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ABSTRACT  The yeast Atg8 protein and its paralogs in mammals, 
mammalian Atg8s (mAtg8s), have been primarily appreciated for 
their participation in autophagy. However, lipidated mAtg8s, 
including the most frequently used autophagosomal membrane 
marker LC3B, are found on cellular membranes other than au-
tophagosomes. Here we put forward a hypothesis that the lipi-
dation of mAtg8s, termed ‘Atg8ylation’, is a general membrane 
stress and remodeling response analogous to the role that ubiq-
uitylation plays in tagging proteins. Ubiquitin and mAtg8s are 
related in sequence and structure, and the lipidation of mAtg8s 
occurs on its C-terminal glycine, akin to the C-terminal glycine of 
ubiquitin. Conceptually, we propose that mAtg8s and 
Atg8ylation are to membranes what ubiquitin and ubiquitylation 
are to proteins, and that, like ubiquitylation, Atg8ylation has a 
multitude of downstream effector outputs, one of which is au-
tophagy. 
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INTRODUCTION 

The yeast Atg8 protein and its seven mammalian Atg8 pa-
ralogs (mAtg8s) that include LC3A, LC3B, LC3B2, LC3C, 
GABARAP, GABARAPL1, and GABARAPL2/GATE16 [1-3] are 
best known for their role in autophagy [4], a process de-
scribed early on along with the definition of lysosomes [5, 
6]. Canonical autophagy is a metabolic and cellular quality 
control process [7] which typically sequesters cytoplasmic 
cargo into double-membrane autophagosomes decorated 
with mAtg8s [8] and typically delivers the cargo to autoly-
sosomes via fusion between autophagosomes and lyso-
somes [9]. The default termination of the canonical path-
way in autolysosomes is degradation of the captured cyto-
plasmic material [8]. However, mAtg8s are found on a vari-
ety of other membranes in diverse biological and physio-

logical contexts, including LC3-associated phagocytosis 
(LAP) and its variations [10]. Currently, many of these and 
related phenomena are grouped under the umbrella of 
‘non-canonical autophagy’ [10], although some of them 
such as LAP lack cytosolic cargo, which in principle defines 
the term ‘autophagy’ or ‘self-eating’. As an alternative to 
‘non-canonical autophagy’, here we propose the 
‘Atg8ylation hypothesis’ as a principle that can unify differ-
ent manifestations and roles of mAtg8s, their lipidation, 
and their association with various membranes. We pro-
pose that mAtg8ylation is a cellular response that both 
counters membrane stress and is a mechanism involved in 
general membrane remodeling, with canonical autophagy 
being one manifestation.   
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Abbreviatons: 
AIM – Atg8-interacting motif; EV – extracellular 
vesicle; ILV – intralumenal vesicle; LANDO – LC3-
associated endocytosis; LAP – LC3-associated 
phagocytosis; LIR – LC3 interacting region; mAtg8s – 
mammalian Atg8s; mTOR – mechanistic target of 
rapamycin; PAMP – pathogen associated molecular 
pattern; PE – phosphatidylethanolamine; PS – 
phosphatidylserine; ROS – reactive oxygen species; 
SLR – sequestosome-like receptor; TFEB – 
transcription factor EB; TLR- Toll-like receptor; UPS – 
ubiquitin proteasome system. 
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Of note, mAtg8s are related to ubiquitin in sequence 
and structure (Figures 1 and 2). Ubiquitylation is associated 
with disassembly, degradation and removal of misfolded 
proteins triggered by stressors [11-13]. Ubiquitin protein 
modifications [14] also play other non-degradative roles, 
such as modulation of normal protein activity, localization 
and interactions under unperturbed conditions [11-13]. We 
hypothesize that mAtg8s and Atg8ylation play a role in 
processes maintaining membrane homeostasis under 

stress conditions as well as in normal membrane remodel-
ing in response to programmed, physiological or pathologi-
cal cues. We propose here that Atg8ylation (Figure 1) is to 
membranes what ubiquitylation is to proteins. 

 
ATG8YLATION AND UBIQUITYLATION 
Both autophagy [8], introduced above, and the ubiquitin-
proteasomal system (UPS) [11, 12] are major modulatory 
machineries in eukaryotic cells which are often engaged in 

FIGURE 1: Comparison between ubiquitylation and Atg8ylation. (A) Principal components and steps of ubiquitylation. Note that misfolded 
or aggregated or otherwise engaged proteins are the principal targets for ubiquitylation. (B) Principal components and steps of Atg8ylation. 
Note that stressed membranes or membranes destined for a specific kind of remodeling are the principal targets for Atg8ylation. (C) The 
well-established lipidation cycle of mAtg8s (mammalian Atg8s: LC3A,B,C, GABARAP, GABRAPL1 and GABARAPL2) on target membranes. 
Green circles, polar groups of PE or PS. 
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cargo degradation but are also performing multiple other 
functions [10, 13, 15]. Both systems require tagging of the 
cargo/target to be processed or acted upon.  

Ubiquitylation of proteins often occurs on misfolded 
and aggregated proteins caused by stressors as well as 
under unperturbed conditions, modulating normal protein 
activity, localization, and their interactions (Figure 1A). 
Atg8ylation is a process whereby the Atg8 conjugation 
machinery is recruited to damaged or otherwise stressed 
membranes or to membranes undergoing remodeling un-
der various homeostatic or non-homeostatic conditions 
(Figure 1B) and catalyzes mAtg8s’ conjugation to phospha-
tidylethanolamine (PE) [16-18], or phosphatidylserine (PS) 
[18]. Like ubiquitylation, Atg8ylation involves an E1-like 
activating protein, ATG7 and requires ATP for activation 
(Figure 1C). ATG7 conjugates to the C-terminal glycine of 
mAtg8s, exposed post-translationally by ATG4 proteases. 
This is followed by action of the E2-like activity of ATG3 on 
ATG8s. Finally, the conjugation of mATG8s to PE or PS is 
mediated by an E3-like complex ATG5-ATG12/ATG16L1 
(Figure 1C) [4, 19].  

Of note, the diverse mammalian Atg8s are all related to 
ubiquitin (Figure 2A-C), underscoring the similarities be-
tween the two systems and the biochemical relatedness of 
ubiquitylation and Atg8ylation consistent with the parallels 
in the conjugation cascade. The two differ principally in the 
type of targets that ubiquitin or Atg8s are being conjugated 
to – in the case of ubiquitin to the stressed and degrada-
tion-bound or otherwise modified proteins, whereas in the 
case of mAtg8s, to the stressed or otherwise engaged 
membranes. The diverse events downstream or associated 
with Atg8ylation are individually described in subsections 
below. 

CANONICAL AUTOPHAGY 
As mentioned above, mAtg8s and Atg8ylation have been 
initially almost exclusively associated with the process of 
autophagy [5, 6] controlled by an ensemble of Atg factors, 
first genetically defined in yeast [12, 20, 21] and conserved 
in mammals [8, 19]. Canonical autophagy has been appre-
ciated primarily as a degradative process [4], with metabol-
ic and quality control functions [7]. Whereas the degrada-
tive function of UPS involves elimination of individual pro-
teins [22], autophagy can eliminate protein aggregates and 
larger structures, including whole organelles or their parts 
[23]. Autophagy is initiated in response to various cellular 
stressors, and requires the lipid kinase VPS34 (PIK3C3), first 
identified in yeast as a PI3P-generating enzyme in response 
to stress such as membrane-stretching osmotic changes 
[24]. The details of the autophagy pathway have been rev-
eled through genetic analyses in yeast [4, 12, 20, 21] with a 
suite of ATG genes controlled by upstream kinases AMPK 
[25-27], mTOR (mechanistic target of rapamycin) [26, 28, 
29] and TBK1 [30-34].  

Conventionally, autophagy initiation is controlled by 
several modules [19]: (i) The ULK1/2 kinase complex with 
FIP200, ATG13 and ATG101, acting as conduits for inhibi-
tion by active mTOR [28, 29, 35] and activation by AMPK 
[25] to induce autophagy; (ii) ATG14L-endowed Class III 
PI3-Kinase Complex [36-38] that includes VPS34 and Beclin 
1 [39], which can also be modified by AMPK to specifically 
activate the ATG14L form of VPS34 [40]; (iii) ATG9, and the 
ATG2-WIPI protein complexes [41-43]. These modules be-
come interconnected, via FIP200 that bridges the ULK1/2 
complex with the mAtg8s conjugation system by binding 
ATG16L1 [44-46], via ATG16L1 and WIPI interactions [47], 
and ATG13 connecting the ULK1/2 complex with ATG14-

FIGURE 2: Similarities between ubiquitin and mAtg8s. (A) Multiple sequence alignment. (B) % similarities. (C) Crystal structure comparison 
between ubiquitin and GABARAPL2. (D) Evolutionary relatedness tree. 
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VPS34 [48, 49]. After initiation, autophagy terminates in a 
merger of autophagosomes with degradative endolysoso-
mal compartments whereby the sequestered cargo is de-
graded. This is catalyzed by a suite of SNAREs, e.g. STX17 
[50] YKT6 [51], VAMP8, and SNAP29 [50]. 

Canonical autophagy and its variations manifested in 
different forms of selective or quality control autophagy, 
defined by the captured cargo (mitophagy, ER-phagy, ag-
grephagy, xenophagy, ribophagy, pexophagy, lipophagy, 
and precision autophagy of individual protein complexes) 
[7, 8] depend on the above apparatus to be guided by the 
receptors and receptor-regulators, many of whom belong 
to the category termed Sequestosome-like receptors (SLRs) 
named after the founding member Sequestosome 1 
(SQSTM1/p62) [52]. The majority of autophagic receptors 
interact with mAtg8s, albeit interaction directly with 
FIP200 is another “entry” into the pathway [33, 34, 53, 54], 
likely amplified by eventual mAtg8 binding [53]. To interact 
with mAtg8s, SLRs contain dedicated Atg8 interacting mo-
tifs (AIM), also known as LIRs (LC3 interacting regions). As 
an interesting crossover to the ubiquitin system, SLRs often 
recognize ubiquitylated cargo via dedicated ubiquitin bind-
ing domains [55]. Thus, Atg8ylation and ubiquitylation act 
here as coincidence detectors for efficient cargo degrada-
tion.  

Autophagosomal membrane formation is believed to 
entail mAtg8 conjugation machinery and Atg8ylation, i.e. 
Atg8 lipidation on membranes that form autophagosomes 
(Figure 3A) [19]. However, recent studies indicate that 
mAtg8s may not be absolutely required to form autopha-
gosomal membranes as their absence mostly have limited 
kinetic or autophagic vesicle size effects [56, 57]. This is 
despite mAtg8’s iconic status, since LC3B is used as an al-
most quintessential marker of autophagosomes [58]. 
Atg8ylation may play additional roles in autophagy, for 
example as a modulator of the recruitment and/or function 
of SNAREs. This includes a large subset of AIM (LIR)-
containing SNAREs including STX3, STX4, STX6, STX16, 
STX17, STX19, Vti1a, GOSR1, and VAMP7 [59-61], several of 
which are important in control of general membrane fu-
sion and flow, as well as specifically for autophagosomal 
[32], autolysosome [50], and lysosomal [61] biogenesis. 
There are indications that Atg8ylation plays a role in modu-
lating these SNARE-controlling mAtg8 activities, since ex-
pression of a dominant negative ATG4 that prevents lipida-
tion of all mAtg8s inhibited STX17 function [60] in the au-
tophagosomal pathway. 

 
LAP AND LAP-RELATED PROCESSES 
LAP  [10, 62], LANDO (LC3-associated endocytosis) [63], 
and a cluster of other related phenomena involving phago-
somes or stressed endosomes [64-68] to which we refer 
collectively here as Lapoid processes, represent a form of 
Atg8ylation occurring on single membranes of endosomes 
and phagosomes (Figure 3B). LAP per se lacks cytosolic 
cargo, but some Lapoid processes involve cytosolic cargo. 
LAP involves Atg8ylation, specifically of LC3 subfamily of 
mAtg8s [69], on membranes of phagosomes taking up 

stress- or signal-inducing cargo such as potentially danger-
ous pathogens, inflammation-inducing dead cells, live cells 
to be eliminated by entosis, and extracellular debris or 
aggregates [62, 65, 68-70]. Of note, not every endosome 
and phagosome undergoes Atg8ylation, and it takes a spe-
cific stress or danger signal such as presence of TLR (Toll-
like receptor) ligands within the phagocytosed or endocy-
tosed material [62]. TLR signaling recognizes fungal, bacte-
rial and microbial products commonly known as PAMPs 
(pathogen associated molecular patterns), and in principle 
induces strong Atg8ylation of endomembranes [71].  

The key distinguishing feature of LAP, LANDO, and oth-
er Lapoid processes that differentiates them from canoni-
cal autophagy is the absence of double membranes, i.e., 
Atg8ylation occurs on the delimiting single bilayer mem-
brane of the stressed endosomes and phagosomes. Further 
key differences are the dependence of LAP on RUBCN (Ru-
bicon), which is an inhibitor of canonical autophagy, and its 
independence of FIP200, which is required for canonical 
autophagy and Atg8ylation of conventional double mem-
brane autophagosomes. 

In principle, a similar mAtg8 lipidation machinery is in-
volved in Lapoid phenomena as in the case of canonical 
autophagy. It is the ATG16L1 component of the Atg8ylation 
E3 ligase (ATG5-ATG12/ATG16L1) that discerns between 
target membranes that are to be Atg8ylated [17]. Lipid 
binding domains are found in ATG16L1 that govern canoni-
cal autophagy vs. Lapoid phenomena [17]. The C-terminal 
membrane-binding region of ATG16L1 is dispensable for 
canonical autophagy but important for Lapoid processes 
[17]. The N-terminal membrane-binding amphipathic helix 
of ATG16L1 is required for Atg8ylation (specifically demon-
strated in LC3B lipidation assays) in both canonical autoph-
agy and Lapoid phenomena [17]. 

The upstream machinery that recognizes stressed 
membranes remains to be elucidated, but may involve 
signals form TLRs, stretching of lipid bilayers during osmot-
ic stress, ion transport events, etc. One upstream signal 
that has been clearly established in LAP is NOX2 (NADPH 
oxidase) [72], which is classically activated upon opsonized-
pathogen uptake by phagocytic cells to generate reactive 
oxygen species (ROS) [73]. Whereas it is not completely 
clear how NOX2 or NOX-generated ROS function to pro-
mote LAP, ROS can inhibit ATG4, an enzyme catalyzing 
mAtg8 dilapidation reaction (equivalent to DUB activity on 
ubiquitinated proteins) [74]. This could locally, i.e., in the 
vicinity of a phagosome undergoing LAP, stabilize lipidated 
mAtg8s.  

How do LAP or Lapoid processes terminate, is another 
open question. Phagosomes that are Atg8ylated (LAP) ap-
pear to fuse with lysosomes in a more efficient way [62]. 
The mechanism of how mAtg8s increase fusion of LAPo-
somes may be similar to that of how autophagosomes fuse 
with lysosomes. It is possible that Atg8ylation in the case of 
LAP stimulates an equivalent process as in the case of 
Atg8ylation recruiting/activating STX17 on autophago-
somes via AIM/LIR motifs [60]. 

LAP and Lapoid functions include anti-inflammatory 
processes such as those failing in lupus [75], elimination of 
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pathogens [72, 76], removal of dead cells and efferocytosis 
[77, 78], entosis [65], and removal of rod outer segments 
via phagocytosis by retinal pigment epithelium cells [79]. 
LAP may promote cancer progression by favoring immune-
tolerance in the cancer microenvironment, whereas de-
fects in LAP elicit pro-inflammatory cytokines in tumor-
associated macrophages [80]. LAP, however, can be pro-
inflammatory by promoting TLR signaling through IRF7, 
which leads to type I interferon response [81]. LANDO defi-
cient microglia display hyper-neuroinflammation and neu-
rodegeneration; LANDO may be important for clearance of 

-amyloid aggregates and suppression of microglia activa-
tion [63]. Physiological functions of many other Lapoid 
processes are yet to be defined. 

 

SELECTIVE MICROAUTOPHAGY 
Selective microautophagy of mammalian lysosomal mem-
branes (Figure 3C) and its proteins occurs in response to 
osmotic stress or glucose-starvation, adjusting the size of 
lysosomes under stress conditions [82]. This requires lipi-
dation of mAtg8 and indicates that Atg8ylation participates 
in microautophagy [82]. It is unaffected by inactivation of 
ATG13, a member of the ULK1-FIP200-ATG13-ATG101 
complex, akin to other Lapoid activities. This is another 
example of the mATG8s lipidation machinery being re-
cruited to single bilayer endolysosomal membranes and 
serves here specifically to downsize lysosomes or control 
their surface-to-volume characteristics under stress condi-
tions.   

FIGURE 3: Different forms and roles of Atg8ylation. (A) Canonical autophagy. Note double membranes, as phagophores close around the 
autophagic cargo, and presence of lipidated mAtg8s on the outside and inside of the double membrane autophagosome, however, always 
on the originally cytofacial leaflet. This is the well-established macroautophagy pathway. (B) LAP and LAP-like processes (Lapoid) occurs on 
phagosomes and endosomes whose cytofacial leaflet of (single membrane) delimiting the organelles is Atg8ylated upon ecountering physical 
stress signals. (C) Selective microautophagy occurs via an MVB generation-like process whereby lysosomal delimiting membrane that is 
Atg8ylated invaginates and reduces the surface, size, and contents of the lysosomes. (D) Extracellular vesicle secretion is a subset of secreto-
ry autophagy, and in principle represents similar topological changes (albeit differing in details and regulatory processes involved) as in se-
lective microautophagy, except that the cargo sequestered into the MVB-like bodies is secreted upon exocytosis instead of being degraded. 
Note that EV secretion is a component of a broader collection of secretory autophagy modalities (not shown). (E) MERiT system involves a 
coordinated response to lysosomal damage, with ESCRTs conducting the repair of mildly damaged lysosomes, autophagy (‘lysophagy’) re-
moving extensively damaged lysosomes, and TFEB initiating a lysosomal replenishment program. Note that Atg8ylation thus far has been 
demonstrated to play a role in the lysophagy and TFEB-dependent steps. See details in the text for each type of Atg8ylation’s manifestations 
including mechanisms and physiological roles. All events are intracellular, even when cells are not depicted.  
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It is unclear how other microautophagy processes differ 
from the selective microautophagy described above. In 
principle, microautophagy represents a collection of pro-
cesses, best characterized in yeast, which involve direct 
internalization of cytoplasmic cargo into the lumen of lyso-
somes by invaginations of the delimiting single bilayer lyso-
somal membrane [83-86]. Yeast microautophagy requires 
the action of most Atg proteins [86], and may be different 
from microautophagy (endosomal, multivesicular bodies, 
and selective microautophagy) in mammalian cells. The 
selective microautophagy phenomena in principle engage 
components of the ATG conjugation machinery [82], ESCRT 
machinery [87, 88], and a subset (but not all) SLRs [88], and 
may in some instances depend on Atg8ylation. Starvation-
induced degradation of SLRs, other selective autophagy 
receptors, and ferritinophagy receptor NCO4 is independ-
ent of mTOR, which negatively controls canonical autopha-
gy, and, consistently with that, depletion of FIP200, an 
essential component of canonical autophagy that trans-
duces mTOR signals [89], does not prevent starvation-
induced degradation of certain SLRs and NCAO4 [88]. Nev-
ertheless, depletion of ATG7 blocks (at least in part) degra-
dation of certain SLRs, specifically p62 and NDP52 [88], this 
strongly suggests that this process likely involves 
Atg8ylation on respective endolysosomal membranes. It is 
not known whether and to what extent Atg8ylation affects 
classical mammalian endosomal microautophagy, e.g. mul-
tivesicular bodies. 

In another example of the role of Atg8ylation in selec-
tive microautophagy, excess ER during recovery from ER 
stress undergoes piecemeal micro-ER-phagy and requires 
mAtg8 lipidation [87]. 

 
UNCONVENTIONAL SECRETION: EXTRACELLULAR VESI-
CLES AND SECRETORY AUTOPHAGY 
The emerging role of Atg8ylation in generating extracellu-
lar vesicles (EVs) mirrors its role in selective microautopha-
gy. Microautophagy directly carried by lysosomes and en-
dosomes can in principle result in sequestration, degrada-
tion or secretion of intralumenal vesicles (ILVs). The exocy-
tosed ILVs in the extracellular space are referred to as exo-
somes, a subtype of EVs [90]. EVs are a collection of heter-
ogeneous membranous structures coming in variety of 
forms and ranging from submicron to several microns in 
size and include microvesicles (also known as ectosomes) 
and exosomes [91]. Microvesicles directly bud off the 
plasma membrane after its outwardly evagination, where-
as exosomes originate from endomembranous ILVs, both, 
however, undergoing the same, exofacial direction of bud-
ding [92]. EVs are present in biological fluids with a multi-
tude of physiological effects [92], but are yet to be fully 
defined in terms of specificity of cargo packaging and asso-
ciated functions [93]. EVs were originally identified as vehi-
cles for selective elimination of proteins, lipids and RNA 
from cells [92, 94], however, EVs have now emerged as a 
means of intercellular communication [92, 95, 96].  

Atg8ylation participates in the formation of exosomes 
[97, 98] and secretion of specific cytosolic cargo by EVs [99] 

(Figure 3D). Proteomic and RNA profiling of EVs identified 
diverse RNA binding proteins and small non-coding RNAs 
requiring LC3 and the Atg8ylation machinery for packaging 
and secretion [99]. Among other potential functions re-
ported for exosomes impacted by Atg8ylation, one is the 
decoy sequestration of bacterial membrane damaging tox-
ins before they can reach and attack the cellular plasma 
membrane [100].  

Atg8ylation also plays a role in the type of unconven-
tional secretion or excretion/extrusion of cytoplasmic ma-
terial referred to as secretory autophagy [101, 102], with 
cargo ranging from individual proteins to intracellular or-
ganelles or pathogenic microorganisms [101], such as my-
cobacteria [103] and specific viruses [104]. Atg8ylation 
furthermore promotes certain types of viral budding at the 
plasma membrane, as in the case of filamentous mode of 
budding of influenza A [105]. The prototypical cytokine 
cargo for secretory autophagy are IL-1β [106-109], which 
does not have a leader peptide and thus is synthesized as a 
cytosolic protein [110], and additional cytokines such as IL-
6 [111] and alarmins such as HMGB1 [107, 112]. However, 

IL-1 release from cells utilizes multiple routes. Such alter-

native pathways include import of the cytosolic IL-1 into 
the lumen of ERGIC, an intermediate compartment within 
the canonical secretory pathway [113, 114]. The most 

dominant route of passive release of IL-1 from dying cells 
is through gasdermin pores on the plasma membrane dur-

ing pyroptosis [115], and IL-1 leaks through such pores 
even before the ‘official’ cell death [116]. Whether and 
how Atg8ylation interfaces with various forms of uncon-
ventional secretion [117] remains to be fully explored and 
associated mechanisms understood. 
 
ATG8YLATION AS A RESPONSE TO MEMBRANE STRESS 
AND DAMAGE 
Biological membranes provide a key diffusional barrier and 
define the physical boundaries of cells and their intracellu-
lar compartments; they are endowed with selective per-
meabilities, channels, pumps, and signaling systems [118, 
119]. A number of stress conditions affect integrity and 
function of cellular membranes [120], which are in princi-
ple two-dimensional liquids of hydrated lipid bilayers com-
posed of phospholipids, sterols, sphingolipids, integral and 
peripheral membrane proteins often decorated by gly-
cocalyx [119]. To counter inherent membrane fragility, all 
cells have mechanisms to counter and repair damage [120], 
with morphologically visible measures taken by microbes, 
fungi and plants that stabilize their cells by rigid cell walls 
countering the osmotic stress among other environmental 
insults. Physical membrane damage [120], programmed or 
unprogrammed permeabilization transitions [115, 121, 
122], osmotic stress [123], lipid tension or fluidity changes 
due to composition or temperature changes, exposure to 
microbial and environmental toxins and detergent-like 
molecules, as well as entropic changes, if not countered by 
continuous repair/replenishment functions [120], can per-
turb membranes either functionally or physically, with 
manifestations in pathological states and disease [118].   
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The plasma membrane is by its boundary nature under 
continuous risk of being damaged by exogenous agents, 
and conversely is used for programmed permeabilization 
events associated with cell death pathways. Recent studies 
[124-126] suggest that Atg8ylation-dependent processes 
and other ATG proteins engaged in non-canonical functions 
contribute to the protection of plasma membrane against 
physical damage (modeled by laser damage or detergent 
treatment), programmed permeabilization by gasdermin-
pores during pyroptosis or MLKL during necroptosis, by 
MLKL-like permeabilization function of SARS-CoV-2 ORF3a, 
bacterial pore forming toxins (pneumolysin, lysteriolysin 
and streptolysin O), and harsh components of the cell walls 
of microbes such as Mycobacterium tuberculosis [124, 126]. 
Whereas ATG9A engages ESCRT proteins to seal plasma 
membrane holes immediately upon permeabilization [126], 
Atg8ylation results in blebbing due to lysosomal exocytosis 
[124] or endocytic processes termed LC3-associated mi-
cropinocytosis which appears to be a Lapoid process [125]. 

Intracellular membranes can also come under the phys-
ical assault or be subjected to membrane stress, such as 
osmotic changes. The lysosome is the digestive organelle 
of the cell and thus receives cargo destined for degradation 
from both cellular interior and the exterior space, via au-
tophagic, endosomal and phagocytic pathways [127]. By 
the very nature of receiving various material from different 
tributary pathways, lysosomal membranes and organelles 
of the endolysosomal system are at risk of being damaged 
by the ingested material [128], lysosomotropic compounds 
[129], osmolytes such as trehalose [130], neurotoxic pro-

tein aggregates including -synuclein, tau, and huntingtin 
amyloids [131-133], mineral crystals such as silica, mono-
sodium urate, and calcium phosphate [134-136], patho-
gens, PAMPs and DAMPs (danger associated molecular 
patterns) [137, 138], and can be influenced by pro-
grammed events such as TRAIL (tumor necrosis factor-
related apoptosis-inducing ligand) and downstream signal-
ing [122, 131, 139-142]. 

Lysosomal damage elicits a set of diverse responses to 
restore lysosomal homeostasis [132, 143-148], reinstate 
key functions including delivery of iron [149], and adjust 
cellular metabolic needs by suppressing mTOR and stimu-
lating AMPK while simultaneously mobilizing homeostatic 
responses requiring mTOR inhibition and AMPK activation 
[142, 150]. Early dominant events include responses by 
galectins [133, 138, 143, 151, 152], ubiquitin [132, 137, 142, 
144, 145], ESCRTs [133, 146, 147], and include additional 
events [148] including recruitment of mAtg8s [153], which 
engage not only in canonical autophagy [46, 135] but also 
in other Atg8ylation-dependent processes [154, 155] elab-
orated in the subsequent section. Eventually, if membrane 
repair fails, a type of canonical autophagy termed lysopha-
gy [46, 133, 135, 143, 145, 150] eliminates excessively 
damaged lysosomes, endosomes or phagosomes [138]. 

 
 
 

ATG8YLATION SIGNALING AND TFEB RESPONSE IN LY-
SOSOMAL BIOGENESIS 
Atg8ylation contributes to signaling events that activate 
TFEB (transcription factor EB) to initiate the lysosomal pro-
tein expression program. Starvation and additional signals, 
e.g., lysosomal damage, induce TFEB translocation form 
the cytosol to the nucleus where it stimulates lysosomal 
gene expression, and to an extent several autophagy genes 
[156-158]. Apart from its role in lysosomal biogenesis, TFEB 
transcriptionally controls other biological processes [127] 
including lipid catabolism [159], lysosomal exocytosis [160], 
mitochondrial biogenesis [161] and mitophagy [162]. TFEB 
activity is controlled by mTOR [127, 163, 164]. TFEB phos-
phorylation by mTOR increases its binding to 14-3-3 pro-
teins, which holds TFEB in the cytosol [163, 165]. TFEB is 
under a special control by mTOR, downstream of the in-
puts from Foliculin/FLCN to RagC/D, in contrast to other 
signals transduced to mTOR via RagA/B [166]. Protein 
phosphatase 3 catalytic subunit beta (PPP3CB) 
dephosphorylates TFEB and releases it from 14-3-3 [165]. 
Additional studies reporting calcium-dependent but 
PPP3CB-independent dephosphorylation of TFEB indicate 
possible involvement of another phosphatase [155]. 

TFEB is activated by a variety of membrane and other 
stress conditions including starvation [154, 164], lysosomal 
damage [133, 143, 155], pathogen infections [154, 167-
170] and mitochondrial stress [162]. Atg8ylation controls 
nuclear translocation of TFEB [154, 155, 171] (Figure 3E). 
TFEB interacts directly with GABARAP [154] and the GABA-
RAP subset of mAtg8s supports nuclear translocation and 
transcriptional activity of TFEB during starvation [154] and 
lysosomal damage [155]. Calcium flux stimulates nuclear 
translocation of TFEB [155, 165]. Atg8ylation affects intra-
cellular calcium levels [154], whereas transcription of the 
lysosomal calcium channel TRPML1 [165] is reduced in 
mAtg8 depleted cells [154]. Furthermore, TRPML1 inter-
acts with lipidated LC3 in response to lysosomal damage 
[155], which is a clear example of Atg8ylation controlling 
molecular events other than lysophagy.  

Atg8ylation has appreciable effects on TFEB activity 
during starvation, lysosomal damage of xenophagy [154, 
162], [155, 171]. GABARAP binds FLCN/FNIP complex [171], 
which is a GAP (GTPase activating protein) for RagC/D 
GTPase, and activates (paradoxically) mTOR when amino 
acids are aplenty [172, 173]. However, under membrane 
stress conditions, binding of FLCN to membranes 
Atg8ylated by GABARAP disrupts the regulation of RagC/D 
by FLCN, impairing TFEB phosphorylation by mTOR and 
activating TFEB [171]. In conclusion, Atg8ylation has signifi-
cant and multiple roles to in control of TFEB activity. 

 
CODA 
The herein proposed unifying concept of Atg8ylation refers 
to a process of tagging stressed membranes with lipidated 
mAtg8s. This includes damaged, or otherwise mobilized 
and remodeling membranes leading to a plethora of out-
comes. Often, these processes occur on endosomal, lyso-
somal and autophagosomal membranes but may not be 
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limited to these organelles. The spectrum of presentations 
includes canonical autophagy, LAP and Lapoid processes, 
selective microautophagy and unconventional secretion, 
different stages of the MERiT lysosomal QC system, and 
membrane modification during programmed or signaling 
events.   

The elucidation of the canonical autophagy pathway in 
yeast has provided a clear linear pathway of Atg8-driven 
steps, from autophagosome formation to their fusion with 
the vacuole/lysosome. In mammalian systems, this path-
way and its core components are conserved. The presence 
of multiple Atg8 paralogs in mammals reflects increased 
complexity, whereas experimental analyses have revealed 
that mAtg8s function in processes other than autophagy. 
The proliferation of these ‘non-canonical autophagy-
related’ processes may at first appear confusing. The 
Atg8ylation concept proposed here resets the view of what 
lipidation of mAtg8s represents considering its standalone 
manifestation and nature – it is a covalent modification of 
membranes the way ubiquitin covalently modifies proteins. 
Once this point of view is considered, it is relatively easy to 
understand how this can participate in a multitude of pro-
cesses, of which canonical autophagy is just a subset. This 
could be useful as more and more ‘anomalies’ or non-
canonical processes are being described, and should spur 
further investigations based on the principle of 
Atg8tylation freed from the conceptual confines, however 
elegant, of the canonical autophagy pathway. Retrospec-
tively, membrane processes such as LAP, LANDO, selective 
microautophagy, EV/exosome secretion, etc., can be easier 
to understand from this point of view, while stimulating 
future systematic discoveries.  

The crossovers between ubiquitylation and Atg8ylation 
exist, as glimpsed from emerging examples of ubiquityla-
tion being able to occur on complex glycolipids such as 
bacterial LPS (lipopolysaccharide) when introduced into 
the mammalian cell [174], potentially blurring the borders 
of specialization between ubiquitylation and Atg8ylation 
relative to proteins vs. membranes. Conversely, two recent 
reports of protein Atg8ylation [175, 176] confirm that 
Atg8ylation and ubiquitylation are more similar than previ-
ously appreciated, although the biological significance of 
protein Atg8ylation is yet to be explored. In addition to 
proposing the concept of Atg8ylation, as the membrane 
modification equivalent to the ubiquitylation of proteins, 
this review collates a number of seemingly disparate phe-
nomena into a unified model. The concept of Atg8ylation 
offers a new perspective on the system usually associated 
with autophagy and may help in developing approaches to 
pharmacologically manipulate Atg8ylation rather than the 
entire canonical autophagy pathway.  

With the introduction of Atg8ylation as a concept some 
old questions remain, and new questions arise: What ex-
actly are the functional and mechanistic consequences of 
Atg8ylation in general and in specific examples covered 

here and how and does the lipidation of mAtg8s affect 
their functionalities? Do Atg8ylated membranes share spe-
cific types of lipid modifications, changes in order-
ing/tension within the bilayer, or other molecular features 
that are specific to ‘stress’ or a ‘stress’ signal? When a tar-
get protein reaches a threshold of ubiquitin modifications 
this often leads to its proteasomal degradation; could 
Atg8ylation similarly operate in the context of membrane 
remodeling and degradation? Doe Atg8ylation also take 
place under basal conditions, and, if so, would there be 
quantitative and qualitative differences between basal vs. 
‘stress’ conditions? With Atg8ylation expanding the func-
tional roles of mAtg8s to outside of the cells through un-
conventional secretion, do these processes serve to ex-
crete material from the cells or take active signaling roles 
such as in the case of EVs in intercellular communication? 
What are the specific roles of mAtg8s and Atg8ylation in 
processes of unconventional/secretory autophagy, and do 
they play a role in cargo selection or vesicle formation or 
both?  

As the most celebrated Atg8ylation process, canonical 
autophagy impacts a spectrum of pathophysiological con-
ditions including cancer, neurodegenerative diseases, met-
abolic and cardiovascular disorders, autoimmunity, in-
flammation and infection [4, 177, 178]. LAP and Lapoid 
processes are also physiologically important [10], whereas 
other Atg8ylation processes are slowly establishing biologi-
cal and potential medical relevance. The broader view pre-
sented here of membrane-specific (albeit not exclusive) 
modification via Atg8ylation should open both fundamen-
tal and translational approaches different than those based 
on autophagy alone. 
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