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Range expansions accelerate evolution through multiple mech-
anisms, including gene surfing and genetic drift. The inference
and control of these evolutionary processes ultimately rely on the
information contained in genealogical trees. Currently, there are
two opposing views on how range expansions shape genealo-
gies. In invasion biology, expansions are typically approximated
by a series of population bottlenecks producing genealogies with
only pairwise mergers between lineages—a process known as the
Kingman coalescent. Conversely, traveling wave models predict
a coalescent with multiple mergers, known as the Bolthausen–
Sznitman coalescent. Here, we unify these two approaches and
show that expansions can generate an entire spectrum of coa-
lescent topologies. Specifically, we show that tree topology is
controlled by growth dynamics at the front and exhibits large
differences between pulled and pushed expansions. These differ-
ences are explained by the fluctuations in the total number of
descendants left by the early founders. High growth cooperativ-
ity leads to a narrow distribution of reproductive values and the
Kingman coalescent. Conversely, low growth cooperativity results
in a broad distribution, whose exponent controls the merger sizes
in the genealogies. These broad distribution and non-Kingman
tree topologies emerge due to the fluctuations in the front shape
and position and do not occur in quasi-deterministic simulations.
Overall, our results show that range expansions provide a robust
mechanism for generating different types of multiple mergers,
which could be similar to those observed in populations with
strong selection or high fecundity. Thus, caution should be exer-
cised in making inferences about the origin of non-Kingman
genealogies.

range expansion | coalescent | neutral genetic diversity |
traveling wave | offspring distribution

The genealogy of a population provides a window into its
past dynamics and future evolution. By analyzing the relative

lengths of different branches in the genealogical tree, we can esti-
mate mutation rates and the strength of genetic drift (1), or infer
historical population sizes (2) and patterns of genetic exchange
between species (3). At the same time, we can use the structure
of genealogies to make predictions about the speed of evolution
(4) and even answer important practical questions, such as what
the next strain of influenza will be (5).

Typically, the full ancestry is not known, and one has to
infer its structure based on DNA samples from the population
using theoretical models. The most widely used model is the
Kingman coalescent (6, 7). The Kingman coalescent describes
the genealogies of a well-mixed population of constant size, in
which all mutations are neutral. Because of its simplicity, many
statistical properties of the Kingman coalescent can be calcu-
lated exactly (7). These mathematical results have formed the
basis of many commonly used techniques to infer genealogical
trees from DNA sequences. The defining characteristics of the
trees generated from the Kingman coalescent are a large num-
ber of early mergers and long branches close to the common
ancestor. Importantly, the Kingman coalescent contains only

pairwise mergers between lineages. However, several stud-
ies have attempted to test these predictions directly in real
populations and found significant deviations (8–11).

To resolve the inconsistencies between observed genetic
diversity and theoretical predictions, numerous extensions of
the classic Kingman coalescent have been proposed (12–
16). For example, many studies have analyzed the effects
of time-dependent population sizes and spatial structure on
the coalescent (2, 17). Despite providing better fits to the
data, this generalized Kingman coalescent does not capture
some of the qualitative features of empirical genealogies—
namely, the existence of multiple mergers in the genealogical
trees (11, 18).

Mathematically, the genealogies with multiple mergers can be
described by a more general coalescent model known as the
Λ-coalescent (19–21). Several mechanisms that give rise to such
coalescents have also been proposed. Theoretical studies have
shown that highly fecund populations have multiple mergers in
their genealogies (21, 22). Likewise, selective sweeps can lead
to fat-tailed distributions in the number of offspring, which gen-
erate genealogies with multiple mergers. However, these mecha-
nisms have limited applicability—most species have few offspring
and, excluding microbes, typical population sizes and selective
pressures are unlikely to have a large effect on genealogies (23–
25). Here, we show that a ubiquitous demographic mechanism
generates genealogical trees with a wide range of topologies,

Significance

Spatial dynamics are important for understanding genetic
diversity in many contexts, such as cancer and infectious
diseases. Coalescent theory offers a powerful framework
for interpreting and predicting patterns of genetic diver-
sity in populations, but incorporating spatial structure into
the theory has proven difficult. Here, we address this long-
standing problem by studying the coalescent in a spatially
expanding population. We find the topology of the coa-
lescent depends on the growth dynamics at the front, but
not on the functional form of the growth function. Instead,
the transition between coalescent topologies is determined
by a single dynamical parameter. Our theory makes pre-
cise predictions about the effects of population dynamics on
genetic diversity at the expansion front, which we confirm in
simulations.

Author contributions: G.B. and K.S.K. designed research; G.B., O.H., and K.S.K. performed
research; G.B. analyzed data; and G.B., O.H., and K.S.K. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission. N.H.B. is a guest editor invited by the Editorial
Board.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: korolev@bu.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2026746118/-/DCSupplemental.y

Published August 19, 2021.

PNAS 2021 Vol. 118 No. 34 e2026746118 https://doi.org/10.1073/pnas.2026746118 | 1 of 9

http://orcid.org/0000-0003-3561-024X
http://orcid.org/0000-0002-1312-5975
http://orcid.org/0000-0003-1988-0645
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:korolev@bu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://doi.org/10.1073/pnas.2026746118
https://doi.org/10.1073/pnas.2026746118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2026746118&domain=pdf


A

B

C

D

Fig. 1. Shape of genealogies in expanding populations depends on spatial location of sampled individuals. The genealogies in two limiting sampling
regimes are shown schematically. (A) When sampling is done over large distances along the expansion, the coalescence time is mainly determined by
the motion of the front. (B) In this regime, the lineage coalescence depends on spatial locations, and genealogies correspond to a series of replace-
ment events. (C) When sampling is done at the front, lineage coalescence is independent of spatial location, and the motion of the front does not
play an important role. (D) In this regime, a characteristic coalescence time Tc emerges which is determined by the topology of the genealogical
tree.

including topologies with exclusively pairwise mergers as well
as topologies with multiple mergers. This mechanism relies on
unusually large genetic drift at the leading edge of expanding
population fronts. Such expansions can occur in a variety of con-
texts, such as range expansions (26), range shifts due to climate
change (27), or the growth of bacterial colonies (28, 29) and
tumors (30, 31).

Despite their importance, very little is known about the
genealogies of spatially expanding populations. Two approaches
have been used previously to study this problem, often leading to
very different conclusions (32–34). The most common approach
is to approximate spatial expansions by a series of discrete bot-
tlenecks at the front (23, 32, 35). This is known as the serial
bottleneck approximation, and it implicitly assumes that genealo-
gies along the expansion are described by a series of replacement
events (as illustrated in Fig. 1 A and B), while those at the
leading edge are described by the Kingman coalescent, with a
potentially time-dependent population size (33, 36). The King-
man structure of genealogies has also been recently proven for
a certain class of range expansions with negative growth rates
at the leading edge (37). An alternative approach, introduced
in ref. 34, is based on an analogy between spatial expansions
and traveling waves describing the increase in fitness in a pop-
ulation of constant size under strong selection (38–40). Using
heuristic arguments, supported by extensive numerical simu-
lations, Brunet et al. (34) conjectured that expansions under
the Fisher–Kolmogorov–Petrovsky–Piskunov (FKPP) universal-
ity class are described by a different type of coalescent, known

as the Bolthausen–Sznitman coalescent.∗ Unlike the standard
Kingman coalescent, in which only pairwise mergers between
branches are allowed, the Bolthausen–Sznitman coalescent is
characterized by large merger events, during which a substan-
tial fraction of branches can coalesce simultaneously (42, 43).
Despite subsequent investigations, reconciling these two dia-
metrically opposed points of view is still an open problem
(33, 36, 40).

Recent studies by the authors point to a potential resolu-
tion of the above-mentioned contradiction (44, 45). Specifi-
cally, we examined whether population dynamics at the front
could lead to differences in the rate of diversity loss during
range expansions. Surprisingly, we found that a dependence of
the growth or migration rates on population density has large
effects on genetic diversity. These effects can be grouped into
three distinct regimes. When density dependence is positive and
large—such as when growth and migration are highly cooper-
ative, for example—the time scale over which diversity is lost
scales linearly with the carrying capacity. This is the scaling
expected from the Kingman coalescent and is consistent with the
serial bottlenecks view. However, when cooperation is reduced,
large fluctuations in density at the front tip lead to sublinear

*Such expansions fall within the broader class of “pulled” expansions, and we will usu-
ally refer to them by this term. Subsequent work rigorously proved that fitness waves
are described by the Bolthausen–Sznitman coalescent (41), but no such proof exists for
pulled spatial expansions, to our knowledge.
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scaling, as would be expected if multiple mergers were present in
the genealogies (ref. 7, section 3.2). Finally, when cooperation is
absent, the time scale of diversity loss scales logarithmically with
the carrying capacity, as would be expected from a population
described by the Bolthausen–Sznitman coalescent (see section
3.2 of ref. 7 and references therein). These results lead to a natu-
ral hypothesis, that these changes in the rate of diversity loss are
a result of changes in the underlying genealogies, driven by large
fluctuations in the low-density region of the front.

In this paper, we elucidate the connection between population
dynamics and genealogies during expansion. We focus on under-
standing the topology of genealogies in the well-mixed region
close to the front of the expansion (Fig. 1 C and D). Using sim-
ulations, we obtain genealogical trees and examine how they
change as growth dynamics vary. We indeed find that changes
in growth cooperativity lead to a transition from the Kingman
to a non-Kingman coalescent with multiple mergers. The fluc-
tuations in the position and shape of the expansion front are
crucial to these results because we observe that artificially sup-
pressing fluctuations leads to large changes in the structure of
the genealogies.

To explain our findings, we developed an effective model of
the expansion front using analytical arguments. We showed that
the front can be treated as a well-mixed population with a broad
distribution of number of offspring (reproductive values). The
tail of the distribution follows a power law with an exponent
that depends only on the ratio of the expansion velocity and the
geometric mean of the growth and dispersal rates at low pop-
ulation densities. The topology of the genealogies is described
by a Λ-coalescent and is, in turn, determined by the exponent
(20–22). Thus, the distribution of merger sizes in the genealo-
gies of expanding populations is dependent on the growth
dynamics.

Simulation Results
Expansion Model. We simulated a population expansion using a
setup similar to the classic stepping stone model (46). Specif-
ically, we consider a one-dimensional landscape of demes
(patches). For computational efficiency, we use a simulation box
of L= 300 demes, which moves with the expansion front such
that the box is approximately half-filled at all times. Each gen-
eration, individuals migrate between neighboring demes with
probability m/2 and reproduce. The number of descendants is
determined by the growth function that depends on the local
population density (see Materials and Methods for details). On
average, the population density increases to a maximum value set
by the carrying capacity N . All individuals are resampled every
generation, so demes that are at carrying capacity still experience
genetic drift. As a result, the model reduces to a Wright–Fisher
process in the bulk and a branching process with Poisson dis-
tributed number of offspring at the front. All simulations are
initiated from a random configuration generated after a “burn-
in” time of 1,000 generations starting from a half-filled box. In
order to efficiently simulate the allele frequency distributions
shown later (see Fig. 5) and in SI Appendix, Fig. S3, we use a
simpler model in which the front comprises two identical but dis-
tinctly labeled subpopulations, as in refs. 44 and 45. After the
initial burn-in time, the population in each deme is assigned from
a binomial distribution with sample size nk and success probabil-
ity 0.5, where nk is the population size in deme k after the burn-in
time.

Spatial Self-Averaging. Range expansions are inherently hetero-
geneous in time and space. Therefore, ancestral relationships
can, in general, depend on the times and locations of samples
from the population. Consider two extreme sampling scenar-
ios of either sampling individuals uniformly from the colonized
range (Fig. 1A) or sampling all individuals from the front (Fig.

1C). In both cases, coalescent events primarily occur when
ancestral lineages are at the front, because genetic drift in the
population bulk is much weaker. When two samples are taken
from distant spatial locations, their lineages need to “wait” until
both are at the front. Viewed backward in time, this occurs when
the front recedes past the left-most lineage (Fig. 1 A and B).
Thus, in this sampling protocol, the shape of the genealogical
tree explicitly depends on the spatial separation between the
sampling locations. In contrast, there is no position dependence
when all individuals are sampled at the front, because all lineages
start merging at the same time (Fig. 1 C and D). Here, we focus
exclusively on the second regime and leave the characterization
of the first regime and the transition region between them as
topics for future research.

Previous work suggests that, over long time scales, lineages
sampled at the front can be viewed as if they are part of a well-
mixed population, comoving with the front (44, 47). For this
approximation to be valid, the time necessary for the front to
become well mixed, τm , must be shorter than the coalescence
time (see also SI Appendix, section 1 for the precise definition
of τm). In other words, we require a separation of time scales
between mixing and coalescence at the front.

To test whether the mixing time τm is indeed much shorter
than the coalescence time, we tracked the spatial distribution of
ancestors of individuals at the front. Specifically, we performed
30 independent simulations and sampled individuals from two
spatial locations, one closer to the front and the other closer to
the bulk. The two sampling locations are shown in Fig. 2A, Inset
(blue and orange dots) together with the final front (gray line)
for each run. The main panels show the distribution of ances-
tors of individuals from the two sampling locations shortly after
the sampling time (Fig. 2A), and at a time close to τm (Fig. 2B).
Importantly, we found that the time necessary for the ances-
tor distributions to become independent of sampling location
was much shorter than the time to reach the common ancestor
for the whole front. For example, from Fig. 2B, we estimated
τm ≈ 102 generations, compared to Tc ≈ 103. These results show
that the sampling positions do not affect genealogies, and, there-
fore, the lineages can be considered exchangeable, which is a key
requirement for describing them using the coalescent theory.

Structure of Genealogies. We performed simulations using three
levels of cooperativity that are expected to lead to qualitative dif-
ferences in the genealogies because they correspond to pulled,
semi-pushed, and fully pushed expansions (44). The genealogy
of the population was obtained using the procedure described in
Materials and Methods. The examples of these genealogies shown
in Fig. 3 have the qualitative features predicted by the theory. In
fully pushed expansions, genealogies have only pairwise mergers,
whereas semi-pushed and pulled expansions show several exam-
ples of multiple mergers. Moreover, the genealogies in pulled
expansions appear highly skewed, with most mergers occur-
ring on one side of the tree, while, in fully pushed expansions,
branching is more symmetric. These features are consistent with
our hypothesis that cooperativity drives the transition from the
Bolthausen–Sznitman to the Kingman coalescent.

To get a more quantitative measure of the changes in topology
of the genealogies during expansion, we calculated two sum-
mary statistics that can distinguish between coalescents: the
site frequency spectrum (SFS), and the two-site frequency
spectrum (2-SFS) (48, 49).† We found that both SFS and

†Other summary statistics have also been used to describe the shape of genealogical
trees. Perhaps the most popular of these is the total tree length, which determines the
number of segregating sites in sequencing data. However, this metric is known to be
very sensitive to demographic expansions and is not a reliable indicator of coalescents
with multiple mergers (50, 51).
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Fig. 2. Genetic processes in spatially expanding populations are effectively
well mixed on time scales larger than the mixing time of the front. (A) The
distribution of initial locations from which the ancestor position was tracked
backward in time. Due to the stochastic nature of the front, the distribution
of sampling locations has a finite width with respect to the average front
profile shown in gray. (Inset) The final front from 30 independent runs used
to generate histograms in A. For each run, two subpopulations were chosen,
one close to the bulk (blue) and another close to the edge of the front
(orange), and the locations of their ancestors were recorded at different
times in the past (see SI Appendix, section 5 for exact sampling procedure).
(B) Distribution of locations of ancestors of individuals shown in A from 100
generations in the past.

2-SFS supported our hypothesis that genealogies change from
the Kingman to a non-Kingman coalescent at the transition
between fully pushed and semi-pushed expansions. Because it
is simpler to quantitatively test the SFS against the theoret-
ical predictions, we report these results here and refer the
interested reader to SI Appendix, section 3 for the analysis of
the 2-SFS.

The SFS provides a histogram of the number of sites in the
genome that have a given frequency of mutations in the sample.
Assuming mutation rates are constant throughout the genome,
the expected SFS is given by the length of branches with a given
number of terminal nodes (leaves) (7, 52). We are particularly
interested in the shape of the SFS for high-frequency muta-
tions (allele frequencies f ≈ 1), because the SFS is qualitatively

different between the Kingman and the Bolthausen–Sznitman
coalescent in this regime.

High-frequency mutations occur on internal branches that
have a large number of leaves. Genealogies with such muta-
tions are highly skewed because one branch can contain the
majority of leaves. Skewed trees are unlikely in the Kingman coa-
lescent because each pairwise merger joins lineages randomly,
independent of the number of their leaves. Thus SFS monotoni-
cally decays with the mutant frequency. In contrast, SFS for the
Bolthausen–Sznitman coalescent is expected to have an uptick at
high f , related to a significant probability that nearly all lineages
coalesce in a single merger. Consistent with our hypothesis, we
indeed find a monotonic SFS for fully pushed expansions (Fig.
4A), while semipushed and pulled expansions display the uptick
at high allele counts characteristic of coalescents with multiple
mergers (Fig. 4 B and C). Moreover, both fully pushed and semi-
pushed expansion SFS agree quantitatively with the predictions
from the Kingman coalescent and the Beta-coalescent, respec-
tively (see SI Appendix, section 3 for details). In the case of pulled
expansions, we find the quantitative agreement is less good,
which we believe is due to the very long relaxation times required
to reach steady state in the pulled regime (see SI Appendix,
section 2). Nevertheless, taken together, these results clearly
establish that the genealogies of the three expansion classes have
distinct topologies.

Theoretical Results
Descendant Distribution in Stochastic Fronts. To develop an intu-
itive understanding of how genealogies emerge in range expan-
sions, we developed a theoretical framework based on con-
tinuous reaction−diffusion equations. In this framework, it is
easier to examine the dynamics of clones forward in time and
relate the expansion of these clones to mergers in the genealogy.
Previous work has shown that the frequency of a subpopula-
tion fi(t , ζ) within the front changes according to the following
equation (44, 47):

∂fi
∂t

=D
∂2fi
∂ζ2

+

[
v + 2D

∂ lnn

∂ζ

]
∂fi
∂ζ

, [1]

where D is the effective diffusion constant which describes the
migration of individuals, v is the velocity of the front, n(ζ) is the
population density, and ζ = x − vt is the position along the front
in the comoving reference frame.

From Eq. 1, we can calculate the fraction of the popula-
tion descended from a single individual at some position ζ0 as
t→∞. In SI Appendix, section 1, we show that fi(t , ζ) = const.
after some time O(τm). To quantify the reproductive success
of an individual initially located at ζ0, we define the reproduc-
tive value u(ζ0) which is equal to the limit as t→∞ of fi(t , ζ).‡

This result also provides a mathematical definition of the mix-
ing time τm which we introduced in Simulation Results. On time
scales longer than τm , the distribution of surviving clones fi(t , ζ)
loses all spatial information, and u(ζ0) is simply the fraction
of individuals in the population descended from an ancestor
located at ζ0.

Because u varies strongly with ζ0, individuals from differ-
ent locations can have wildly different numbers of descendants.
When coarse grained over the mixing time, the initial spatial
dependence of u gives rise to a distribution of reproductive val-
ues in the effectively well-mixed population at the front. We

‡The notion of reproductive value is commonly used in population genetics in the con-
text of populations with an age structure or populations with sexual reproduction to
denote the long-term contribution to the future population of an individual or gene
(53, 54). This usage is analogous to ours, with the distribution over spatial location
replacing the distribution of individuals across ages or of genes across pedigrees.
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Fig. 3. The genealogical tree of spatially expanding populations changes as the expansion transitions from pulled to pushed. Sample genealogies from
(A) fully pushed, (B) semipushed, and (C) pulled expansions are shown. These trees were generated by randomly sampling 20 individuals from the first 15
occupied demes from the front, after fixation. For illustration purposes, we chose representative trees from our simulations that provided good visual clarity.

calculate this distribution in SI Appendix, section 1 and show that
it has a power law tail of the form

P(u)∼ u−2−α. [2]

The Origin of Different Topologies. The exponent α is calcu-
lated exactly and depends only on v/vF , the ratio between the
actual expansion velocity and the velocity of the corresponding
FKPP equation vF = 2

√
r0D , that would occur in the absence of

positive feedback,

α=
2
√

1− v2
F/v

2

1−
√

1− v2
F/v

2
. [3]

Note that the specific form of the density dependence in the
growth and dispersal rates does not enter Eq. 3. In fact, all of our
analyses have been carried out for an arbitrary model with short-
range dispersal. Thus, the tails of P(u), and all of the properties
of the genealogies derived from them, only depend on a single,
easy-to-measure parameter (55).

For high cooperativity, when v/vF is greater than a critical
value νc = 3/2

√
2, the exponent α is greater than one, and the

variance of u is finite.§ Therefore, the clone frequencies only
change by small amounts each generation, and genealogies are
described by the Kingman coalescent (56). For intermediate
values of cooperativity, defined by 1< v/vF <νc , the exponent
α is less than one, and the variance of P(u) diverges. This
leads to occasional large jumps in clone frequencies and the
appearance of multiple mergers in the coalescent (21). Finally,
when v/vF = 1, we have α= 0 and P(u)∼ u−2, which leads to
a Bolthausen–Sznitman coalescent when the process is viewed
backward in time (21, 57).

To verify the change in descendant distribution predicted by
theory, we measured clone sizes during range expansions in sim-
ulations. Direct measurements of P(u) are challenging because
the distribution emerges only over a time scale of O(τm), which
we cannot determine precisely. However, we can circumvent this
problem in two limits: on short time scales, on the order of a few
multiples of τm , and, on long time scales, when the population
comprises two clones. In the first limit, we can consider all indi-
viduals at the front at some initial time as clones of size one. As
the front expands, some clones go extinct while others increase
in size. For short time scales (comparable to τm), clone sizes are
small, and each can be modeled as an independent branching

§The critical value is determined from Eq. 3 by finding the value of v/vF for whichα= 1.

process. In the second limit, we can track the dynamics of a popu-
lation with only two clones—which we can think of as two alleles.
As both alleles are neutral, the dynamics can be described by the
frequency of one of them, which can be derived from the more
general Λ-Fleming−Viot process (57, 58).

The branching process calculation makes two testable predic-
tions about the clone size distributions.¶ First, the average size
of a surviving clone increases as t1/α. Second, the probability
1−F (s) to observe a clone s times larger than the average clone
decays as e−s for P(u) with a finite variance and as s−1−α when
α< 1. In SI Appendix, we show that the results of simulations
for fully pushed expansions agree well with these predictions
(SI Appendix, Fig. S4). Outside of the fully pushed regime, we
see a broadening in the clone size distribution which is inconsis-
tent with the exponential prediction for a short-tailed descendant
distribution (SI Appendix, Fig. S4). However, due to the large
carrying capacities required to allow for the relaxation of the
transient dynamics in the semipushed and pulled regimes, we
were not able to quantitatively verify the expected power law for
1−F (s).

The forward-in-time simulations of a population with just two
genotypes were more efficient and allowed us to demonstrate a
quantitative agreement with our theoretical predictions. Specif-
ically, we started forward-in-time simulations with two clones of
equal abundance and monitored the frequency f of one of the
clones (see Expansion Model for details). Conditioned on hav-
ing both clones present, the probability P(f )df of observing a
clone frequency between f and f + df approaches a steady state
in simulations and can also be computed analytically. In sim-
ulations, the conditioning on both clones being present simply
amounts to discarding from the analysis simulations in which
f = 0 or f = 1 at the time of observation. The distributions can
then be compared to the theoretical predictions: a uniform dis-
tribution on the interval (0, 1) for the Kingman coalescent (61),
and P(f )∝ 1/f (1− f ) for the Bolthausen–Sznitman coalescent.
Our simulations match both of these predictions quantitatively
(Fig. 5 A–C).#

The Role of Fluctuations in Population Density at the Front. All of
our results so far explicitly account for demographic fluctuations
at the front. However, most studies of range expansions have

¶A self-contained derivation of these results can be found in SI Appendix, section 2. We
refer the interested reader to refs. 59 and 60 for more detailed expositions on this topic.

#This prediction assumes the population size is infinite, in which case P(f) widens in time
and there is no strictly stationary distribution (57). However, for a given population size
of the front Nf , we expect the allele frequency distribution to match the theoretical
prediction in the region 1/Nf � f� 1− 1/Nf , as we indeed see in simulations.
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Fig. 4. The SFS of genealogies reveals differences between pulled and pushed waves. Approximately 100 trees were recorded from simulations of (A) fully
pushed, (B) semipushed, and (C) pulled expansions. Each full genealogy was sampled 10 times using a sample size of 20 individuals chosen from the front
(see SI Appendix, section 5 for sampling procedure). The resulting SFS, averaged over samples and simulations, is shown with colored dots. The solid line
shows the exact predictions for the SFS in each regime (see SI Appendix, section 5 for details).

ignored demographic fluctuations, either because of the math-
ematical difficulties they introduce or because their effects were
thought to be small (32, 62, 63). To understand to what extent
density fluctuations influence the dynamics at the front, we per-
formed simulations in which the total population density was
updated deterministically, while still allowing for genetic drift by
stochastically sampling the front composition (SI Appendix, sec-
tion 4). These simulations behaved as if they are described by
the Kingman coalescent for both pulled and pushed fronts (Fig.
5 D–F).

While the previous result may appear surprising, it can be
explained by considering the effect of deterministic population
dynamics on the descendant distribution at the front. In Materi-
als and Methods, we show that the deterministic approximation
leads to a cutoff in P(u) at a value uc that goes to zero as N
becomes very large (see SI Appendix, section 1). This implies
that the fraction of lineages which can merge in one event in the
limit of large N goes to zero. The suppression of large merger
events leads to the flat allele frequency distribution we observe
in simulations, but more work is needed to establish whether the
genealogies converge to the standard Kingman coalescent (see

Discussion). Nevertheless, these results clearly demonstrate that
demographic fluctuations play a crucial role in the emergence of
non-Kingman coalescents at the front.

Discussion
Many species, from microbes (64, 65) to humans (23), have
undergone expansions in their history, and many others are
currently expanding due to globalization (66, 67) and cli-
mate change (27, 68). Previous work has demonstrated that
range expansions reduce the amount of genetic diversity in
the population (32, 62, 69, 70) and allow for some alleles
to become dominant, through a process known as gene surf-
ing (47, 63, 71). However, underneath the overall decrease in
diversity, many patterns can be found which are still not well
understood.

Evolutionary dynamics during range expansions vary greatly
depending on how much demographic fluctuations and genetic
drift at the leading edge influence future generations (44). The
dependence is captured by a single dynamical parameter, v/vF .
This ratio between the actual expansion velocity and the veloc-
ity that would occur without density dependence quantifies the

A B C

D E F

Fig. 5. Deterministic front approximation fails to capture full range of coalescent topologies. (A–C) Long-time distribution of the frequency of one
allele in stochastic two-allele simulations for each expansion type. Histogram of allele frequencies are shown in gray, and the theoretical predic-
tions assuming the (A) Kingman (blue), (B) Beta- (green), and (C) Bolthausen–Sznitman (red) coalescents are shown with solid lines. (D–F) Same
as above, but for simulations with a deterministic front. The dashed lines show the theoretical prediction from the Kingman coalescent, for com-
parison. For each panel, we ran 103 simulations and report the distribution of allele frequencies at a fixed time after the distribution becomes
quasi-stationary.

6 of 9 | PNAS
https://doi.org/10.1073/pnas.2026746118

Birzu et al.
Genealogical structure changes as range expansions transition from pushed to pulled

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026746118/-/DCSupplemental
https://doi.org/10.1073/pnas.2026746118


PH
YS

IC
S

EV
O

LU
TI

O
N

degree of cooperativity (or positive feedback) in growth and dis-
persal. When this parameter is large, the front makes a small
contribution to the rate of expansion, and allele frequencies
change slowly. When v/vF is close to one, expansion proceeds
primarily via a highly stochastic advancement of the population
edge.

We showed that these differences in evolutionary dynamics are
captured by a simple and intuitive model, which describes the
front as an effective well-mixed population with broad distribu-
tion of reproductive values. As v/vF decreases, the distribution
becomes broader until, at a critical value, the variance diverges—
this signals the transition from the Kingman to a non-Kingman
coalescent. In this intermediate regime, the distribution has the
form of a power law with exponent between −2 and −3, which
is known to lead to a Beta-coalescent (21). As v/vF decreases
further, the distribution broadens until a Bolthausen–Sznitman
coalescent is reached.

Density fluctuations are essential for all of our results. When
these fluctuations are artificially suppressed, the structure of
the genealogical tree is strongly perturbed, leading to a large
change in the shape of the allele frequency distribution. Prior
studies attempted to capture the effects of demographic fluc-
tuations by setting the growth rate to zero at low population
densities, specifically, when n(ζ)< 1 (72). Such a cutoff is sim-
ilar to the one we used for deterministic fronts, but it does
not capture large fluctuations at the leading edge, which can
result in sites being temporarily occupied in the region where
the deterministic density is below one (40, 73). Recently, it was
discovered that, in semi-pushed and fully pushed expansions,
these stochastic effects can be captured by a different cutoff,
that explicitly depends on v/vF (44). There, quantitative changes
in the rate of diversity loss were found when the wrong cutoff
was used. Here, we found the choice of cutoff leads to qual-
itative changes in the genealogies. Thus, any theory that aims
to predict or characterize genetic changes during range expan-
sions needs to account for fluctuations in the position and shape
of the front.

Throughout our analysis, we have made several simplifying
assumptions whose effect on our results could provide interest-
ing directions for future work. Here, we focused exclusively on
models with positive growth rate—equivalent to a weak Allee
effect in ecology. Other types of growth functions are, of course,
possible, including cases with a strong Allee effect in which
growth rates are negative at low densities. Such growth mod-
els have been extensively studied in many organisms (74–76).
However, it is important to note that our derivation of the
distribution of reproductive values does not make any assump-
tions about the shape of the growth function. This leads us
to conjecture that all one-dimensional expansions with short-
ranged dispersal fall into one of the three classes described
here, with their corresponding coalescents. In the case of strong
Allee effect, this suggests genealogies are always described by
the Kingman coalescent, for which there is already very good
supporting evidence in addition to the results presented here.
Namely, analytical calculations confirmed by numerical simula-
tions show that the coalescence time scales linearly with N for
all expansions with a strong Allee effect, as expected if their
genealogies follow the Kingman coalescent (44). In addition,
a rigorous proof that expansions with strong Allee effect are
described by the Kingman coalescent was established in ref. 37
using a specific form of the growth function. Taken together,
we believe these results provide strong evidence that the coales-
cent structures presented here describe a wide class of expansion
models.

Another interesting topic for future study is the nature of the
coalescent in deterministic semipushed and pulled fronts. In SI
Appendix, we show that the deterministic cutoff leads to a max-
imum reproductive value at the front uc , which corresponds to

a maximum fraction of lineages that can coalesce within a gen-
eration. This maximum goes to zero as N goes to infinity, which
explains the large difference we saw in the shape of the allele fre-
quency distribution between stochastic and deterministic fronts
(Fig. 5). However, we have previously shown that the coales-
cence time in deterministic fronts, while different from those
of stochastic fronts, still scales as a sublinear power law and
logarithmically with N in semi-pushed and pulled fronts, respec-
tively (44). This unusual scaling is in sharp contrast to the linear
increase with N found in most models described by the King-
man coalescent (7). It would be interesting to explore the origin
of this scaling and determine whether it signifies some subtle
changes in the genealogies compared to the standard Kingman
coalescent. On time scales much shorter than the coalescence
time, we certainly expect transient dynamics that differ from the
predictions of classical neutral models, because the distribution
of reproductive values still has a broad power law tail. In fact,
we expect that Kingman-like dynamics emerge only for clones
with frequencies sufficiently high to sample the offspring distri-
bution near uc . While we are not aware of any direct applications
of deterministic front models, the genealogies that they produce
might emerge in other contexts and therefore deserve further
study (77–79).

Moving beyond our framework, one of the most important
avenues for future research is to consider expansions in higher
dimensions. The two-dimensional case is especially relevant for
most expansions on land (23, 76), but also for marine populations
living close to the ocean surface (80). In addition, other effects
such as environmental noise or the inclusion of nonneutral muta-
tions could have a large impact on the structure of genealogies in
natural populations (81–83).

Our results provide a framework to link genetic diversity at
the front to ecological dynamics. This framework can be used to
infer the importance of density feedback in growth and dispersal
or to predict evolution during range expansions. Furthermore,
our work provides a generic explanation for the skewed genealo-
gies observed in empirical studies (11, 84). Previously, such
genealogies were attributed to either very strong selection or
sweepstakes reproduction, both of which could be less com-
mon than range expansions. The complete theory of skewed
genealogies would, of course, require an integration of these dif-
ferent mechanisms, which could act simultaneously in natural
populations.

Materials and Methods
The detailed implementation of the sampling of descendants can be found
in SI Appendix, section 4. For our purposes here, the change in the local
population size nk can be represented by a growth function r(nk), given by
the following expression:

r(nk) = r0(1− nk/N)(1 + Bnk/N), [4]

where k is the deme index and r0 is the growth rate at zero density. For
convenience, we set the generation time to one and omit it from future
expressions. The parameter B in Eq. 4 sets the growth cooperativity in the
population. For B = 0, Eq. 4 is the widely used logistic growth function (85,
86), which has the maximum growth rate r(nk) = r0 at nk = 0. For B> 1,
the position of the maximum shifts to nk > 0, and r(nk) becomes larger
as B increases. We showed previously that B in Eq. 4 controls the scal-
ing between the carrying capacity N and the effective population size of
the front Ne, which we define as the time scale over which genetic diver-
sity is lost. This dependence of Ne on N changes from a linear function
for B≥ 4 to a power law for 2< B< 4, and then to ln3 N for B< 2 (44);
we refer to the three expansion classes as fully pushed, semipushed, and
pulled, respectively (44, 45). This terminology reflects the fact that growth
in pulled expansions occurs mainly at the edge of the front, while, in
semipushed and fully pushed expansions, it is in the bulk. We performed
simulations with one value of B for each regime: B = 10 for fully pushed
expansions, B = 3.33 for semipushed expansions, and B = 0 for pulled
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expansions. Although our simulations are based on the specific growth
and migration model detailed above, our theoretical results are model
independent (see SI Appendix, section 1). Therefore, we do not expect
any of our conclusions to change if different growth or migration models
are used.

Genealogies can be obtained by storing all ancestral relationships. This
approach, however, would severely constrain the population size and
duration of our simulations. Instead, we keep track of genealogies by peri-
odically assigning a unique label to every individual in the population. After
assignment, the size of surviving clones—defined as a group of individuals
with the same label—increases, while other clones become extinct. After
a fixed number of generations, ∆t, we relabel all individuals and store
their previous labels. One can then trace the ancestry backward in time
with temporal resolution ∆t. As long as ∆t is not too large compared to
the generation time, and the maximum clone size is small compared to
the total population size, this procedure introduces only minor information
losses in the genealogies for sample sizes much smaller than the carrying
capacity.

Descendant Distribution in Deterministic Fronts. Without demographic fluc-
tuations, the front profile nd(ζ) assumes a steady-state solution with
a cutoff in the density determined by nd(ζc) = 1, since the number
of individuals cannot be less than one. Thus, for values of ζ > ζc,
the population density is zero. This density cutoff implies a maxi-
mum reproductive value uc, which can be calculated as discussed in

SI Appendix, section 1.‖ Viewed backward in time, uc is the maximum frac-
tion of lineages that can merge at the same time. We find that uc→ 0 in
the limit of large N (SI Appendix, section 1). Hence, large multiple mergers
become increasingly rare as N increases.

Data Availability. The results presented in this manuscript are purely the-
oretical and there are no data associated with it. The scripts and simu-
lation results used to generated the figures in the main text and the SI
Appendix have been deposited to GitHub (https://github.com/gbirzu/range
expansion coalescent).
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