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Essential worker absenteeism has been a pressing problem in
the COVID-19 pandemic. Nearly 20% of US hospitals experienced
staff shortages, exhausting replacement pools and at times requir-
ing COVID-positive healthcare workers to remain at work. To
our knowledge there are no data-informed models examining
how different staffing strategies affect epidemic dynamics on a
network in the context of rising worker absenteeism. Here we
develop a susceptible–infected–quarantined-recovered adaptive
network model using pair approximations to gauge the effects
of worker replacement versus redistribution of work among
remaining healthy workers in the early epidemic phase. Param-
eterized with hospital data, the model exhibits a time-varying
trade-off: Worker replacement minimizes peak prevalence in the
early phase, while redistribution minimizes final outbreak size.
Any “ideal” strategy requires balancing the need to maintain a
baseline number of workers against the desire to decrease total
number infected. We show that one adaptive strategy—switching
from replacement to redistribution at epidemic peak—decreases
disease burden by 9.7% and nearly doubles the final fraction of
healthy workers compared to pure replacement.

COVID-19 | pairwise approximation | network model |
infectious disease | essential workers

Essential worker absence rates during the COVID-19 pan-
demic approached 30%, resulting in staff shortages in many

sectors, including healthcare (1, 2). Strategies to manage absen-
teeism typically invoke worker replacement, redistributing work
among healthy workers, and recruiting retired workers, despite
scant data to assess risk of these interventions (3). The ratio-
nale stems from traditional mass-action models, which predict
that replacement of sick workers leads to smaller epidemic
peaks and sizes. This finding assumes a replacement worker
randomly enters an environment of average risk. However, adap-
tive network models (4) suggest that under certain conditions,
replacement workers are at greater risk of infection due to
their exchange of relations (i.e., edges) with the sick individ-
uals whom they replace. This “relational exchange” form of
replacement can paradoxically result in larger epidemic sizes
and accelerated transmission (5). It is unclear how relational
exchange and redistribution of work affect epidemic dynamics
on a network or under what conditions either one is prefer-
able. To this end, we collected healthcare worker (HCW) contact
surveys and absenteeism data from three COVID and non-
COVID units in a Florida hospital during the early epidemic.
These data inform parameterization of a susceptible–infected–
quarantined-recovered pair approximation model. Susceptibles
(S ) can become infectious (I ) at rate βI , with either recovery
(R) after an average of 5 d (1/γI ) or diagnosis at rate ε, with
subsequent 10-d quarantine (Q) before recovery (6).

In the replacement model, Q individuals are replaced from a
staffing pool at compartment-specific rates rS , rI , rR , reflecting
local community prevalence (2.97 to 9%) (7). Outgoing workers

exchange edges with replacements. In the redistribution model,
quarantined worker roles are assumed by remaining workers,
without replacement. See SI Appendix for more detail.

Results
HCW absence rates at epidemic peak reached 28% in the non-
COVID general units, tracking with HCW incidence (Fig. 1).
Only in these two non-COVID units did the COVID-related
absence proportion constitute a majority, responsible for upward
of 80% of absenteeism. Despite this heterogeneity, relative risk
of infection for non-COVID unit HCWs versus COVID unit
HCWs was 4.6 (95% CI 2.1 to 10.2), due in part to delayed
interventions (e.g., N95 masks) among HCWs in non-COVID
units. This is consistent with evidence suggesting that with
effective personal protective equipment (PPE), patient–HCW
transmission is minimal (8), while less stringent precautions
between HCWs can increase the risk for superspreading and
asymptomatic transmission (9, 10).

To Minimize Outbreak Size. Our models are parameterized by data
shown in Fig. 1 (for disease parameters) and a contact survey
administered to 464 HCWs (for network parameters) during the
outbreak month. See SI Appendix for details and the survey. Fig.
2 compares replacement versus redistribution over a range of β,
ε, and rI , as proxies for PPE use, testing rate and sensitivity,
and community prevalence, respectively. If the goal is to mini-
mize outbreak size, neither strategy is clearly preferable across
parameter ranges (Fig. 2 A–C).

For example, to minimize outbreak size at hospital-estimated
β and rI , redistribution is preferable with a test-and-trace diag-
nosis approach (ε < 0.125). However, as diagnosis rates increase
into the realm of frequent screening (ε = 0.25, biweekly test-
ing with 89% sensitivity), replacement becomes preferred to
minimize outbreak size (Fig. 2 B and E).

To Minimize Epidemic Peak. For the hospital parameterization
with biweekly screening (ε = 0.25, implying resource-rich capa-
bilities), replacement minimizes epidemic peak when community
prevalence rI < 10% (Fig. 2F). When community prevalence
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Fig. 1. Weekly unit absence percentage (bars) by hospital unit type and
total HCW incidence (magenta line). Unit types are Gen, general; Int, inter-
mediate; and ICU, intensive care. COVID-related absences are dark shades.
Pre-COVID 2019 absences are black dashed lines. Units with less incidence—
counterintuitively COVID (Cov) units—generally had more PPE use (N95
masks) between HCWs, fewer staff shortages, and minor excess absen-
teeism. Universal surgical mask (but not N95) use and patient (but not HCW)
screening were hospital-wide policies. N95 masks and break-room distanc-
ing between HCWs were introduced in Gen1 and Gen2 units in the second
and the third week, respectively, but were in use from week 0 in Cov units.

is >10 to 15%, redistribution is increasingly preferred. At very
low ε, these two regimes blur, with replacement losing advantage
when community prevalence is <10% (Fig. 2I).

At higher β, replacement leads to faster early spread by adding
fuel to the outbreak (proved analytically in SI Appendix, not pic-
tured), but counterintuitively results in lower epidemic peak I(t)
(Fig. 2 D, G, and H).

Adaptive Strategy and Sensitivity Analysis. To reap the fruits of
replacement in the early phase (lower epidemic peak) and redis-
tribution in the later phase (lower epidemic size), we design a

compromise “adaptive” strategy that switches from replacement
of workers to redistribution of work just before the epidemic
peak (Fig. 2 G and H, dashed line). The result is a 9.7% decrease
in final disease burden (I + R + Q), nearly doubling the fraction
of total healthy unaffected workers by the end of the outbreak.
Sensitivity analyses for effectiveness (decrease in disease burden)
of the adaptive strategy versus replacement and redistribution as
a function of diagnosis rate ε and community prevalence rI show
that the success of the adaptive strategy is minimally sensitive to
realistic variations in ε and rI (Fig. 2I).

Discussion
During an epidemic, a workplace needs to protect workers from
illness (by limiting spread) and avoid absenteeism to preserve a
sufficient work force (by decreasing epidemic peak). Our model
defines trade-offs in achieving both goals and suggests staffing
strategies for resource-poor and resource-rich settings.

While the Centers for Disease Control and Prevention (CDC)
and Center for Medicare and Medicaid Services (CMS) generally
recommend increased testing rates in response to rising commu-
nity prevalence for certain locales like long-term care facilities
(11), our model shows that the utility of increasing diagnosis
rates (ε) in a workplace context changes in subtle ways over the
course of an outbreak, depending on capability to replace or
redistribute staff, varying community prevalence (rI ), PPE use,
and transmission rate (β).

Before the epidemic peak, if the priority is to preserve a
baseline work force (e.g., critical infrastructure plants), then
replacement of sick workers generally minimizes peak incidence
at the expense of more total staff infections (Fig. 2 G and H).

At the epidemic peak, redistribution generally minimizes epi-
demic size, while being an inevitable albeit short-term response
to severe absenteeism. In a resource-poor setting with limited
testing capacity (low ε), redistribution is also preferred to limit
outbreak size, as it avoids healthy replacements as “fuel” for
epidemic spread (Fig. 2 B, E, and I).

A

D E F

B C G

I

H

Fig. 2. Phenomenology of the replacement and redistribution models, starting from I(0) = 0.01. Fixed empirical parameters: average degree k̄ = 28 (SI
Appendix), γI = 0.2, γQ = 0.1, and rr = 0.01 (6, 7). (A–C) Disease burden (I + R + Q) after 1 mo as we vary key parameters. No optimal strategy is observed.
(D–F) Trade-offs between the two strategies in minimizing outbreak size (green curve, difference in R at t = 30 d) and peak prevalence [red curve, difference
in max[I(t)]]. Population size is normalized to initial workforce but can be >1 because of replacement workers. (G and H) The difference in temporal spread
between workplaces with different strategies, using parameters from A and D with β= 0.03 but initial conditions I(0) = 0.1%. An “adaptive” strategy that
initially replaces sick workers but switches to redistribution around the epidemic peak (t = 17 d) leads to a lower epidemic peak (G), while almost doubling
the fraction of healthy workers by the end of the outbreak (H). (I) Heatmaps plot the difference in H curves at t = 30 d, comparing the adaptive strategy
to replacement (Left) and redistribution (Right) over a wide range of testing resources and community prevalence. The adaptive strategy leads to more
healthy workers in all but the most extreme scenarios (rI and ε> 0.4).
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While some resource-rich hospitals and institutes of higher
education regularly screen all staff, most US hospitals test and
trace responsively based on symptoms or exposure, with subse-
quent quarantine and replacement (12). With regular screening
(Fig. 2 F and I), the preferred strategy hinges on community
prevalence (rI ).

By increasing the likelihood of replacement with an infectious
worker, high community prevalence decreases the effectiveness
of testing, quarantine, and replacement. This mechanism qual-
ifies general CDC guidelines to test responsively at low preva-
lence but more regularly as prevalence rises. While responsive
testing can be appropriate in resource-poor settings, in resource-
rich settings where worker replacement is key (like the hospital
parameterization), our results support a strategy of baseline
weekly staff screening with an increase to biweekly screening
as community prevalence increases from 5 to 10%. This is con-
sistent with CDC’s more aggressive “expanded screening” and
CMS long-term care facility guidelines (11), although the specific
numerical cutoff is subject to each workplace’s parameterization
and resources.

Decisions to replace or redistribute are not mutually exclusive.
Redistribution as a policy clearly has limits, for safety and mental
health reasons. Yet unique skill sets also limit replacement in
many essential worker settings like healthcare. Our model is a
first step toward recognizing that replacement of a sick worker
with a healthy worker is not necessarily the de facto preference.

The model demonstrates that the optimal staffing strategy
depends on the stage of the epidemic and that it is possi-
ble to adaptively “tune” between strategies to minimize peak
prevalence in the early phase (through worker replacement)
and minimize outbreak size afterward (through redistribution
of work). This trade-off between epidemic peak and size has
not been adequately considered in theory or practice. How this
trade-off translates into policy prescription is complex and mer-
its a cost–benefit analysis beyond our scope. While the adaptive
staffing strategy’s incremental benefits are substantial, its incre-
mental costs are challenging to valuate across essential work
sectors as varied as healthcare, manufacturing, and agriculture.
In light of these uncertainties and our stylized model without
explicit heterogeneity, specific staffing recommendations should

be interpreted with caution, particularly when extrapolating to
different workplaces.

More extensive models are needed before using these results
as a basis to allocate resources. With appropriate parameter-
ization, the model can apply to a variety of workplaces. In
the context of a resource-rich hospital, a potential improved
staffing strategy is early phase replacement with vigorous test-
ing, followed by temporary redistribution of work at epidemic
peak. Since absenteeism can reach 30% with minor increases in
workplace incidence, even small gains in minimizing outbreak
size can be significant in mitigating staff shortages and disease
burden, especially given recent, more transmissible COVID-19
variants (13).

Materials and Methods
HCW mean degree k̄ = 28 in our contact survey. HCW absences in Fig. 1
track unit-based employees, including nurses, patient care assistants, nurse
managers, and support technicians (Datasets S1 and S2).

Flow between states and parameters are described in the main text and
SI Appendix. Replacement rates for each compartment rS , rI , rR are parame-
terized from local data (7). Diagnosis rate ε = (testing rate× test sensitivity),
with values in main text and Fig. 2.

Absence is operationalized as a missed work shift for unplanned
reasons, with absence rate = (total absent shifts)/(total worked
shifts). COVID-related absences, expressed as percentage of total
missed shifts, include those secondary to diagnosis or pending test
results.

All cases were diagnosed by RT-PCR nasal swab. The University of
Florida institutional review board approved the study (IRB202001069) with
documentation of informed consent waived.

Data Availability. Derivations and data are included in the article and SI
Appendix.
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