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a b s t r a c t 

The Coronavirus (COVID-19) pandemic impelled several research effort s, from collecting COVID-19 pa- 

tients’ data to screening them for virus detection. Some COVID-19 symptoms are related to the func- 

tioning of the respiratory system that influences speech production; this suggests research on identifying 

markers of COVID-19 in speech and other human generated audio signals. In this article, we give an 

overview of research on human audio signals using ‘Artificial Intelligence’ techniques to screen, diagnose, 

monitor, and spread the awareness about COVID-19. This overview will be useful for developing auto- 

mated systems that can help in the context of COVID-19, using non-obtrusive and easy to use bio-signals 

conveyed in human non-speech and speech audio productions. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

More than 212 million confirmed cases of coronavirus-induced 

OVID-19 (C19) infected individuals have been detected in more 

han 200 countries 1 across the world at the time of writing this 

verview. This pandemic had a wide spectrum of effects on the 

opulation, ranging from no symptoms to life-threatening medical 

onditions and more than four million deaths. The world health 

rganisation (WHO) 2 reports as most common symptoms of C19 

ever, dry cough, loss of taste and smell, and fatigue; the symptoms 

f a severe C19 condition are mainly shortness of breath, loss of 

ppetite, confusion, persistent pain or pressure in the chest, and 

emperature above 38 degrees Celsius. 

Monitoring the development of the pandemic and screening the 

opulation for symptoms is mandatory. Arguably the procedures 

ostly used are temperature measurement – e.g., before boarding 

 plane – and diverse corona rapid tests – e.g., before being al- 

owed to visit a care home. In the clinical test for diagnosing C19 

nfection, the anterior nasal swabs sample is collected as suggested 

y Hanson et al. [1] . Amongst alternatives, assessing human au- 

io signals has some advantages: It is non-intrusive, easy to obtain, 

nd both recording and assessment can be done almost instanta- 
∗ Corresponding author at: Chair of Embedded Intelligence for Health Care and 

ellbeing, University of Augsburg, Germany. 

E-mail address: dgauri@gmail.com (G. Deshpande). 
1 https://www.worldometers.info/coronavirus/ , retrieved August 24, 2021. 
2 www.who.int . 
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eously. It is an open research question whether the human audio 

ignal provides enough ‘markers’ for C19, resulting in good enough 

erformance of classification such that C19 can be told apart from 

ther respiratory diseases and from typical subjects displaying id- 

osyncrasies in speech production. Note that performance need not 

ecessarily be ‘perfect’: The same way as elevated body tempera- 

ure can be caused not by C19, it might do to find, out of a larger

ample, those persons that have to undergo more detailed medical 

xamination. With other words, taking into account a fair number 

f false positives might do, given that we obtain a very high num- 

er of true positives. 

An automated approach to detect and monitor the presence of 

19 or its symptoms could be developed using Pattern Recogni- 

ion – in more general terms, Artificial Intelligence (AI) – based 

echniques. Although AI techniques are still in the process of reach- 

ng a matured stage, they can be used for early detection of the 

ymptoms, especially in the form of a self-care tool in reducing the 

pread, taking early care, and hence avoiding propagation of the 

isease; see for overviews [2,3] . As depicted in Fig. 1 , in this article

e are discussing capturing and processing speech and other hu- 

an audio data for screening and diagnosis of C19. The references 

ncluded in this overview are searched on google scholar with the 

eywords ‘COVID’ or ‘Corona virus’ with ‘speech’, ‘audio’, ‘cough’ or 

breathing’, for the period from January 2020 till 23 March 2021. 

The paper is organised as follows. The previous work done 

or the detection of cough and breath sounds is discussed in the 

eginning. In the main Section 2 , the papers using the detected 

ough sounds, speech, and breathing signals for the screening and 

https://doi.org/10.1016/j.patcog.2021.108289
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108289&domain=pdf
mailto:dgauri@gmail.com
https://www.worldometers.info/coronavirus/
http://www.who.int
https://doi.org/10.1016/j.patcog.2021.108289
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Fig. 1. Capturing and processing audio signals including speech for COVID-19 applications. 
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sented as a baseline a Pearson’s correlation of r = 0.51 on the de- 
iagnosis of C19 are mentioned. In Section 3 , the limitations in 

dentifying C19 status from cough, speech, and breath signals are 

iscussed. Section 4 mentions the challenges and possibilities for 

uture work in the context of using human sounds for identify- 

ng C19. Finally, Section 5 concludes the findings and observations 

rom multiple studies attempting to detect C19. 

.1. Previous work in detecting cough & breath 

Cough is one of the prominent symptoms of C19; it is thus of 

nterest to know the techniques used in detecting human cough 

nd discriminating it from other similar sounds such as laughter 

nd speech. The motivation of using a microphone-captured signals 

or the detection of cough events comes from the study by Drug- 

an et al. [4] . They have compared the performance exhibited by 

everal sensors including ECG, thermistor, chest belt, accelerome- 

er, contact, and audio microphones to detect cough events from a 

atabase of 32 healthy individuals producing the sounds voluntar- 

ly in a confined room. They observed that microphones performed 

he best in telling apart cough events from other sounds such as 

peech, laughter, forced expiration, and throat clearing with a sen- 

itivity and specificity, both of 94.5%. 

The following studies detailed the audio features used in de- 

ecting cough sounds: A study with 38 patients having pertus- 

is cough, croup, bronchiolitis, and asthma is presented by Pra- 

ono et al. [5] in which the data are collected from public domain 

ebsites such as YouTube and whoopingcough. The cough detec- 

ion algorithm separates these cough sounds from the non-cough 

ounds such as speech, laughter, sneeze, throat clearing, wheezing 

ound, whooping sound, machine noises, and other types of back- 

round noise. The non-cough sounds together constitute 10 0 0 sep- 

rate sound events. The authors report a sensitivity of 90.31%, a 

pecificity of 98.14%, and an F1-score of 88.70%, using logistic re- 

ression with three features: (1) the ratio of the median of B-HF 

o a maximum of B-01, (2) the minimum to a maximum of B- 

1 contents, and (3) median of lower quantile to a maximum of 

-01 contents, where B-01 is between the fundamental frequency 

F0) and next harmonic (F1) and B-HF is between 2.5 to 3 kHz. 

iranda et al. [6] have shown that Mel Filter Banks (MFBs) per- 

ormed better than Mel Frequency Cepstral Coefficients (MFCCs) 

n telling apart cough from other sounds such as speech, sneeze, 
2 
hroat clearing, and other home sounds such as door slams, colli- 

ions between objects, toilet flushing, and running engines, on the 

oogle audio set extracts from 1.8 million YouTube videos and the 

reesound audio database. The authors report an absolute improve- 

ent of 7% in the area under the receiver operating characteristic 

urve (AUC) by using MFBs over MFCCs. 

San et al. [7] conducted in-clinic and outside clinic research to 

ollect speech from individuals with pulmonary disorders and de- 

ected pulmonary conditions using two algorithms, one for predict- 

ng the obstructive pulmonary disorder and a second one to detect 

he ratio of a person’s vital capacity to expire in the first second 

f forced expiration to the full forced vital capacity (FEV1/FVC). 

he authors conducted this study with 131 participants, in a non- 

linical setting, and with 70 participants in a clinical setup. The 

even most relevant features identified by the authors are fre- 

uency of pause while speaking, shimmer, absolute jitter, rela- 

ive jitter, maximum of Fast-Fourier Transform (FFT) of inspiratory 

ound in frequencies from 7.8 kHz to 8.5 kHz, mean of phona- 

ion period to inspiratory period ratio, and average phonation 

ime. The authors report a classification accuracy of 0.75% with 

 RandomForest classifier for the prediction of pulmonary disor- 

ers and a mean absolute error of 9.8% for the FEV1/FVC ratio pre- 

iction task using an eight dense layered neural network. Yadav 

t al. [8] used the INTERSPEECH 2013 Computational Paralinguis- 

ics Challenge (ComParE) baseline acoustic features [9] for the clas- 

ification of 47 asthmatic and 48 healthy individuals with a classi- 

cation accuracy of 75.4% using voiced speech sounds. The authors 

ompared the performance exhibited by these features with that 

f only MFCCs, and report an absolute improvement of 18.28% over 

he accuracy given by only MFCCs. 

Shortness of breath is also one of the symptoms of the virus for 

hich smartphone apps can be designed to capture breathing pat- 

erns by recording the speech signal. The breathing patterns cap- 

ured using smartphone microphones are analysed by Azam et al. 

10] using wavelet de-noising and Empirical Mode Decomposition 

or data pre-processing, to detect asthmatic inspiratory cycles. Mul- 

iple studies have tried to correlate speech signals with breath- 

ng patterns, e.g., Routray et al. [11] using cepstrogram and Nal- 

anthighal et al. [12] using spectrograms. In the Breathing Sub- 

hallenge of Interspeech 2020 ComParE [13] , Schuller et al. pre- 
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3 https://www.covid- 19- sounds.org/en . 
4 https://github.com/iiscleap/Coswara-Data . 
elopment, and r = 0.73 on the test data set to correlate speech 

ignals with the breathing signals. They used a piezoelectric res- 

iratory belt for capturing breathing patterns as a reference; more 

etails are given by MacIntyre et al. [14] . In another effort of cor-

elating speech signals with breathing signals, an ensemble sys- 

em with fusion at both feature and decision level of two ap- 

roaches is presented by Markitantov et al. [15] . One of the two 

pproaches is a 1D-CNN based end-to-end model having two LSTM 

ayers stacked above it. The other approach uses a pre-trained 

D-CNN ResNet18 with two Gated Recurrent Unit (GRU) layers 

tacked above it. They combine several deep learning procedures in 

arly/late fusion, reporting r = 0.76 between the speech signal and 

orresponding breathing values of the test set. Further, Mendonça 

t al. [16] modified the end-to-end baseline architecture by replac- 

ng the LSTMs with Bi-LSTM. They also augmented the challenge 

ata set, with the same data set being modified to emulate Voice 

ver Internet (VoIP) conditions. With the above modifications, they 

chieved r = 0.728 on the test data set. To explore attention mech- 

nisms, MacIntyre et al. [14] used an end-to-end approach along 

ith a Convolutional RNN (CRNN) for two prediction tasks: the 

reathing signals captured using a respiratory belt, and the inhala- 

ion events. They report a maximum of r = 0.731 in predicting the 

reathing pattern from the speech signal and a macro averaged F1 

alue of 75.47% in predicting the inhalation events. The attention 

tep is found to improve the metrics by 0.003 r -value absolute, 

rom r = 0.728 to r = 0.731, and 0.726% F1 value absolute, from 

4.743 to 75.469 for the two tasks, respectively. All the three stud- 

es mentioned above [14–16] worked with the data set provided in 

he Breathing Sub-challenge of Interspeech 2020 ComParE [13] . 

Outside of the challenge, Nallanthighal et al. [17] attempted to 

orrelate high-quality speech signals captured using an Earthworks 

icrophone M23 at 48 kHz with the breathing signal captured us- 

ng two NeXus respiratory inductance plethysmography belts over 

he ribcage and abdomen to measure the changes in the cross- 

ectional area of the ribcage and abdomen at a sample rate of 

 kHz. They collected data from 40 healthy subjects by making 

hem read a phonetically balanced text (exact text not mentioned 

n the paper) to train a deep learning model. Using the plethys- 

ography belts, normal quiet breathing is collected for the ref- 

rence breathing rate. They also asked the participants to pro- 

uce sustained vowels to estimate their lung capacity. The authors 

chieved a correlation of 0.42 with the actual breathing signal, a 

reathing error rate of 5.6%, and a recall of 0.88 for breath event 

etection. 

. Screening and diagnosing for COVID-19 

In this section, we report different algorithms/applications us- 

ng audio processing developed for the screening and diagnosis of 

19. All the effort s are categorised as ‘non-clinical’ and ‘clinical’ 

s per the clinical validation of the collected and analysed data 

erformed by the authors using gold standard methods such as 

everse Transcription-Polymerase Chain Reaction (RT-PCR) or any 

imilar test. 

.1. Non-clinical analysis 

The studies presented in this section have used the data col- 

ected from crowd-sourcing platforms. The participants have vol- 

ntarily participated by uploading their data along with required 

etadata including C19 status; the C19 status has not been clini- 

ally validated. 

.1.1. Non-clinical cough analysis 

Cough detection is about identifying cough sounds and differen- 

iating them from other similar sounds such as speech and laugh- 
3 
er; the next step will be identifying C19 specific cough sounds. It 

equires cough and speech samples from C19 and non-C19 subjects 

o develop an AI model that can differentiate between them on its 

wn. Fig. 2 shows the number of healthy and C19 positive subjects 

r data points (items) collected by all the groups having data from 

ore than 100 subjects. 

Cambridge University 3 provided a web-based platform and an 

ndroid application to upload three coughs, five breaths, and three 

peech samples of reading a short sentence, and to report C19 

ymptoms & status. As explained by Brown et al. [18] , the crowd- 

ourced data collected come from more than 10 different countries 

nd comprises samples from 6 613 subjects with 235 C19 positive 

ubjects. Note that in the work presented in Brown et al. [18] , only

ough and breathing sounds are considered. With a manual exam- 

nation of each sample, 141 cough and breathing items of 62 as 

19 positive tested users and 298 items from 220 non-C19 users 

re used for building a binary classification model to distinguish 

etween C19 and non-C19 users (Task-1). Similarly, 54 “C19 with 

ough” samples are distinguished from 32 “non-C19 cough” sam- 

les (Task-2), and from 20 non-C19 asthmatic cough samples (Task- 

). Further, hand-crafted features, amongst them duration, pitch 

nset, tempo, and MFCCs, are extracted. Along with the hand- 

rafted features, Brown et al. [18] have used another approach, 

n which transfer learning using the VGGish model is developed 

sing videos from YouTube. The authors achieved an AUC of 0.8 

or distinguishing C19 subjects from non-C19 subjects (Task-1) us- 

ng logistic regression on VGGish-based feature with a sub-set of 

he handcrafted features, and again an AUC of 0.8 for distinguish- 

ng C19 cough from non-C19 and asthmatic cough (Task-3) using 

 Support Vector Machine (SVM) on VGGish-based features and 

ll handcrafted features except MFCC and its derivatives. The au- 

hors found handcrafted features along with VGGish based features 

o give the best performance. Together, cough and breathing sig- 

als perform best in Task-1. Yet, breathing signals alone are bet- 

er suited for Task-2. With training data augmentation methods 

uch as amplification, adding white noise, and changing pitch and 

peed, the authors could improve the classification performance of 

ask-2 from 0.82 to 0.87 AUC and of Task-3 from 0.80 to 0.88 AUC. 

hus, the collection of breathing sounds seems to give more ac- 

urate results in classifying individuals having C19 infection. Al- 

hough it is reported that manual evaluation of the samples has 

een done to verify the C19 status, how this had been done is not 

xplained in detail. 

As described by Sharma et al. [19] , another corpus called 

Coswara” with 941 subjects and nine different sounds has been 

reated using a web interface developed by IISC Bangalore India. 

he nine sounds include (1) shallow and (2) deep cough, (3) shal- 

ow and (4) deep breathing, the sustained vowels (5) [ey], (6) [i:], 

nd (7) [u:], and one to twenty digits counting in (8) normal and 

9) fast speaking rate. The metadata collected from the participants 

nclude age, gender, location, current health status, (healthy / ex- 

osed / cured / infected) and the presence of co-morbidity. Here, 

long with the subjects labeling their data, the items were manu- 

lly assigned to one of the nine categories. The data set comprises 

udio samples from 104 unhealthy users. After curating, the data 

et is publicly available at Github. 4 

Dash et al. [20] generated a new bio-inspired cepstral feature 

et termed COVID-19 Coefficient (C-19CC) to detect the C19 status. 

he two datasets Coswara [19] and Cambridge [18] are used for 

valuating this new feature set. C-19CC with SVM performs best 

n detecting C19 from shallow and heavy cough in the Coswara 

ataset, with an accuracy of 74.1% and 72.3%, respectively. It re- 

https://www.covid-19-sounds.org/en
https://github.com/iiscleap/Coswara-Data
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Fig. 2. Groups (given on the x -axis) that collected and analysed cough, speech, and breathing data as indicated. Although some groups collected all three types of data, they 

have reported their results based on the analysis of only one of them. The y -axis indicates the frequencies of the healthy and C19 subjects present in the data set. Coughvid, 

VoiceMed and Spira have reported number of data points; we report here number of subjects. The data sets from Cambridge, Coswara, and Coughvid are publicly available. 

C & B: Cough & Breath; C, S & B: Cough, Speech & Breath. On the x -axis, reference to bibliography is given in square brackets & number without bracket refers to footnote. 
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ains the best performer in identifying C19 from the cough of the 

ambridge dataset with an accuracy of 85.7% using SVM. However, 

FCCs and their variants have performed better than C-19CC for 

he speech and breathing samples of both datasets. 

Coughvid 

5 is another app from EPFL (Ecole Polytechnique 

édérale de Lausanne) to tell apart C19 cough from other cough 

ategories such as normal cold and seasonal allergies. Till date, this 

ata set by Orlandic et al. [21] has more than 20 0 0 0 cough sam-

les; all the samples are passed through an open-source cough de- 

ection machine learning model to identify the cough segments. 

ore than 2 0 0 0 samples are labeled by 3 expert pulmonologists 

or the respiratory conditions along with the C19 status. Out of 

he 2 0 0 0 labels given by expert 1, 632 C19 positive labels are

iven; however, there exists no agreement between the three pul- 

onologists on the C19 diagnosis (Fleiss’ Kappa score 0.00). The 

ata set is publicly available, along with a machine learning model 

or identifying cough from other sounds. This data set has the 

amples validated by three pulmonologists, however, they do not 

gree at all on their evaluation; this shows that just by listen- 

ng to the samples it is difficult to agree on the C19 status, even

or the experts. Both efforts ‘Coughvid’ and ‘Coswara’ are focused 

n building a data set only and have not been used for further 

nalysis. 

The C19 cough data collection at Massachusetts Institute of 

echnology (MIT) is done using a web app, 6 in which each sub- 

ect gives three prompted cough recordings, diagnosis details, and 

ther demographic metadata. The total data come from 5 320 sub- 

ects (2 660 C19 positives). Laguarta et al. [22] used MFCCs with a 

NN architecture, and residual-based neural network architecture 

ResNets) to build a baseline model using the collected data set, to 

nderstand the impact on C19 diagnosis by employing four ‘bio- 

arkers’ (muscle degradation, vocal cords, sentiments, and lung 

 respiratory tract). The authors used these bio-markers in a pre- 
5 https://coughvid.epfl.ch . 
6 opensigma.mit.edu . 

4 
raining for the baseline model. This baseline model’s performance 

s then compared with the four variants; it is found that the lung 

nd respiratory tract bio-markers have the most, and the sentiment 

arker has the least effect on improving the baseline performance 

f detecting C19 cough samples. The authors report an accuracy of 

8.5% in detecting C19 cough; however, the data used for build- 

ng the models are not clinically validated, hence they intend to 

ork with clinically validated data next. The performance reported 

s strikingly high and has, therefore, to be scrutinised thoroughly. 

VoiceMed 

7 is another android and web application that cap- 

ures crowd-sourced speech and cough sounds and returns the C19 

nfection status on the fly. The different stages in this cloud-based 

re-trained CNN based system comprise pre-processing the col- 

ected signal, using a cough detector to identify if it is a cough 

ignal, and then a C19 cough detector to further detect if the au- 

io signal is a C19 cough. As explained in a video, 8 the authors 

sed 900 coughs and 2 0 0 0 non-cough audio samples for build- 

ng the cough detector. Similarly, the authors employed 165 C19 

nd 613 non-C19 samples for building the C19 cough detector. The 

ccuracy of the cough classifier is reported to be 83.7% and the ac- 

uracy of the C19 classifier is reported to be 89.69% using deep 

pectrograms. The major challenges mentioned are that, within 

he entire group of C19 patients, the identification of C19 cough 

nd their separation from the non-C19 cough in elderly individuals 

nd in individuals with respiratory disorders is a further complex 

roblem. 

.1.2. Non-clinical speech analysis 

Considering the risky effects of coughing on spreading the in- 

ection in the absence of any preventive measures, capturing and 

nalysing speech signals is a dependable alternative. A web inter- 

ace to capture speech along with cough of C19 patients is devel- 

ped by Voca. 9 The data collected were analysed by Dubnov [23] ; 
7 https://voicemed-791a3.firebaseapp.com . 
8 https://health-sounds.cl.cam.ac.uk/workshop20/Thayabaran _ Kathiresan.mp4 . 
9 https://voca.ai/corona-virus . 

https://coughvid.epfl.ch
https://opensigma.mit.edu
https://voicemed-791a3.firebaseapp.com
https://health-sounds.cl.cam.ac.uk/workshop20/Thayabaran_Kathiresan.mp4
https://voca.ai/corona-virus
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hey comprise 30 positively diagnosed and 1 811 healthy partici- 

ants’ speech and cough samples. The candidates are asked to pro- 

uce [a:], [e:], [o:], counting from 1 to 20, the alphabet from a–z, 

nd to read a segment from a story. When classifying into C19 pos- 

tive individuals and healthy ones, the author obtained a maximum 

f 70% accuracy using MFCC features and a CNN architecture. This 

tudy uses a rather small portion of C19 diagnosed subjects – only 

0. The author has also not described any techniques used for bal- 

ncing the data set. 

.1.3. Non-clinical breath analysis 

As described in Sections 2.1.1 and 2.1.2 , multiple attempts are 

ade to analyse respiration along with cough and speech signals. 

specially Brown et al. [18] reported that breathing signals are bet- 

er suited for distinguishing C19 positive users from C19 negative 

sers having asthma and cough. Similarly, Schuller et al. [24] also 

ound breathing signals performing better than coughs in classi- 

ying C19 subjects vs. healthy subjects. Employing an ensemble of 

NNs for audio and spectrograms, they report an Unweighted Av- 

rage Recall (UAR, sometimes called ‘macro average’, i.e., per cent 

ean of the values in the diagonal of the confusion matrix) of 

6.1% using breathing sound and 73.7% for coughing sound from 

he data set collected by Cambridge University [18] . Note that this 

tudy uses a sub-set of the Cambridge data. Another analysis us- 

ng a subset of the data collected by Cambridge University [18] is 

resented by Coppock et al. [25] . The data comprise of coughing 

nd breathing audio recordings from 62 COVID-19 positives and 

93 healthy participants. The authors applied an end-to-end deep 

etwork on the joint representation of coughing and breathing au- 

io signals and report an AUC of 0.846. 

.2. Clinical data analysis 

The studies presented in this section have used the data col- 

ected either from clinical setup or have verified the collected data 

sing clinical tests. 

.2.1. Clinical cough analysis 

Another web interface ‘CoughAgainstCovid’ 10 for collecting C19 

ough samples is an initiative by the Wadhwani AI group in collab- 

ration with the Stanford University. 11 As described in Bagad et al. 

26] , the authors collected prompted cough sounds produced by 

 621 individuals using a smartphone microphone in the setups 

stablished at testing facilities and isolation wards across India. 

his data set contains data from 2 001 C19 positive subjects; these 

ubjects’ RT-PCR tests are also employed for confirmation. The au- 

hors have also developed a CNN based model for telling apart C19 

ough from non-C19 cough sound. Using the features RMSE, tempo, 

nd MFCCs, they obtain a specificity of 31% with a sensitivity of 

0%. These effort s from ‘CoughAgainstCovid’ have used clinically 

alidated data which should be more reliable; however, the data 

re not publicly available. 

In the AI4COVID project, the C19 subjects’ validation is done 

y studying the pathomorphological changes caused by C19 in the 

espiratory system from their X-rays and Computer Tomography 

CT) scans. A cloud-based smartphone app for detecting C19 cough 

s described by Imran et al. [27] . As a first step, the authors used a

NN based cough detector, which discriminates cough sounds from 

ver 50 environmental sounds. The authors built this detector us- 

ng the ESC-50 data set [28] . In the next stage, to diagnose a C19

ough, they collected 70 C19, 96 bronchitis, 130 pertussis, and 247 

ormal cough samples (total 353 non-C19 samples) to train their 
10 https://www.coughagainstcovid.org . 
11 https://www.stanford.edu . 

i

5 
19 cough detector model. Using MFCCs for feature representa- 

ion and t-distributed stochastic neighbour embedding for dimen- 

ionality reduction, they trained three models: (1) a deep transfer 

earning-based multi-class classifier, using a CNN; (2) a classical 

achine learning-based multi-class classifier, using an SVM; and 

3) a deep transfer learning based binary classifier, again using a 

NN. These three models reside in the AI4COVID engine, where a 

ecision is made for C19 positive or negative if the output of all 

he three models’ outputs is the same; else, it declares the test to 

e inconclusive. With this, the authors report an accuracy of more 

han 95% in discriminating cough sounds from non-cough sounds. 

he three engine-based models yield an accuracy of 92.64%, 88%, 

nd 92.85%, respectively, for detecting a C19 cough sound. The 

verall performance indicates that the app can detect C19 infected 

ndividuals with a probability of 77.3%. As seen in Fig. 2 , com- 

ared to other real-time C19 identifiers such as ‘CoughAgainst- 

ovid’ (2 001 C19 positives), AI4Covid has a much smaller data set 

omprising of data from 70 C19 positive individuals. 

Pal and Sankarasubbu [29] discuss the interpretability of their 

ramework of C19 diagnosis using embeddings for the cough fea- 

ures and symptoms’ metadata. In this study, cough, breathing, and 

peech with counting from 1 to 10 is collected from 150 sub- 

ects; 100 subjects were C19 positive, and 50 were tested nega- 

ively during their RT-PCR test. Apart from this, the authors also 

ollected data for bronchitis and asthma cough from online and of- 

ine sources. They report an improvement of 5–6% in accuracy, F1- 

core, recall, specificity, and precision when using both the symp- 

oms’ metadata and cough features for the classification tasks with 

 3-layered dense network giving an accuracy of around 96%. 

.2.2. Clinical speech analysis 

In the work from Carnegie Mellon University (CMU), features 

rom models of voice production are explored to understand C19 

ymptoms in speech signals. The data were collected under clinical 

upervision, while collaborating with a hospital (Merlin Inc., a pri- 

ate firm in Chile), from 512 subjects. Deshmukh et al. [30] used 

ata from only 19 of these 512 subjects, comprising 9 C19 posi- 

ives and 10 healthy subjects. The method employed is described 

n Zhao and Singh [31] and is based on the ADLES (Adjoint Least- 

quares) algorithm that extracts the features representing the os- 

illatory nature of the vocal fold for the vowel [a:]. The voice pro- 

uction model is called the “asymmetric body-cover” model that 

stimates parameters such as glottal pressure, mass, spring, and 

amping from the left and right vocal folds’ motion speed and ac- 

eleration. The authors analysed the differential dynamics of the 

lottal flow waveform (GFW) during voice production with the 

ecorded speech, as it is too difficult to analyse the GFW of C19 pa- 

ients. They hypothesise that a greater similarity between the two 

ignals indicates normal voice and a larger difference would mean 

he presence of anomalies. A CNN based 2-step attention model 

s used to detect these anomalies from the sustained vowels [a:], 

i:], and [u:]. The residual and the phase difference between the 

wo GFWs are reported as the most promising features yielding the 

est AUC of 0.9 on the sustained vowels [u:] and [i:]. For a larger 

tudy, the following details were mentioned in the video published 

y CMU in a workshop 

12 ; note that only partial information can 

e found in the paper. The data were collected from a total of 530 

ubjects, all of them clinically tested for C19, comprising 299 pos- 

tively and 231 negatively tested subjects. Each subject provided 

ix recordings: alphabets (no mention of how many and which al- 

habets), counting 1–20, sustained vowels, and coughs. With these 

ata, classification was done for different train and test partitions; 

t turned out that with the change in the data partition, the 5-fold 
12 https://health-sounds.cl.cam.ac.uk/workshop20/rita _ singh.mp4 . 

https://www.coughagainstcovid.org
https://www.stanford.edu
https://health-sounds.cl.cam.ac.uk/workshop20/rita_singh.mp4
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ross-validation and AUC values for test data changes. It is men- 

ioned that the results with sustained vowels are better than those 

btained with the cough signals, with the vowel [a:] and alphabets 

iving the best performance, varying with the change in train-test 

ata partition for AUC from 0.73 to 0.95. 

A web-based interface for detecting C19 symptoms from the 

oice is the “Spira Project”. 13 This interface asks the participants to 

ecord three phrases. Voice samples from C19 patients in the hos- 

ital’s COVID wards were collected, with the help of doctors using 

martphone microphones. The authors also collected ward noise 

rofiles for performing a noise-robust analysis. In describing their 

nitial results using MFCCs and a CNN architecture, they reported 

14 

n accuracy of 91% in detecting C19 symptoms related to respira- 

ory disorders using 600 samples collected from C19 patients and 

0 0 0 control samples. 

.3. Scant data analysis 

The studies presented in this section have worked with very 

mall clinical/non-clinical data sets. Some of the studies have not 

evealed the exact count of the samples they have worked with. 

.3.1. Scant cough data analysis 

The following studies have used cough data sets with samples 

rom less than 100 subjects for training a model. 

A smartphone-based C19 cough identifier is developed by Pahar 

t al. [32] using the Coswara data set and another smaller data set 

ollected in South Africa, comprising of clinically validated 8 C19 

ositive and 13 C19 negative subjects. The authors compared the 

erformance obtained by logistic regression, SVM, multilayer per- 

eptrons, CNN, long-short term memory (LSTM), and Resnet-50. It 

s found that Resnet-50 performed best in classifying into C19 pos- 

tive and C19 negative coughs, with an AUC of 0.98, while an LSTM 

lassifier performed best in classifying into C19 positive and C19 

egative coughs, with an AUC of 0.94. Yet, such studies with less 

han 30 subjects can only be seen as indicators; results may vary 

hen analysing more data from the same subjects or data from 

ore subjects. Dunne et al. [33] built a classifier that uses 14 C19 

raining samples from the Coswara data set and from the Stanford 

niversity led Virufy mobile app. 15 The authors report an accuracy 

f 97.5% in classifying the validation set comprising of 38 non-C19 

nd only 2 C19 instances; note that no independent test set was 

mployed. This is an extremely small data set to draw conclusions 

or generalising onto real-life settings. 

Some effort s towards only dat a collection comprise ‘Breath for 

cience’ 16 : a team of scientists from NYU developed a web-based 

ortal to register the participants where they can enter similar de- 

ails along with a phone number. On pressing a ‘call me’ button, 

he participants receive a callback where they have to cough three 

imes after the beep. At the moment, this service is available only 

or US citizens. The organisers have not published any details about 

he amount of data collected. 

.3.2. Scant speech data analysis 

Following are speech-based effort s with dat a set s of less than 

00 subjects. Some studies have not revealed the exact number of 

amples that they have worked with. 

The Afeka college of engineering developed a mobile applica- 

ion for remote pre-diagnostic assessment of C19 symptoms from 

he voice and speech signals captured from 29 infected and 59 

ealthy individuals. All the subjects provided speech, breathing, 
13 https://spira.ime.usp.br/coleta 
14 https://health-sounds.cl.cam.ac.uk/workshop20/shorts/Finger.mp4 
15 Virufy, http://archive.is/hbrfE 
16 https://www.breatheforscience.com 

t

m

6 
nd cough sounds, and all of them underwent swab tests. The 

ata comprise 70 speakers and 235 items in the training, and 18 

peakers and 57 items in the test set. The study presented in a 

orkshop 

17 focuses on the analysis of the phones [a:] and [z:], 

ough, and counting from 50 to 80, collected over a period of 14 

ays. The same study on the cellular call recordings of 88 subjects, 

ith 29 positive and 59 negative C19 clinically tested individuals, 

s published by Pinkas et al. [34] . The distribution of positive and 

egative subjects in train and test is not mentioned; yet, the au- 

hors point out that they balanced the training data set for C19 

tatus, age, and gender of the subjects. They compared the per- 

ormance of three deep learning components: an attention-based 

ransformer, a GRU-based expert classifier with aggressive regular- 

sation, and ensemble stacking. [z:] turned out to be a better in- 

icator of laryngeal pathology than [a:]. Among the deep learning 

echniques, transformer-based experiments gave better F1 scores. 

hey achieved a precision of 0.79 and a recall of 0.78 on the test 

et. 

Speech recordings of TV interviews available on YouTube were 

ollected and analysed by Ritwik et al. [35] for classifying C19 pa- 

ients vs. healthy individuals. The data set is publicly available 18 

nd comprises 19 speakers with 10 of them tested as C19 posi- 

ive. The data collected are manually segmented, after which MFB 

eatures are calculated for the speech segments. Using the ASpIRE 

hain model, which is a time-delayed neural network trained on 

he Fisher English data set described by Ko et al. in Ko et al. [36] ,

itwik et al. [35] extracted the posterior probability of phonemes 

or each frame. When concatenated, this gives a feature vector for 

ach speech utterance. Using an SVM classifier, the authors report 

n accuracy of 88.6% and an F1-score of 92.7% in classifying C19 

atients vs. healthy speakers. 

As seen in Fig. 3 , MFCCs are used in more than 50% of the to-

al efforts [18,19,22,23,26,27,33,37] . However, Alsabek et al. [38] ex- 

racted MFCCs from cough, deep breath, and speech signals from 

even C19 patients and seven healthy individuals, showing that 

FCCs from the speech are not dependable features for this task. 

ence, we have to understand those speech-based features that are 

elevant for differentiating C19 patients from healthy individuals. 

artl-Pokorny et al. [39] studied sustained vowels produced by 11 

ymptomatic C19 positive and 11 C19 negative German-speaking 

articipants, to assess the 88 eGeMAPS features [40] , and report 

he mean voiced segment length and the number of voiced seg- 

ents per second as being most important, using a Mann-Whitney 

 test. 

.3.3. Scant breathing data analysis 

Following effort s are analysing breath signals from data sets 

aving less than 100 subjects. 

In a study by Hassan et al. [41] with 60 healthy and 20 C19 

ositive subjects, the authors report better accuracy with LSTM 

ased analysis using both breathing (98.2%) and cough (97%) data 

han for speech (88.2%) with an absolute improvement of 10% and 

.8%, respectively. The feature set used includes spectral centroid, 

pectral roll-off, zero-crossing rate, MFCCs, and their derivatives. 

owever, analysing breathing signals is less popular than analysing 

oughs, owing to the challenges in capturing these low amplitude 

ignals in noisy environments. 

A preliminary analysis of the sound signals of respiration from 

ine C19 patients and four healthy volunteers is done by Fur- 

an et al. [42] using FFT harmonics. The respiration sounds are 

ecorded using a smartphone microphone. Another such app de- 

ecting anomalies from the breathing sound has been developed by 
17 https://health-sounds.cl.cam.ac.uk/workshop20/Alon _ Barnea _ Vered _ Aharonson. 

p4 
18 https://github.com/shareefbabu/covid _ data _ telephone _ band . 

https://spira.ime.usp.br/coleta
https://health-sounds.cl.cam.ac.uk/workshop20/shorts/Finger.mp4
http://archive.is/hbrfE
https://www.breatheforscience.com
https://health-sounds.cl.cam.ac.uk/workshop20/Alon_Barnea_Vered_Aharonson.mp4
https://github.com/shareefbabu/covid_data_telephone_band
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Fig. 3. Acoustic features’ & Machine learning techniques’ usage with the performance reported by different groups (on x -axis) for detecting COVID-19. The first row ‘+C19 

subjects’ gives the C19 positive subjects’ count used by the respective groups; sequence of groups same as in Fig. 2 . The features used by each group are indicated by the 

block colour: MFCC; SG: Spectrograms; VFO: Vocal fold Vibrations. Performance reported in the form of A: Accuracy, Se: Sensitivity, Sp: Specificity, and AUC. LR: Logistic 

regression. ‘Coswara’ and ‘Coughvid’ have not done any analysis with the data set they collected, hence blank blocks are shown for them. The results reported by ’Cambridge’ 

are: Combined analysis using cough and breath, C : Cough only and B : Breath only. On the x -axis, reference to bibliography is given in square brackets & number without 

bracket refers to footnote. 
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he TCS Research team [43] . The authors demonstrated that their 

pp can detect breathing anomalies with an accuracy of 94%; how- 

ver, the details about the anomalies and their significance in de- 

ecting C19 are not described. 

. Discussion and limitations 

Although cough, speech, and breathing algorithms obtained 

ometimes good results on their test data sets, it is essential to 

alidate these systems by using them with larger samples: In the 

bsence of a C19 cure, it will be highly favourable to diagnose the 

irus symptoms at the earliest with non-invasive and easily avail- 

ble modes such as audio on smartphones and web interfaces. As 

 prerequisite, every research step, from data collection, annota- 

ion, validation of the annotated data to machine learning adopted 

eeds careful analysis. Even though breathing analysis is found to 

e a promising signal carrying C19 symptoms, lesser attention has 

een paid to it as compared to cough analysis, maybe because of 

he challenging and intrusive mechanisms of capturing such low 

mplitude signals; a solution might be to correlate the speech sig- 

als with the breathing patterns and employ the speech signals 

hemselves for classifying. As for the methods used, they seem not 

o converge; many different methods have been employed, and it 

s not (yet) possible to disentangle the adequacy of methods from 

ther factors such as phenomenon addressed or reliability of anno- 

ation. As for the parameters used, it seems that MFCCs alone will 

ot do; instead, we will have to employ the multitude of acoustic 

arameters available. 

In all, to answer if an AI system can detect C19 when experts 

annot do so by simple listening, it is important to consider the 

hree factors: (1) clinically validated ground truth, (2) cough be- 

ng not (only) an archetypal symptom of C19 and (3) presence of 

onfounding classes such as Chronic Obstructive Pulmonary Dis- 

ase (COPD), cold, or asthma. In the presence of a clinically vali- 

ated ground truth, solving the C19 detection problem using ma- 

hine learning techniques becomes empirical. However, relying on 
7 
ough as the only human sound for the detection of C19 can be 

eceptive. Also, understanding the biomarkers that can differen- 

iate C19 from other respiratory disorders seems to be the major 

hallenge. 

In the studies conducted for detecting C19 from cough and 

ther human sounds, the analysis is mostly done with a very small 

umber of C19 patients. It is difficult to label the data as C19 or 

on-C19 when it is collected through crowd-sourcing platforms 

aving no clinical validation. In several studies, subjects donated 

he data voluntarily and produced the cough sounds in the absence 

f any ailments. We know from other domains of speech analysis 

uch as emotion detection that acted states have higher intensities 

han spontaneously expressed emotions. Similarly here, we have 

o understand whether the prompted cough sounds carry a good 

nough correlation with spontaneous ones or not. The influence of 

nvironmental noises while detecting cough has also been studied 

y only a few studies. Sometimes, neither partitioning nor stratifi- 

ation of the data is mentioned. 

When we relate the number of C19 subjects within studies to 

he performance measure obtained, then – as expected – a higher 

umber of data points in the training set goes often together with 

etter performance. As seen in Fig. 3 , Voca [23] exhibits the low- 

st performance (70% accuracy) and has the lowest number of C19 

ubjects – only 30. However, the performance reported by MIT 

22] – not although but because it is extremely high – waits for 

urther corroboration. 

Certain preventive measures taken by the governmental author- 

ties in many countries have started examining and asking every 

ndividual whether they have any C19 symptoms. Such initiatives 

eed a lot of human effort s to be invested. Alternative automa- 

ion to accomplish such surveys might use a system as described 

y Lee et al. [44] , where, by using speech recognition, synthesis, 

nd natural language understanding techniques, the CareCall sys- 

em monitors individuals of Korea and Japan who had contact with 

19 patients. This monitoring is done over the phone using with 

nd without human-in-the-loop processes for three months. The 
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ystem has been used with over 13 904 calls; the authors reported 

% false negative (self-reported C19 subjects are not identified by 

he CareCall system) and 0.92% false-positive rate. A surveillance 

ool, the FluSense platform [45] , has been developed by Al Hos- 

ain et al. to detect influenza-like illness from hospital waiting ar- 

as using cough sounds. Considering the importance of covering 

he mouth as a preventive measure against the spread of C19, it is 

aluable to detect mask-wearing individuals from their voice. The 

nterspeech 2020 Computational Paralinguistics Challenge (Com- 

arE) [13] featured a mask detection sub-challenge, where the task 

s to recognise whether the speaker was recorded while wearing 

 facial mask or not. The winners of this sub-challenge, Szep and 

ariri [46] , used a deep convolutional neural network-based image 

lassifier on the linear-scale 3-channel spectrograms of the speech 

egments. They achieved a UAR of 80.1% – 8.3% higher than the 

aseline, using an ensemble of VGGNet, ResNet, and DenseNet ar- 

hitectures. The caveat has to be made that ensemble methods 

eem to be highly competitive but might not meet run-time con- 

traints in real-life applications. 

. Next steps and challenges 

With the smartphone being the most convenient and avail- 

ble asset that almost every individual carries all the time, more 

martphone-based applications for detecting C19 symptoms might 

elp in controlling the spread of the virus. Albes et al. [47] ad- 

ressed the memory and power consumption issues for importing 

 deep learning model for detecting a cold from the speech sig- 

al. They propose network pruning and quantization techniques 

o reduce the model size, achieving a size reduction of 95% in 

egabytes without affecting recognition performance. 

The spread of the disease has equally affected the physical and 

ental health of individuals. As found by Patel et al. [48] , the 

19 pandemic has generated unprecedented demand for telehealth 

ased clinical services. It is imperative to study mental health is- 

ues such as stress, anxiety, and depression, from speech signals 

uring the C19 period. This demands relevant data. Recently, a 

tudy was conducted by Han et al. [49] on the speech signal of 

19 diagnosed patients. The behavioural parameters detected from 

peech include self-reported ratings of sleep quality, fatigue, and 

nxiety as a reference and achieved an average accuracy of 0.69 in 

stimating the severity of C19. 

It would be interesting to evaluate whether multi-modal analy- 

is helps to improve the accuracy of C19 detection: Image analysis 

s providing novel solutions using X-ray [50–55] and chest CT im- 

ges [56–63] . Some of them [50,52,55,58,60,64] have discriminated 

19 from another pulmonary disorder (pneumonia). Hryniewska 

t al. [65] present a checklist for the development of an ML model 

or lung image analysis, pointing out the urgent need for better 

uality and quantity of image data. One of the topics in the check- 

ist is data augmentation, which includes image visibility, the in- 

lusion of areas of interest, and sensible transformations. Li et al. 

64] demonstrated the use of simple auxiliary tasks on both 4758 

T and 5821 X-ray images using CNN-based deep networks for im- 

roving the network performance. Considering that C19 primarily 

ffects the respiratory system – by thus being a genuine object of 

peech and voice analysis, both modalities might complement each 

ther, yielding better performance. 

. Conclusion 

Speech and human audio analysis are found to be promising 

or C19 analysis. As shown in Fig. 3 , the early results exhibited 

y the studies performed by different groups indicate the fea- 

ibility of C19 detection from audio signals. As seen in Fig. 2 , 

hose groups which have collected all three types of audio data 
8 
cough, speech, and breathing) have not yet analysed them com- 

letely and together. Several initiatives towards identifying cough 

ounds and distinguishing C19 cough from other illnesses are cur- 

ently being pursued. Such detectors, when integrated with chat- 

ots, can enhance the screening, diagnosing, and monitoring effort s 

hile reducing human interventions. Further research is required 

or cough, breathing, and speech signal-based C19 analysis, where 

t is more important to identify the exact bio-markers. Moreover, 

xact benchmarking with strictly identical constellations such as 

dentical databases and partitioning is highly needed to tell apart 

andom from systematic factors; first initiatives are the forthcom- 

ng challenges at Interspeech 2021, see [66,67] . 

With increasing correlations established between speech and 

reathing signals, detecting breathing disorders from the speech 

ignals will be useful. Many elderly individuals have been inside 

ome for almost the entire year. The past research on the detec- 

ion of stress needs to be taken forward in the C19 context for the 

lderly population. Besides, promising applications using language 

rocessing and other signal analyses have been shown. In sum, we 

re positive that the combination of intelligent audio, speech, lan- 

uage, and other signal analysis can help make an important con- 

ribution in the fight against the C19 and oncoming similar pan- 

emics – alone, or in combination with other methods. 

Although the technology makes it feasible to monitor individu- 

ls for wearing a mask, coughing, sneezing and also for a healthy 

ental wellbeing, the privacy of an individual stands above it; 

ince audio signals can enable de-anonymisation, it is essential to 

tore and maintain such information in an anonymous way for fur- 

her analysis. Applying a responsible AI in this context is described 

n Leslie [68] . As seen from the studies discussed in Section 2 , the

ata in the context of C19 are sparse and in need of validation by 

erforming gold standard test such as RT-PCR or Chest X-ray anal- 

sis by experts. Although it is crucial to have a speech based C19 

creening, there is a greater need of having close to zero false neg- 

tive rates of such a tool. The pure breathing studies have been 

romising, but of course, they suffer from sparse data as well. 
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