FUS undergoes phase separation where it may interact transiently recruits RNA polymerase II, potentially in cooperation with EWSR1 and TAF15. Phase-
separated FUS complexes (shown in green circles) organize chromatin into topologically distinct domains (ERD, MRD, and LRD) that are replicated during
early, mid, and late S-phase, respectively. The DNA fiber and micronuclei images were reused from Figure 3 for illustration purpose only. ERD, early
replication domain; FEN1, flap endonuclease-1; FUS, fused in sarcoma; LRD, late replication domain; MRD, mid replication domain; PARP1, poly(ADP)-ribosyl
(PAR) polymerase 1; PCNA, proliferating cell nuclear antigen; POLδ, polymerase δ; RF, replication fork.

Fused in sarcoma regulates DNA replication
established in early G1 phase (48, 52, 69). Spatiotemporal
control of RT is highly dependent on the master timing factor
RIF1, a chromatin-bound factor that also plays important roles
in RF stabilization and DSB repair pathway choice (64, 70–74).
RIF1-deficient mammalian cells or yeast exhibit spatial
changes in DNA replication that correlate with premature
replication origin firing (53, 54, 75–77). RIF1 is thought to
control RT by organizing chromatin domains with shared
timing characteristics (78). Like RIF1-deficient cells, FUS−/−

cells exhibited bidirectional RT changes; however, FUS and
RIF1 are unlikely to act through the same pathway since they
exhibited different intranuclear localization patterns (not
shown) and did not detectably interact on chromatin (Fig. 6A).
In addition, the fact that some chromosomal domains replicate
earlier in FUS−/− cells relative to FUS+/+ cells suggests that the
RT functions of FUS are at least partially independent from its
positive contributions to DNA replication initiation.

Two plausible models may underlie participation of FUS in
RT, with both models invoking the phase-separation char-
acteristics of FUS as a central mechanistic feature (79). First,
FUS may fulfill a chromatin-bundling function (53, 78). In
this model, the DNA-binding and dynamic oligomerization
properties of FUS promote the assembly of chromatin do-
mains that are replicated with similar timing. This role would
be conceptually similar to that proposed for RIF1.
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Nonexclusively, FUS-dependent RT may be linked to its roles
in transcriptional activation. The LCDs of FUS, EWSR1, and
TAF15 bind to the CTD of RNA pol II (19, 80–82) and
function as potent transcriptional activators when fused to
heterologous DNA-binding domains (15, 83, 84). Indeed,
transcriptional deregulation is thought to drive malignant
transformation in soft-tissue sarcomas harboring oncogenic
fusions of FET genes with site-specific transcription factors,
such as CHOP, FLI1, and CREB (4, 85, 86). A reciprocal
relationship between RT and transcription is supported by
studies showing that RT switches during embryonic devel-
opment precede transcriptional changes of proximal genes
(59, 87, 88) and work showing that transcriptional activation
leads to RT advancement (89). Sima et al. (49) further
demonstrated that cis-regulatory elements within an
enhancer promoted early RT of the Dppa2/4 domain in
mouse ESCs. While absolute levels of transcription were not
significantly different, transcriptionally active genes showed
delayed RT in FUS−/− cells relative to FUS+/+ cells (Fig. 9, F
and G).

The LCD of FUS, in addition to intrinsically disordered
regions of transcriptional coactivators, BRD4 and MED1, has
been implicated in the assembly of phase-separated tran-
scription “condensates” at gene enhancers (90–92). We spec-
ulate that FUS-dependent clustering of transcription
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complexes and chromatin looping may specify FUS-dependent
RDs that undergo coordinate RT regulation (Fig. 10B). Chro-
matin capture approaches, such as ChIA-PET, will be needed
to test this hypothesis.

It has been reported that ALS-associated mutations in FUS
disrupt DSB repair (27, 65), SSB repair (31), and resolution of
R-loops, which are RNA–DNA hybrids that can be processed
into DSBs during transcription (93). While our present ex-
periments did not evaluate the replication or repair functions
of FUSALS mutants, the subtle DSB repair and genotoxin
sensitivity phenotypes of FUS−/− cells makes it unlikely that
such mutants drive genome stability through a purely LOF
mechanism. On the other hand, FUS aggregation in end-stage
ALS could confer LOF repair phenotypes or and/or sequester
critical repair factors in the cytoplasm. Along these lines, FUS
aggregation and nuclear LOF could impact the proliferative
capacity, genome stability, and function of glia and other
mitotic cell types in the central nervous system. The extent to
which neuronal or glial genome instability would drive disease
in ALS-FUS relative to other mechanisms, including trans-
lational deregulation, splicing deregulation, nuclear import/
export deregulation, and proteostasis defects, remains to be
determined.
Experimental procedures

Cell culture and gene editing

The U-2 OS, NCI-H460, and HEK293T cell lines were ob-
tained from the American Type Culture Collection. U-2 OS
and U-2 OS derivative cell lines were grown in McCoy’s me-
dium (Corning; 10-050-CV). HEK293T cells were grown in
Dulbecco’s modified Eagle’s medium (Corning; 10-013-CV).
NCI-H460 cells were maintained in RPMI1640 medium
(Corning; 10-040-CV). All cell lines were grown in medium
with 10% fetal bovine serum (Atlanta Biologicals, Inc) and 1%
penicillin/streptomycin (Corning; 30-002-CI) and incubated at
37 �C in 5% CO2. For G1/S synchronization experiments, cells
were treated with 2 mM thymidine for 19 h, released into
thymidine-free growth media for 9 h, and then returned to
thymidine-containing media for an additional 16 h. The cells
were washed three times with PBS and then released into
complete media for the indicated periods.

FUS−/− cells were generated by transient transfection of U-2
OS cells with pX459 vectors (v2, Addgene plasmid no. 62988)
(94) expressing single guide RNAs (CGCCAGTCGAGCCA-
TATCCC and AGAGCTCCCAATCGTCTTAC) targeting
exon 4 using jetPRIME (Polyplus; 114-07). Twenty-four hours
after transfection, cells were selected for 72 h with 1 μg/ml
puromycin and then diluted into 96-well plates at an average
density of one cell per well, and single clones were isolated and
screened for FUS knockout by Western blotting. All clones
were sequenced around the targeted sequence, and four clones
were selected for further study. We reconstituted FUS−/−

Cl.110 with a FUS CDS cloned into a pQCXIH CMV/TO
DEST retroviral vector (Addgene; #17394) vector by gateway
cloning. As a negative control, the GUS gene from vector
pENTRGUS (Invitrogen) was also cloned into pQCXIH CMV/
TO DEST vector. The FUSΔLCD construct was generated by
PCR amplification of the FUS CDS beginning at codon 155
and recombination cloning into pQCXIH CMV/TO DEST as
described previously. Retroviral plasmids were packaged with
GP2-293 packaging cell line (Clonetech; 631458). Stably
transduced cells were selected with 50 μg/ml hygromycin for
1 week, and single clones were isolated, expanded, and tested
for FUS expression.

Lentivirus and retrovirus

The pLKO.1 system was used to package lentiviruses and
deliver shRNA. The following shRNA target sequences were
designed using the RNAi Consortium online tool (Broad
Institute) and were cloned into pLKO.1-TRC (Addgene;
#10878), according to the manufacturer’s suggestions: EWSR1
50-TGCATTGACTACCAGATTTAT-30 and TAF15 50-TGA-
CATGATCCATAGTGAAAT-30. The nontargeting shRNA
(Addgene; #1864) and FUS sequences have been reported
previously (26). For pSUPERIOR system, nontargeting 50-TTC
TCCGAACGTGTCACGT-30, TAF15 50-ACAGCGGAGATA
GAAGTGG-30. Lentiviral particles were produced by transient
transfection of HEK293T cells with pLKO.1, psPAX2 (Addg-
ene; #12260), and VSV-G (Addgene; #8454) in a ratio of 3:2:1.
Retrovirus particles were produced as described previously
using GP2-293 system.

EdU labeling, flow cytometry, microscopy, and DNA fiber
analysis

For cell cycle progression experiments, U-2 OS cells were
incubated with 20 μM EdU for 30 min before collection and
then fixed with ice-cold 70% ethanol. EdU detection was
performed using the Click-IT Plus EdU Alexa Fluor 647 Flow
Cytometry Assay Kit (Life Technologies; C10634). PI was
added to a concentration of 50 μg/ml. Flow cytometry was
performed on Thermo Fisher Attune, and data were analyzed
and organized using FlowJo software (FlowJo, LLC). For in situ
EdU and BrdU staining, U-2 OS cells were pulse labeled for
30 min with 20 μM BrdU or EdU and fixed with 4% para-
formaldehyde. For BrdU detection, cells were then incubated
with 2 M HCl for 30 min and then permeabilized with 0.2%
Triton-X100 for 15 min at room temperature, washed, and
blocked in 3% bovine serum albumin (BSA). Cells were stained
with BrdU primary antibody (Santa Cruz; sc-32323) in 3% BSA
and incubated overnight at 4 �C, followed by washing in PBS
with 0.02% Tween-20 and incubation with appropriate sec-
ondary antibodies in 3% BSA for 1 h at room temperature.
EdU was detected by click chemistry and described previously.
Samples were mounted in VECTASHIELD mounting medium
with 40,6-diamidino-2-phenylindole (DAPI) (Vector; H-1200)
before imaging. For general immunostaining experiments, cells
were seeded into 12-well plate with glass coverslip (and
transferred to a humidity chamber for immunostaining with
appropriate antibodies). Nuclear DNA either stained with
0.5 μg/ml DAPI for 10 min at room temperature and then
mounted with mounting medium for fluorescence (Vector;
H-1000) or directly mounted in mounting medium with DAPI
J. Biol. Chem. (2021) 297(3) 101049 15



Fused in sarcoma regulates DNA replication
for fluorescence (Vector; H-1200) before imaging. Images were
acquired using a Nikon A1RS Confocal Microscope under a
63× oil immersion objective. Images were organized using Fiji
ImageJ software. Proximity ligation assay foci were counted in
CellProfiler (version 3.1.5). DNA fibers were prepared and
analyzed as described (35). In brief, cells were pulsed with
50 μM 5-iodo-20-deoxyuridine and CldU for times indicated in
each experiment. Cells were lyzed directly on glass slides, fixed,
denatured, stained, and imaged with Keyence BZ-X710 mi-
croscope. Image analysis was done with ImageJ. A minimum of
150 fibers were measured for each independent experiment,
and analysis shows mean of three independent experiments
(biological replicates).

RNA-Seq and gene expression

Total RNA was isolated using the TRIzol reagent (Invi-
trogen; 15596018) following the manufacturer’s protocol and
treated with TURBO DNase (Invitrogen; AM2239). Then RNA
samples were sent to Novogene (Novogene Co, Ltd) for non-
stranded cDNA library building and sequencing at PE150 with
NovoSeq 6000. Raw read adapters were trimmed by fastp (95)
and then were mapped to human genome (GRCh38) by STAR.
The number of RNA-Seq reads mapped to each transcript was
summarized with featureCounts (96), and differential expres-
sion was called using DESeq2 (97). Three biological replicates
were used for each sample. Splicing events were identified by
MAJIQ2 (98)and filtered with an absolute dPSI ≥20%. GO
analysis was performed on MetaScape Web site (99). Signal
tracks were visualized by trackViewer (100). For qPCR anal-
ysis, total RNA was reverse transcribed into cDNA using Su-
perScript IV VILO Master Mix with ezDnase enzyme Kit
(Invitrogen; 11766050). The primers were designed by Beacon
Designer or National Center for Biotechnology Information
primer-blast online tool. qPCR reaction was performed on Bio-
Rad CFX RealTime PCR system using iTaq Universal SYBR
Green Supermix (Bio-Rad; 1725125).

RT analysis

Cells were prepared and collected accordingly (55) with the
following modifications. Approximately 10 million asynchro-
nous cells were collected and fixed in 70% ethanol, washed
with ice-cold PBS, and treated with Accutase (CORNING;
25-058-CI) for 20 min at room temperature. Cells were pel-
leted and resuspended in 2 ml PBS with 250 μl 10 mg/ml
RNaseA and incubated at 37 �C for 30 min and stained with PI
and then sorted to G1- and S-phase fractions by flow cytom-
etry. DNA extracts from sorted cells were prepared using with
DNeasy Blood and Tissue Kit (Qiagen; 69504) and single-end
100-base sequencing libraries prepared using TruSeq kit
(Illumina), and deep sequencing was performed on HighSeq
2500. The analysis was carried out according to Marchal et al.
(101). Briefly, reads were trimmed by fastp and mapped onto
the human genome (GRCh38) using bowtie2. The RT (S/G1

ratio) was calculated in a fixed window size of 20 kb. Then RT
raw data were used for quantile normalization and then
smoothened with Loess smoothing. The RT signal and
16 J. Biol. Chem. (2021) 297(3) 101049
replication signal enrichment analysis were performed by
deeptools (102). Two biological replicates were analyzed
separately. RT domains were identified by unsupervised Seg-
way deep learning tool (56–58) to de novo segment RDs in our
samples with the setting: resolution = 1000, num-labels = 3.
The running script can be found on GitHub (https://github.
com/biofisherman/FusReplication).

Immunoblotting

For whole-cell extraction, cells were resuspended in high
salt lysis buffer (50 mM Tris, pH 7.5, 300 mM NaCl,
10% glycerol, 0.5% Triton X-100, 2 mM MgCl2, 3 mM EDTA,
1% Protease Inhibitor Cocktail [Sigma, P8340-5 ml]) sup-
plemented with benzonase (50 U/ml) and incubated on ice
for 20 min followed by the addition of 4× SDS-loading buffer
and heating at 95 �C for 15 min. For CF, cells were resus-
pended in cytoskeleton (CSK) buffer (20 mM Hepes–KOH
[pH 7.4], 100 mM NaCl, 3 mM MgCl2, 300 mM sucrose,
and 1% Protease Inhibitor Cocktail [Sigma; P8340-5 ml])
containing 0.5% Triton X-100, incubated on ice for 20 min,
and centrifuged for 5 min at 5000g at 4 �C. The supernatant
was transferred to a new tube and saved as soluble fraction,
whereas the pellet/CF was washed twice in CSK buffer
without detergent and resuspended in CSK buffer with
benzonase (50 U/ml) for 20 min digestion at which time 4×
SDS loading buffer was added and the lysates heated to 95 �C
for 15 min. For immunoblotting, samples were separated by
SDS-PAGE and transferred to polyvinylidene fluoride
membranes and immunoblotted with primary antibodies and
LI-COR IRDye secondary antibodies (IRDye 800CW goat
anti-rabbit and IRDye 680RD goat antimouse) as described
(103, 104). Signals were acquired using Odyssey bio-systems
(LI-COR Biosciences). Immunoblotting results were analyzed
and organized with ImageStudio Lite software (LI-COR
Biosciences).

FUS purification and MS

Rapid IP MS of endogenous proteins assay of FUS was
carried out as described (42) with the following modifications.
Briefly, �20 million cells were counted and fixed with 20 ml
1% formaldehyde solution for 8 min at room temperature.
Fixation was quenched by adding 0.12 M glycine. The soluble
fraction was extracted in 10 ml of LB1 (50 mM Hepes–KOH
[pH 7.5], 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5%
NP-40, 0.25% Triton X-100, 1% Protease Inhibitor Cocktail
[Sigma; P8340-5 ml]) for 10 min with rotation at 4 �C. Cell
nuclei were pelleted and washed once with 10 ml LB2 (10 mM
Tris–HCl [pH 8.0], 100 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA, and 1% Protease Inhibitor Cocktail) and then resus-
pended in 500 μl LB3 (10 mM Tris–HCl [pH 8.0], 100 mM
NaCl, 2.5 mM MgCl2, 0.1% [w/v] sodium deoxycholate, 0.5%
Triton X-100, and 1% Protease Inhibitor Cocktail) with 500 U
benzonase and incubated at room temperature for 30 min.
Benzonase was deactivated with 2 mM EDTA and 1 mM
EGTA. To this mixture was added 50 μl 10% Triton X-100,
37.5 μl of 4 M NaCl, and LB3 to bring the total lysate volume
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of each sample to 1 ml. Digested lysates were briefly sonicated
using a 10 s/50 s on/off cycle for three times at 40% power and
clarified by centrifugation at 20,000g for 10 min at 4 �C, and
supernatants were incubated with 10 μg FUS antibody (Bethyl;
A300-302A) overnight at 4 �C with rotation. Subsequently,
50 μl of prewashed Dynabeads protein G (Invitrogen; 10003D)
was added to the lysates and incubated for additional 4 h at 4
�C. For Western blot, beads were washed sequentially with
1 ml LB3 and 1 ml radioimmunoprecipitation assay (RIPA)
buffer (50 mM Hepes–KOH [pH 7.5], 0.5 M LiCl, 1 mM
EDTA, 1% NP-40, 0.7% [w/v] sodium deoxycholate, and 1%
Protease Inhibitor Cocktail) once and boiled in 100 μl 2× SDS
buffer. For MS, beads were washed five times with 1 ml RIPA
buffer and twice in 1 ml of cold fresh prepared 100 mM
ammonium hydrogen carbonate (AMBIC) solution and pro-
cessed as described (42).

FUS rapid IP MS of endogenous proteins from FUS+/+ and
FUS−/− cells were subjected to tryptic digestion and orbitrap
MS using the filter-aided sample preparation method (105).
The tryptic digest solution was desalted/concentrated using an
Omix 100 μl (80 μg capacity) C18 tip. The solution was
pipetted over the C18 bed five times and rinsed three times
with water and 0.1% TFA to desalt. The peptides were eluted
from the C18 resin into 150 μl 70% acetonitrile, 0.1% TFA, and
lyophilized. The peptides were resuspended in 95:5 H2O:ace-
tonitrile, 0.2% formic acid, and analyzed in duplicate as
described later. Samples were analyzed in duplicate (two
technical replicates for each of the three biological replicates)
by HPLC–electrospray ionization–MS/MS using a system
consisting of a high-performance liquid chromatograph
(nanoAcquity: Waters) connected to an electrospray ionization
Orbitrap mass spectrometer (Q Exactive HF; Thermo Fisher
Scientific). HPLC separation employed a 100 × 365 μm fused
silica capillary microcolumn packed with 20 cm of 1.7 μm
diameter, 130 Å pore size, C18 beads (Waters BEH), with an
emitter tip pulled to approximately 1 μm using a laser puller
(Sutter Instruments). Peptides were loaded on column at a
flow rate of 400 nl/min for 30 min and then eluted over
120 min at a flow rate of 300 nl/min with a gradient of 5% to
35% acetonitrile, in 0.1% formic acid. Full-mass profile scans
were performed in the FT orbitrap between 375 and 1500 m/z
at a resolution of 120,000, followed by MS/MS HCD scans of
the ten highest intensity parent ions at 30% relative collision
energy and 15,000 resolution, with a mass range starting at
100 m/z. Dynamic exclusion was enabled with a repeat count
of one over a duration of 30 s.

The data analysis was performed using MetaMorpheus,
version 0.0.303 (106, 107). Peaks were read from the raw files,
using ThermoRawFileReader for MS1 peak centroiding. The
following search settings were used: protease = trypsin;
maximum missed cleavages = 2; minimum peptide length = 7;
maximum peptide length = unspecified; initiator methionine
behavior = Variable; fixed modifications = Carbamidomethyl
on C, Carbamidomethyl on U; variable modifications =
Oxidation on M; max mods per peptide = 2; max modification
isoforms = 1024; precursor mass tolerance = ±5 PPM; product
mass tolerance = ±20 PPM. The search database (canonical
human UniProt database downloaded 07/09/2017, appended
with common Repository of Adventitious Proteins contami-
nants) contained 20,336 protein entries. Target peptides below
0.01 peptide spectrum match q value were quantified by label-
free MS1 peak height with FlashLFQ (108, 109) (included in
MetaMorpheus), where the q value was estimated from target-
decoy competition with sequence-reversed decoys. The mean
of two technical replicates of each biological replicate was
used, and there were total three biological replicates for
following analysis. The proteins with average PSMs in three
biological replicates lower than 5 were filtered out for data
analysis.
Cell proliferation and survival assays

For cell proliferation assay, 500 cells were plated in each well
of 96-well plate, and each sample had six replicates and
monitored for 6 days from day 0 to day 5 by CellTiter-Glo 2.0
Assay (Promega; G9242) according to the manufacturer’s in-
structions. The luminescence was recorded by SpectraMax i3
(Molecular Devices). For cell viability assay, 1000 cells/well
were plated in 96-well plate with drug-free medium, and
varying amounts of drugs were added after 12 h in fresh me-
dium. Cell survival was assayed as same as cell proliferation
assay after 3 or 5 days as indicated in the legend to the figure.
Data were analyzed and organized by Prism 8.
iPOND assay

The iPOND experiments were performed as described
(35, 110) with minor modifications. Briefly, �108 HEK293T
cells were pulse labeled with 20 μM EdU for 15 min followed
by a 1 h chase with 20 μM thymidine. To induce replication
stress, cells were treated with 2 mM HU after EdU labeling for
2 h, and then chased with 20 μM thymidine for 1 h. Each plate
was crosslinked with 10 ml 1% formaldehyde in PBS for 20 min
and quenched by adding 1 ml of 1.25 M glycine for 5 min. The
conjugation of biotin to EdU was carried out by click chem-
istry reaction for 2 h at room temperature in click reaction
buffer (10 μM biotin–azide, 10 mM sodium-L-ascorbate, 2 mM
CuSO4, and 800 μM Tris(3-hydroxypropyltriazolylmethyl)
amine in PBS) and followed by washing once in 0.5% BSA in
PBS and once in PBS. Cells were resuspended in LB3 with 500
U benzonase (Santa Cruz; sc-202391) and incubated at room
temperature for 30 min. Digested lysates were briefly sonicated
using a 10 s/50 s on/off cycle for four times at 40% power and
clarified by centrifugation at 8000g for 10 min at 4 �C, and
supernatants were incubated overnight with 50 μl magnetic
streptavidin beads (Dynabeads MyOne Streptavidin T1; 65601)
at 4 �C with rotating. Beads were washed once in 1 ml washing
buffer (20 mM Tris–HCl [pH 8.0], 500 mM NaCl, 2 mM
EDTA, 0.1% [w/v] sodium deoxycholate, and 1% Triton
X-100), once with 1 ml RIPA buffer (50 mM Hepes–KOH [pH
7.5], 0.5 M LiCl, 1 mM EDTA, 1% NP-40, 0.7% [w/v] sodium
deoxycholate, and 1% Protease Inhibitor Cocktail) and twice in
LB3 buffer. Proteins were eluted by boiling in 2× SDS buffer
for 25 min.
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Statistical processing

Statistical analysis information including individual repli-
cates and biological replicates number, mean or median, and
error bars are explained in the legends to the figures. The
statistical tests and resulting p values are shown in the legends
to the figures and/or figure panels.
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