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Abstract

Modern healthcare systems knitted by a web of entities (e.g., hospitals, clinics, pharmacy

companies) are collecting a huge volume of healthcare data from a large number of individuals

with various medical procedures, medications, diagnosis, and lab tests. To extract meaningful

medical concepts (i.e., phenotypes) from such higher-arity relational healthcare data, tensor

factorization has been proven to be an effective approach and received increasing research

attention, due to their intrinsic capability to represent the high-dimensional data. Recently,

federated learning offers a privacy-preserving paradigm for collaborative learning among different

entities, which seemingly provides an ideal potential to further enhance the tensor factorization-

based collaborative phenotyping to handle sensitive personal health data. However, existing

attempts to federated tensor factorization come with various limitations, including restrictions to

the classic tensor factorization, high communication cost and reduced accuracy. We propose a

communication efficient federated generalized tensor factorization, which is flexible enough to

choose from a variate of losses to best suit different types of data in practice. We design a three-

level communication reduction strategy tailored to the generalized tensor factorization, which is

able to reduce the uplink communication cost up to 99.90%. In addition, we theoretically prove

that our algorithm does not compromise convergence speed despite the aggressive communication

compression. Extensive experiments on two real-world electronics health record datasets

demonstrate the efficiency improvements in terms of computation and communication cost.
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1 INTRODUCTION

Recent years have witnessed an unprecedented growth of health data (e.g., in the form of

EHR, electronic health records) being collected from a variety of institutions, including

hospitals, clinics, pharmaceutical companies, and health insurance providers. Computational

phenotyping, the process of extracting meaningful and concise medical concepts (i.e.,
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phenotypes) from the health data, is an indispensable stepping stone towards in-depth

medical decisionmaking, including precision medicine, influenza surveillance, drug

discovery, to name a few. Computational phenotyping is known to be challenging, given the

fact that health data are collected from a large number of individuals with each one’s

medical record consisting of various of medical procedures, medications, diagnosis and lab

tests. That is, the health data is massive and multidimensional. In addition, in order to

collaboratively learn phenotypes from the data belonging to different institutes (known as

collaborative phenotyping), the sensitive nature of the health data serves as an additional

restriction.

To learn phenotypes from the multidimensional EHR data, tensor factorization has received

increasing interest [12–14, 20, 27, 28, 36]. Tensor has the intrinsic capability to succinctly

represent the multidimensional data [21] and has applications beyond health data analytics,

e.g., recommender systems [18], spatio-temporal data analysis [26], computer vision [35],

and signal processing [32]. The CANDECOMP/PARAFAC or canonical polyadic (CP)

tensor factorization (TF) [7, 11] and its generalization GTF [15] are fundamental tools for

analyzing the tensors. Despite their effectiveness and wide applications, the scalability is

often a major issue preventing it from being applied to larger scale health datasets, which are

commonly encountered nowadays. To improve the scalability of TF, distributed tensor

factorization (DTF) methods [6, 9, 12, 20, 27, 31, 41] are capable of processing large tensors

that cannot be dealt by a single machine. It also complies with the practical scenario for the

health data which is collected and held across multiple physically distributed medical

institutions.

Most recently, federated tensor factorization (FTF) methods [20, 27] are proposed as a better

DTF paradigm for decentralized data in terms of privacy protection, while maintaining

similar computational and storage scalability. It avoids communicating both the raw tensor

and individual mode related variables to the server, which shares the same spirit of the more

general federated learning [17], i.e., to learn a joint model across all the clients without

communicating individual-level data. By avoiding sharing the raw tensor and the patient

mode related variables (e.g., patient factor and partial gradient along the patient mode), FTF

offers better patient privacy protection.

Besides computational complexity and alleviating storage usage which are the focus of most

existing DTF methods, the communication overhead can be a third important bottleneck,

especially for the federated setting, where the participating institutions do not have a

dedicated communication network for communication purposes, e.g., hospitals, clinics.

Considering the asymmetric bandwidths, the uplink communication (i.e. the communication

from the client to the server) can quickly become the bottleneck preventing these clients

from participating in the FTF. In federated computational phenotyping, due to the great

variety of the attributes (e.g., types of medication can be thousands), the high dimensional

tensor incurs high communications cost to communicate the intermediate variables during

each communication cycle.
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1.1 Contributions

In this paper, we investigate how to reduce the uplink communication cost of the federated

tensor factorization-based collaborative phenotyping with guaranteed convergence and

quality preservation. It is a challenging task, especially considering the communication

efficiency issue is under studied in the broader distributed tensor factorization literature. To

be more flexible and suitable for a variety of applications, we consider the federated

generalized tensor factorization (FGTF), which greatly extends the existing federated classic

TF [20, 27].

First, we aim to reduce the uplink communication cost in each communication round. We

design a two-level per-round communication reduction strategy: block-level and element-

level, which reduce 1 − 1
D  and over 96.8% of the uplink communication, correspondingly,

where D is the number of blocks. For the block-level, we exploit the multi-factor structure of

TF/GTF by utilizing the randomized block update. It enables each client to send only the

partial gradient of the sampled block, rather than the full gradient of all blocks. For the

element-level, we introduce gradient compression techniques, which have found success in

deep learning training [2, 4, 19, 37, 42], to compress each element of the communicated

partial gradient from the floating point representation to low-precision representation. Since

there exists error between the true partial gradient and the compressed one, the convergence

can be slower and the output quality can be lower. We further introduce the error-feedback

mechanism [19] which records such error and feeds it back to restore the shift.

With both levels of per-round communication reduction, we propose the federated GTF with

communication compression and error-feedback (FedGTF-EF). We analyze the

convergence of FedGTF-EF and obtain the O 1
T  rate after T iterations (Thm. 4.1) under

common and mild assumptions (Assumptions 4.1–4.5). The convergence is equivalent to the

distributed stochastic gradient descent (SGD) with full precision gradient communication

and distributed SGD with gradient compression and error-feedback [42]. In addition, since

constraints and nonsmooth regularizations are common in GTF, we further extend the

convergence result to the proximal setting (4.2) where the additional “simple regularizer” in

Assumption 4.6 is satisfied. Compared to the existing analysis with gradient compression

and error-feedback, our convergence analysis accounts for both the block randomized update

strategy and the proximal operation.

Second, we reduce the number of communication rounds to further reduce the uplink

communication. To do so, we introduce periodic communication [4, 23, 33] into FedGTF-
EF and denote this algorithm as FedGTF-EF-PC, in which the clients send the update to

the server after τ > 1 local iterations instead of communicating after every iteration. A key

question is whether the periodic communication will slow down the convergence. If so, the

number of iterations will increase and the overall number of communications may not

reduce. We analyze the convergence of FedGTF-EF-PC in Thm. 4.3 and obtain the same

convergence O 1
T  rate with FedGTF-EF under the same set of assumptions. This indicates

that FedGTF-EF-PC can indeed further reduce the uplink communication cost by 1 − 1
τ . As
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a result, our proposed FedGTF-EF-PC can reduce up to 1 − 1
32Dτ  uplink communication

cost if the Sign compressor (Def.2.1) is used.

Third, we evaluate FedGTF-EF and FedGTF-EF-PC in the federated collaborative

phenotyping task. We conduct experiments on two real-world EHR datasets, which show

that the proposed method can effectively reduce uplink communication cost (99.90%

reduction), without compromising convergence and factorization quality.

2 PRELIMINARIES AND BACKGROUND

2.1 Notation

The frequently used notation in this paper is summarized in Table 1. We denote an order D

tensor by 𝒳 ∈ ℝ
I1 × … × ID, its (i1, …, iD)-th element by MATLAB representation

𝒳 i1, …, iD . Let ℐ denote the index set of all tensor entries, |ℐ| = IΠ = ∏d = 1
D Id. The mode-

d unfolding (also called matricization) is denoted by X < d > ∈ ℝ
Id × IΠ/Id, where

X < d > id, j  and 𝒳 i1, i2, …, iD  has the index mapping: j = 1 + ∑k = 1,
k ≠ d

D ik − 1 Jk,

Jk = ∏q = 1.
q ≠ d

k − 1 Iq. Each column X < d >(: , j) is called a mode-d fiber of 𝒳.

2.2 Generalized Tensor Factorization

As illustrated in Figure 1, let us consider the EHR tensor 𝒳 ∈ ℝ
I1 × , …, × ID, which consists

of patient mode (I1), diagnosis mode (I2), medication mode (I3), and so on. The regularized

Generalized CANDECOMP-PARAFAC (GTF) [15] extracts the phenotypes by

decomposing the EHR tensor into R phenotyps, where each consists of a patient factor,

diagnosis factor, and a medication factor. GTF has the following objective function:

argmin
𝒜

F(𝒜, 𝒳) = ∑
i ∈ I

f (𝒜(i), 𝒳(i)) + ∑
d = 1

D
rd A(d) ,

s.t. 𝒜 = ∑
i = 1

R
A(1)(: , i) ∘ … ∘ A(D)(: , i),

(1)

which breaks down into three parts:

1. Factorization constraint: The constraint of 𝒜 = ∑i = 1
R A(1)(: , i) ∘ … ∘ A(D)(: , i)

approximates the low-rank CP tensor 𝒜 ∈ ℝ
I1 × , …, × ID as the sum of R rank-

one tensors, where A(d) ∈ ℝ
Id × R

 is the d-th factor matrix and A(d)(: , i) is its i-th

column. For phenotyping, A(1), A(2), A(3) correspond to the patient factor,

diagnosis factor, and medication factor, correspondingly.
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2. Element-wise loss function: f (𝒜(i), 𝒳(i)) is the element-wise loss between the

low-rank CP tensor 𝒜 and the input tensor 𝒳. For the classic CP [7, 11],

f (𝒜(i), 𝒳(i)): = 1
2 (𝒜(i) − 𝒳(i))2, which is the least square loss. GCP is more

generalized in the sense that the loss function can take other forms to best suit

the property of the input tensor. For example, f ( ⋅ ) can be chosen based on the

distribution of the tensor entries, e.g. logit loss for binary data:

f logit = log(1 + 𝒜(i)) − 𝒳(i)𝒜(i), for all i ∈ ℐ, or f ( ⋅ ) can be the Huber loss for

robustness purpose.

3. Regularization: rd( ⋅ ) is the regularization applied to the factor Ad, which can be

the smooth A(d) F
2  norm or the nonsmooth A(d) 1 norm. In practice, the

regularization can improve the interpretability of the phenotypes.

Existing federated computational phenotyping.—Two recent papers [20] and [27]

consider federated tensor factorization and apply it to the federated phenotyping. They have

the following limitations. 1) Both are limited to the CP model and [20] applies least square

solver as its client side local updater, which is difficult to be extended to more general losses

other than least square loss. 2) Although extensible to using infrequent communication, each

communication round still incurs high communication cost since both requires sending all

factors in full precision. In addition, [20] also requires communication of the Lagrangian

dual variables which doubles the communication cost. 3) Both alter the original objective

function by introducing extra terms to enforcing consensus of factors among all clients: [20]

introduces linear constraint and transforms it to Lagrangian dual formulation while [27]

introduces elastic penalty terms. These terms can lead the extracted factors to deviate from

the centralized solution, thus negatively impacting the phenotyping accuracy.

2.3 SGD with Gradient Compression, Error-Feedback and Periodic Communication

Gradient Compression.—Recently, one of the most successful approaches to mitigating

the communication overhead is via gradient compression, which compresses the gradient to

be communicated from the full precision representation (e.g. float or double number

representation) to a much lower precision representation (e.g. aggressively compressed to 1-

bit). The following definition introduces one of the most popular compressors:

Definition 2.1.—(Sign Compressor) For an input tensor x ∈ ℝd, its compression via

Sign( ⋅ ) is Sign(x) = ∥ x ∥1 /d ⋅ sign(x), where sign takes the sign of each element of x.

Error-Feedback.—Due to aggressive compression, the algorithm can converge slower (or

even diverge) compared to the full precision counterpart. The main cause is the error

between the full precision gradient and the compressed one. Error-feedback [19, 34, 42] is a

technique that memorizes this error in the current iteration and feeds it back to the gradient

of the next iteration. By doing so, it can rigorously guarantee uncompromised convergence

compared to the full-precision SGD.
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Periodic Communication.—Instead of reducing the communication cost per-

communication round, periodic communication or local SGD [23, 33] reduces it by

decreasing the communication frequency in hope that the total number of communications

rounds can be reduced. Each clients will execute τ > 1 local updates before communicating

to the server. [4] shows that it is possible to combine communication compression and

periodic communication together. [34] provides a unified framework by error-feedback to

analyze the convergence of gradient compression and local SGD.

3 PROPOSED METHODS

Under the federated setting as illustrated in Fig. 2, the EHR tensor 𝒳 ∈ ℝ
I1 × , …, × ID will be

collectively held by K institutions. The k-th client’s local tensor is denoted by

𝒳k ∈ ℝ
I1k × I2 × … × ID, which contains information about I

1k individuals, such that

∑k = 1
K I

1k = I1. That is, we consider the horizontally partitioned setting where different

hospitals share the same feature space. We also note that there are related works addressing

other settings like vertically partitioned settings [8, 24, 25, 39] which are complementary to

our work. The aim of the federated computational phenotying is to collaboratively compute

the phenotyes from EHR tensor across K institutions without sharing the raw tensor and

patient mode variables. The objective function of the federated GTF is as follows

argmin
A(1), …, A(D)

∑
k = 1

K
F 𝒜, 𝒳k + ∑

d = 1

D
rd A(d) ,

s.t. 𝒜 = A(1) ∘ … ∘ A(D) .
(2)

In fact, the above formulation can be extended to general multi-block problems as well.

Thus, our algorithms are not limited to federated GTF problems but also to other nonconvex

problems possessing a multi-block decision variable structure, e.g. [40]. In the following, we

propose the federated generalized tensor factorization with communication efficiency

improvements via block randomization, gradient compression, error feedback and periodic

communication. The execution of the proposed algorithm is illustrated in Fig. 3.

3.1 FedGTF-EF: Communication Efficient GTF with Block Randomization, Gradient
Compression and Error-Feedback

We reduce the uplink communication in each communication round at two levels: block-

level and element-level. The detailed algorithm is displayed in Algorithm 1 with

functionalities of key steps annotated. At the block-level, to avoid sending all factors, we use

a randomized block (i.e., randomized factor) update, which only requires the communication

of the partial gradient of the factor being sampled (the computation of the partial gradient

will be detailed in Sec.3.3). At the element-level, we compress each element of the

communication to a low-precision representation before sending to the server (Line 6). Each

client k keeps D local pairs of P(d)
k  (the error-shifted full-precision partial gradient), Δ(d)

k  (the
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compressed gradient to be communicated), E(d)
k  (error record between the full precision

gradient and the compressed gradient), for all d = 1,...,D factors. Depending on whether the

regularizer is smooth or not, either simple gradient descent (Line 8) or proximal gradient

descent (Line 9) can be chosen to update the sampled factor, respectively.

Algorithm 1

FedGTF-EF: Communication Efficient GTF with Block Randomization, Gradient

Compression and Error-Feedback

Input:𝒳, γ[t], A[0], randomized block sampling sequence dξ[0], …, dξ[T];

1: for t = 0, …, T  do

2:  On Each Client Nodes k ∈ 1, …, K:

3:  if d = d(ξ)[t] then

4:   Compute stochastic gradient G(d)
k [t] by eq.(4);

5:   P(d)
k [t] = γ[t]G(d)

k [t] + E(d)
k [t]; %% error feedback

6:

  Δ(d)
k [t] = Compress P(d)

k [t] , Send Δ(d)
k [t] i.e. Δ

dξ[t]
k [t]  to the server; %% compression

7:
  Receive 

1
K ∑k = 1

K Δ(d)
k [t] (i.e. 

1
K ∑k = 1

K Δ
dξ[t]

k [t]) from the server;

8:
  Smooth regularization case: A(d)[t + 1] = A(d)[t] − 1

K ∑k = 1
K Δ(d)

k [t]; %% update factor

9:
  Nonsmooth regularization case: A(d)[t + 1] = Proxrd

A(d)[t] − 1
K ∑k = 1

K Δ(d)
k [t] ;

10:   E(d)
k [t + 1] = P(d)

k [t] − Δ(d)
k [t]; %% update error memory

11:  else if d ≠ dξ[t] then

12:   A(d)[t + 1] = A(d)[t], E(d)
k [t + 1] = E(d)

k [t]; %% unselected blocks are kept unchanged

13:  end if

14:  On Server Node:

15:
 Receive Δ

dξ[t]
k [t] from all client nodes; Broadcast 

1
K ∑k = 1

K Δ
dξ[t]

k [t] to all client nodes;

16: end for

3.2 FedGTF-EF-PC: Further Communication Reduction by Periodic Communication

We further reduce the uplink communication cost by introducing a third communication

compression level: round level. That is, we decrease the communication frequency from one

iteration per-communication to τ > 1 iterations per-communication, which manifests a

periodic communication behaviour [4, 23, 33]. The detailed algorithm is provided in

Algorithm 2. The major difference with Algorithm 1 is that each client compresses and

sends the collective updates across τ iterations (Line 9–10), instead of the partial gradient in
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a single iteration. The error feedback (Line 9) and error memory (Line 7, 13) are adjusted

accordingly.

3.3 Efficient Partial Stochastic Gradient Computation for FedGTF

After presenting the overall algorithms, we now present an efficient partial stochastic

gradient computation subroutine to compute G(d)
k [t] in Step 1 of Fig. 3 and Line 4 of

Algorithm 1 and 2. The first mode (i.e., I1) is the individual mode (e.g., patient mode) which

can be kept local to each client. Thus, when dξ[t] = 1, we skip the communication, which not

only further reduces the communication cost, but also is beneficial to the privacy since the

individual-level information is not shared.

Next, we specify the computation of the partial stochastic gradient G(d)
k [t] based on the

efficient fiber sampling technique [5, 10]. The deterministic partial gradient is

∇A(d)
F(A) = Y < d >Hd [15], where Hd ∈ ℝ

IΠ/Id × R
 is the mode-d Khatri-Rao product of the

all

Algorithm 2

FedGTF-EF-PC: Further Reducing Communication Cost by Periodic Communication

Input:𝒳, γ[t], A[0], Ak[0] = A[0], ∀k = 1, …, K, randomized block sampling sequence dξ[0], …, dξ[T];

1: fort = 0, …, Tdo

2:  On Each Client Nodes k ∈ 1, …, K:

3:  if d = d(ξ)[t] then

4:   Compute stochastic gradient G(d)
k [t] by eq.(4);

5:
  A(d)

k t + 1
2 = A(d)

k [t] − γ[t]G(d)
k [t]; %% local update by stochastic gradient descent

6:   if (t mod τ) ≠ 0 then

7:
   E(d)

k [t + 1] = E(d)
k [t], A(d)

k [t + 1] = A(d)
k t + 1

2 , A(d)
g [t + 1] = A(d)

g [t]; %% no

communication

8:   else

9:
   P(d)

k [t] = A(d)
g [t] − A(d)

k t + 1
2 + E(d)

k [t]; %% error feedback to accumulated update

10:

   Δ(d)
k [t] = Compress P(d)

k [t] , Send Δ(d)
k [t] (i.e. Δ

dξ[t]
k [t]  to the server;

11:    Receive A(d)
g [t + 1] from the server, A(d)

k [t + 1] = A(d)
g [t + 1]; %% compression

12:   end if

13:   E(d)
k [t + 1] = P(d)

k [t] − Δ(d)
k [t]; %% update error memory

14:  else if d ≠ dξ[t] then
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15:   A(d)
k [t + 1] = A(d)

k [t], E(d)
k [t + 1] = E(d)

k [t];

16:  end if

17:  On Server Node:

18:  Receive Δ
dξ[t]

k [t] from all client nodes; Broadcast

A
dξ[t]

g [t + 1] = A
dξ[t]

g [t] − 1
K ∑k = 1

K Δ
dξ[t]

k [t] to all client nodes;

19: end for

factors except the d-th, i.e. Hd = A(D) ⊙ … ⊙ A(d + 1) ⊙ A(d − 1)⋯ ⊙ A(1); and Y < d > is the d-

unfolding of the element-wise partial gradient 𝒴 ∈ ℝ
I1 × … × ID, where 𝒴(i) = ∂ f (𝒜(i), 𝒳(i))

∂𝒜(i) ,

for all i ∈ ℐ. We approximate ∇A(d)
F(A) by sampling |𝒮| fibers (i.e. |𝒮| columns of Y(d)) and

the corresponding |𝒮| rows of Hd, where 𝒮 denotes the index of the sampled fibers. The

stochastic partial gradient is then

G(d)[t] = Y < d >(: , 𝒮)Hd(𝒮, : ), (3)

where both Y < d >(: , 𝒮) and Hd(𝒮, : ) can be efficiently computed, because: 1) the

computation of Y < d >(: , 𝒮) only involves Id × |𝒮| element-wise partial gradient

computation [22] and 2) the computation of Hd(𝒮, : ) can be obtained without forming the

full Khatri-Rao product of Hd [32]. For the s-th row of Hd, its index i1
s , …, iD

S  can be

obtained by the index mapping in Section 2.1. Then,

H(s, : ) = A(1) i1
s , : ⊛ … ⊛ A(d − 1) id − 1

s , : ⊛ A(d + 1) id + 1
s , : ⊛ … ⊛ A(D) iD

S , : , where ⊛ is the

Hadamard product. Finally, the local stochastic gradient G(d)
k [t] can be efficiently computed

by substituting its local tensor partition Yk and local factors A(d)
k  into eq.(3), which gives

G(d)
k [t] = Y < d >

k (: , 𝒮)Hd
k(𝒮, : ), (4)

where Hk(s, : ) = A(1)
k i1

s , : ⊛ … ⊛ A(d − 1)
k id − 1

s , : ⊛ A(d + 1)
k id + 1

s , : ⊛ … ⊛ A(D)
k iD

s , : .

According to the complexity analysis, our gradient computation in eq.(4) matches the state-

of-the-art efficiency of GTF computation, e.g., [10].

4 ALGORITHM ANALYSIS

This section presents the convergence analysis and complexity analysis of FedGTF-EF and

FedGTF-EF-PC. A proof sketch of the convergence analysis is provided in the appendix.
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4.1 Convergence Analysis

Assumptions.: In order to analyze the convergence, we make the following assumptions

which are common to many machine learning problems [4, 10, 34, 42]. Let the randomness

of computing stochastic gradient of G
dξ[t]

[t] be ζ[t], the randomness of sampling the block

be ξ[t], the filtration upon iteration t be ℱ[t] = ζ[0], ξ[0], …, ζ[t − 1], ξ[t − 1] .

ASSUMPTION 4.1.: (Block-wise Smoothness of the Loss Function)F( ⋅ )is L(d)-block-wise

smooth, ford = 1,...,D, i.e. for all A, B, F(B) ≤ F(A) + ∇A(d)
, B(d) − A(d) +

L(d)
2 ‖B(d) − A(d)‖F

2 .

ASSUMPTION 4.2.: (Unbiased Gradient Estimation) The stochastic gradient is unbiased:

𝔼ζ[t] Gdξ[t]
k [t] ∣ ℱ[t], ξ[t] = ∇A

dξ[t]

F(A[t]).

ASSUMPTION 4.3.: (Bounded Variance) The stochastic gradient has bounded variance:

𝔼ζ[t] G
dξ[t]

k [t] − ∇A
dξ[t]

F(A[t])

F

2 ∣ ℱ[t], ξ[t] ≤ σd
2 .

ASSUMPTION 4.4.: (Bounded Gradient) ∇A(d)
F(A[t])

F

2 ≤ ωd
2.

ASSUMPTION 4.5.: (δ-approximated Compression [19]) An operator Compress : ℝd ℝd is

an δ-approximate compressor for δ ∈ (0, 1] if Compress(x) − x 2
2 ≤ (1 − δ) x 2

2
.

Many compressors satisfy the above condition [4]: top-k or random k-sparsification,

stochastic k-level quantization, stochastic rotated quantization and the Sign compressor in

Definition 2.3.

ASSUMPTION 4.6.: (Simple Regularization Function) The regularization functions
rd( ⋅ ), d = 1, …, D, are convex, lower semi-continuous and admit closed-form proximal

operator:

Proxrd
Bd = argminA(d)

1
2 A(d) − B(d) F

2 + rd A(d) .

Many common regularizations satisfy this assumption, for example, the ℓ1-norm for inducing

sparsity which has the soft-thresholding operator as its proximal operator.
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4.1.1 Convergence Analysis of Algorithm 1.

Smooth regularization case.: To prove the convergence, we extend the delayed gradient

perspective in [19] to our block randomized setting by introducing the following virtual

variables only for the proof: A(d)[t]: = A(d)[t] − 1
K ∑k = 1

K E(d)
k [t]. Then, we have the following

virtual recurrence: if

d = dξ[t], A(d)[t + 1] = A(d)[t + 1] − 1
K ∑k = 1

K E(d)[t + 1] = A(d)[t] − γ[t] 1
K ∑k = 1

K G(d)
k [t]; else if

d ≠ dξ[t], A(d)[t + 1] = A(d)[t]. Thus, the recurrence can be viewed as the block randomized

SGD with the variable A(d)[t] which corresponds to A(d)[t] with delayed information

1
K ∑k = 1

K E(d)
k [t] added. The convergence of Algorithm 1 applied to the smooth smooth

regularization is as follows.

THEOREM 4.1.: Suppose that Assumptions 4.1-4.5 hold. Let A(1)[t], …, A(D)[t] be the iterates

of Algorithm 1 with Line 8. Letγ = min 1
2L , ϱ

T + 1/ K + (1 − δ)1/3

δ2/3 T1/3
, for someϱ > 0. We

have

𝔼 1
D ∑

d = 1

D
∥ ∇A(d)

F(A[Output]) ∥F
2

≤ 8L
T + 1 F(A[0]) − F∗ + 4

ϱ F(A[0]) − F∗ + 2Lσ2ϱ
D

1
M(T + 1)

+ 4
ϱ F(A[0]) − F∗ +

8L2ϱ2 σ2 + ω2

D
(1 − δ)1/3

δ2/3(T + 1)2/3 ,

whereA[Output] = A(1)[Output], …, A(D)[Output] is sampled fromA[0]toA[T]with uniform

distribution, F∗is the optimal value, σ2 = ∑d = 1
D σd

2andω2 = ∑d = 1
D ωd

2.

Remark 1.: Under the similar assumptions, our convergence rate matches the rates of the

distributed synchronize SGD and the distributed SGD with gradient compression and error-

feedback [42]. Thus, we can further reduce computation and uplink communication from a

full-length gradient update and communication [4, 42] to a single randomized block of the

partial gradient update and communication without slowing down the convergence rate.

Nonsmooth regularization case.: This case corresponds to the execution of Line 9 in

Algorithm 1. An appropriate optimally condition is based on the generalized gradient

measure [10, 29, 30, 38]: G(d)[t] = 1
Y[t] A(d) − ProxY[t], rd

𝒜(d)[t] − γ[t]∇A(d)
F(A[t]) . The

following theorem shows the convergence of Algorithm 1 for the nonsmooth regularization

case.
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THEOREM 4.2.: Suppose that Assumptions 4.1-4.6 hold. Let A(1)[t], …, A(D)[t] be the iterates

of Algorithm 1 with proximal operator (Line 9). Assumeγ[t] = 1
4L . We have

𝔼 ∑
d = 1

D 1
D ∥ G(d)[Output] ∥F

2 ≤ 16L
T + 1 Φ(A[0]) − Φ∗

+ 4σ2

DK + 32(1 − δ)
Dδ2 σ2 + ω2 ,

(5)

whereA[Output]is sampled fromA[0]toA[T]with uniform distribution,

Φ(A[0]) = F(A[0]) + ∑d = 1
D rd(A[0])andΦ∗is the optimal value.

Remark 2.: In the nonsmooth regularization case, the above convergence result is weaker

than the previous smooth case in that we only ensure the difference between the initial loss

and the optimal value will get smaller, but the generalized gradient is not guaranteed to

approach 0 given that the variance and gradient norm related terms will dominate with

increasing T. However, our empirical results show that the algorithm is able to converge to

small losses.

4.1.2 Convergence Analysis of Algorithm 2.

: Now, we provide the convergence rate of Algorithm 2 by extending the proof in [4] to the

block randomized setting, which is obtained under the same assumptions with Theorem 4.1.

The main idea for the analysis is to introduce the virtual sequence of

A(d)
avg[t + 1] = A(d)

avg[t] − γ[t] 1
K ∑k = 1

R G(d)
k [t] and build an iterative descent relation for it.

Meanwhile, we keep track of the error between the true and virtual averages of

A(d)
avg[t] − A(d)

avg[t], and the deviation between the local variables and the true average of

Aavg[t] − Ak[t]. Since both deviations are well-bounded, it means Ak[t], Aavg[t], A(d)
avg[t] are

close to each other. Finally, we can obtain the convergence result for the true sequence Ak[t]
by substituting the deviations into the descent relation obtained for A(d)

avg[t].

THEOREM 4.3.: Suppose that Assumptions 4.1-4.5 hold. Let A(1)
k [t], …, A(D)

k [t] be the iterates

of Algorithm 2, for k = 1,...,K and t = 0,...,T. Let γ[t] = C
T + 1  with 0 < C ≤ 1

L . We have

𝔼 ∑
d = 1

D 1
D ∥ ∇A(d)

F(A[Output]) ∥F
2 ≤ 4C F(A[0]) − F∗ + 2CLσ2 1

T + 1

+
32C2L2 1 − δ2 σ2 + ω2

Dδ2 +
8C2L2 σ2 + ω2

DK
τ2

T + 1,

where A[Output] = A(1)[Output], …, A(D)[Output]  is sampled from Ak[0] to Ak[T], for all k =

1,...,K, with uniform distribution, F∗ is the optimal value, σ2 = ∑d = 1
D σd

2 and ω2 = ∑d = 1
D ωd

2.
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Remark 3.: Algorithm 2 maintains the same convergence rate of O 1
T + 1  as Algorithm 1,

despite the periodic communication. The communication gap τ only affects the term with

order O 1
T + 1 , which is insignificant compared to the O 1

T + 1  overall convergence rate.

Thus, without increasing the iteration complexity, the periodic communication can further

reduce communication cost.

4.2 Complexity Analysis

We provide the computation, storage and communication complexities for FedGTF-EF and

FedGTF-EF-PC given |𝒮| fibers being sampled by each client and the rank of the GTF being

R.

Computational Complexity.—Our method is very efficient when compared to the

following methods: 1) the classic CP-ALS and the full gradient descent-based GTF, which

cost O DR∏d = 1
D Id ; 2) the sampled randomized CP-ALS in [5] and SGD-based GTF in [15]

with the same number of elements sampled, which cost O R𝒮 ∣ ∑d = 1
D Id ; and 3) the same

complexity as the full precision block randomized SGD-based TF [10].

THEOREM 4.4.: The per-iteration computational complexity of AlgorithmFedGTF-

EFandFedGTF-EF-PCfor each client isO 1
D ∑d = 1

D Id R |𝒮| .

Communication Complexity.—Assume we are using the Sign compressor and

comparing with full precision distributed SGD with all blocks communicated. Let D = 4, τ =

8, FedGTF-EF and FedGTF-EF-PC reduces up to 99.22% and 99.90% uplink

communications. In general, we have:

THEOREM 4.5.:  FedGTF-EF reduces up to 1 − 1
32D  uplink communication and FedGTF-

EF-PC reduces up to 1 − 1
32Dτ  uplink communication.

Storage Complexity.—The fiber sampling based stochastic partial gradient avoids

forming the whole element-wise partial gradient tensor 𝒴, which reduces the storage for this

step from O ∏d = 1
D Id  to O |𝒮 | 1

D ∑d = 1
D Id , thus achieving the same cost efficiency with

sampling-based random CP-ALS [5], full precision SGD [15] and block randomized full

precision SGD [10].

5 EXPERIMENT

5.1 Experimental Setup

Datasets.—We consider two real-world EHR datasets1, as well as a synthetic dataset,

which are introduced below,

1Code available at: https://github.com/jma78/FedGTF-EF
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i. CMS [1] : A publicly available healthcare dataset with patients’ information

protected. We adopt the rules in [20] to select the top 500 frequently observed

diagnoses, procedures, and medications to form a 4th order tensor of size 125,

961 × 500 × 500 × 500 and a 3rd order tensor of size 91999 × 500 × 500 (with

medication mode omitted).

ii. MIMIC-III [16] : It is a publicly available relational dataset that describes the

patients information of the Intensive Care Units (ICUs). Similar to CMS dataset,

we form a 4 mode tensor representing patients-diagnoses-procedures-

medications with size 34, 272×500×500 × 500.

iii. Synthetic data : Synthetic data with size 4000×500×500×500 is generated as

follows: for the nonzero entries, their values are sampled from uniform

distribution for the least square loss setting and from binomial distribution for the

logit loss setting, while positions of the non-zero entries are the same for both

loss settings which are uniformly sampled from all entries with 10−4 non-zero

ratio.

Algorithms for comparison.—We consider two different loss functions: the Bernoulli

logit loss f logit and the least square loss. For the Bernoulli logit loss, we compare with: i)

GCP (centralized) [22]; ii) BrasCPD (centralized) [10]; iii) Centralized versions of
FedGTF-EF, iv) FedGTF-EF-cyclic and v) FedGTF-EF-prox. For the least square loss,

we compare with: i) BrasCPD (centralized) [10]; ii) FlexiFact [6, 12]: a distributed tensor

factorization algorithm; iii) TRIP [20]: a federated tensor factorization algorithm optimized

with ADMM, which has deterministic per-iteration update solved in closed-form; iv)

DPFact [27]: a federated SGD algorithm designed for collaborative tensor factorization. For

fair comparison, we remove the differential privacy part of DPFact and substitute the l2,1

regularization with the l1 regularization as a new variant, DPFact-prox.

Ablation study.—We conduct ablation studies to illustrate the contribution of each

communication reduction mechanism to the overall communication efficiency, which

includes i) DistBrasCPD: the distributed version of BrasCPD [10] or FGTF with only the

block-randomized technique; ii) DistBrasCPD-comp: FGTF with both block-randomized

and gradient compression techniques; iii) DistSGDEF: distributed SGD with error-feedback

that communicates full gradients and all blocks; iv) DistSGD-EF-comp: DistSGD-EF with

gradient compression. Table 2 summarize the comparison with the proposed algorithms.

For our proposed algorithms, in addition to FedGTF-EF and FedGTF-EF-PC, we consider

two variants: FedGTF-EF-cyclic (a variant of FedGTF-EF with cyclic mode updates),

FedGTF-EF-prox (FedGTF-EF with l1 regularization). We vary the value of τ in {2, 4, 6, 8}

for FedGTF-EF-PC.

Experiment results.—Our experiments show that FedGTF-EF and FedGTF-EF-PC are

able to greatly improve the communication efficiency without slowing down the

convergence and deteriorating the factorization quality. In detail, we have the following four

observations: i) FedGTF-EF and its variants reduce loss faster with much less
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communication cost, for both the Bernoulli Logit Loss (Fig. 4 first two columns) and the

Least Square loss (Fig. 4 last two columns) compared to the baseline methods. The

communication cost per communication round is further reduced by increasing the local

update iterations τ from 2 to 8 without hurting the performance of the Bernoulli logit loss

and with a slightly worse loss for the least square loss. ii) FedGTF-EF, FedGTF-EF-PC and

their variants are computationally efficient due to the fiber-sampling technique, i.e., they use

lower computation cost compared to the baselines. By Fig. 4, for both objective functions,

FedGTF-EF-PC, FedGTF-EF and its variants converges to similar losses as their centralized

counterparts, while cost less time because more workers are involved in the updating process

for the federated setting. Note that although TRIP converges faster in terms of time, but it

tends to be trapped into bad local minima caused potentially by its deterministic per-iteration

update. iii) FedGTF-EF, FedGTF-EF-PC and their variants converge to similar losses as the

centralized counterpart, which indicates communication efficiency can be improved without

sacrificing the factorization quality. iv) FedGTF-EF and FedGTF-EF-PC converge faster in

terms of running time with more workers. As shown in Fig. 4 upper left and Fig. 6, with the

number of workers increased from 8 to 16, the time for FedGTF-EF to converge reduces

65.58%.

From the ablation study (Fig. 5), we can see: i) Block-randomized update and gradient

compression can greatly reduce the communication cost by 75.00% and 96.88%,

respectively. Therefore, gradient compression plays a more important role in communication

reduction. ii) With both block-randomized and gradient compression, FedGTF-EF achieves a

gradient reduction of 98.90% over FGTF. iii) Periodic communication further reduces the

communication cost over FGTF by 99.94%, 99.97, 99.98%, and 99.99% with {2, 4, 6, 8}

rounds of local communications respectively.

Finally, we evaluate the quality of the federated factorization factors by considering the

patient subgroup identification following [28], as illustrated in Fig. 7. We use tSNE to map

the R dimensional vectors into the 2 dimensional space. We first identify the top 3

phenotypes that have the largest factor weights, which are the phenotypes #4, #5, #10 in Fig.

7 (phenotype details are shown in Table 3). Then, we color the patients by assigning each

patient to one of the top 3 phenotypes using the largest patient weight among the top 3 along

the representation vector. Fig. 7 shows FedGT-FEF-PC with τ = 8 local updates has

comparable performance to the centralized baseline BrasCPD in clustering the patients with

the same phenotype together. This demonstrates that our method can achieve communication

compression without sacrificing the factorization quality.

6 CONCLUSION

In this paper, we study the under explored communication efficiency problem in federated

(more broadly the distributed) generalized tensor factorization for collaborative phenotyping.

We propose FedGTF-EF with communication efficient designs of block randomized update

and gradient compression with error-feedback, which encompassed two levels of uplink

communication reduction: reduced number of blocks and reduced per-element

communication. We further reduce the communication rounds by periodic averaging to

develop the FedGTF-EF-PC algorithm. The convergence guarantee is provided under
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common assumptions applied not only to generalized tensor factorization problems but also

to more general machine learning problems possessing a multi-block structure. Our

algorithm can maintain low computational and storage complexity while occupying much

lower uplink communication cost. We demonstrate its superior efficiency and

uncompromised quality on synthetic and two real-world EHR datasets.
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APPENDIX

A: ADDITIONAL MATERIALS FOR EXPERIMENTS

A.1 Parameter Settings

For MIMIC-III, CMS and synthetic datasets, each algorithm is run for 500 iterations per

epoch until converge, while for delicious dataset, each algorithm is run for 1000 iterations

per epoch. For GCP algorithm, we tune the stepsize within the range of {10−8, 10−9, 10−10,

10−11}, while for the rest algorithms, we tune the stepsize by grid search through {22, 21, 20,

2−1, 2−2,..., 2−11}. The parameter for the proximal operator is set to 10−4 for all the

algorithms with the proximal operators (FedGTF-EF-prox, DPFact-prox). For all the

federated algorithms, we by default horizontally partition the tensor (along I1 mode) into 8

tensors without overlapping and distribute each of them to 8 client nodes respectively. We

also test different numbers of workers (16 workers and 32 workers), where the stepsizes are

set to the same as for 8 workers. The best stepsizes for each algorithms for different datasets

are set as in Table 4 and 5.

Each experiment is averaged over 5 repetitions. All experiments are run on Matlab 2019a on

an r5.12xlarge instance of AWS EC2 with Tensor Toolbox Version 3.1 [3].

A.2 Additional Experiments

Two additional groups of figures are presented here. Fig. 8 shows the loss decrease for both

the Bernoulli loss and the Least Square loss with respect to time and communication for the

synthetic data. Fig. 9 shows the Bernoulli loss and the Least Square loss decrease with

respect to epochs in supplementary to the figures showed in the main paper with respects to

time and communication. Similar conclusions can be drawn with the real-world EHR

datasets in the main paper. That is, the proposed algorithms achieve more efficient

convergence than the centralized baselines under the Bernoulli logit loss and the distributed

baseline under the least square loss. It is also more communication-efficient than the

algorithms without gradient compressor (BrasCPD distributed version) and without the

block randomized mechanism (DPFact and its variants).
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Table 4:

Best Stepsizes for the Bernoulli Logit Loss

Algorithm MIMIC-III 4th order CMS 3rd order CMS Synthetic

GCP 10−10 10−10 10−10 10−9

BrasCPD 2−4 2−1 2−4 2−5

Centralized FedGTF-EF 2−3 2−1 2−2 2−4

Centralized FedGTF-EF-cyclic 2−2 2−2 2−2 2−4

Centralized FedGTF-EF-prox 2−2 2−0 2−2 2−2

FedGTF-EF 2−3 2−2 2−2 2−4

FedGTF-EF-cyclic 2−4 2−2 2−2 2−4

FedGTF-EF-prox 2−2 2−3 2−4 2−1

FedGTF-EF-PC(τ = 2) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 4) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 6) 2−5 2−5 2−2 2−4

FedGTF-EF-PC(τ = 8) 2−5 2−5 2−2 2−4

Table 5:

Best Stepsizes for the Least Square Loss

Algorithm MIMIC-III 4-th order CMS 3-rd order CMS Synthetic

BrasCPD 2−5 20 10−4 2−2

FlexiFact - - 2 -

DPFact 2−4 21 2−10 2−2

DPFact-prox 2−4 21 2−10 2−2

FedGTF-EF 2−4 20 2−11 2−2

FedGTF-EF-prox 2−5 20 2−10 2−2

FedGTF-EF-PC(τ = 2) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 4) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 6) 2−4 20 2−10 2−2

FedGTF-EF-PC(τ = 8) 2−4 20 2−10 2−2

Figure 8:
Bernoulli Logit Loss and Square Loss with respect to computation time and communication

for synthetic data.
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Figure 9:
Bernoulli logit loss (column 1,2) and Least Square loss (column 3,4) decrease with respect

to epochs.

B: CONVERGENCE ANALYSIS OF ALGORITHM 1

B.1 Proof Sketch of Theorem 4.1

B.1.1 Auxiliary variables for the proof and iterative relation.

The following auxillary variables and virtual iterations are introduced only for the proof:

A(d)[t]: = A(d)[t] − 1
K ∑k = 1

K E(d)
k [t]. Given the auxiliary variable A(d)[t], we have the following

iterative relation: if d = dξ[t], A(d)[t + 1] = A(d)[t] − γ[t] 1
K ∑k = 1

K G(d)
k [t]; else if

d ≠ dξ[t], A(d)[t + 1] = A(d)[t].

B.1.2 Additional Lemma.

The following lemma extends Lemma 3 in [19] to our block randomized case.

LEMMA B.1.—(Bounding the expectation of the block-wise feedback error averaged among
client nodes) For d = 1,...,D and for t = 0,...,T, assuming constant step size γ[t] = γ, we have

𝔼 1
K ∑

k = 1

K
E(d)

k [t + 1]
F

2
≤ 4(1 − δ)

δ2 γ2 σd
2 + ωd

2 . (6)

B.1.3 Main proof sketch of Theorem 4.1.

By block-wise Lipschitz smoothness assumption of the loss function:
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F(A[t + 1]) ≤ F(A[t]) − γ[t] ∇A
dξ[t]

F(A[t]), 1
K ∑

k = 1

K
G

dξ[t]
k [t]

+
Ldξ[t](γ[t])2

2
1
K ∑

k = 1

K
G

dξ[t]
k [t]

F

2
.

By Assumption 4.2 that 𝔼ζ[t]
1
K ∑k = 1

K Gdξ[t]
k [t] ∣ ℱ[t], ξ[t] = ∇A

dξ[t]

F(A[t]), we have

Eζ[t]
1
K ∑

k = 1

K
G

dξ[t]
k [t] − ∇A

dξ[t]
F(A[t])

F

2
∣ ℱ[t], ξ[t]

= 𝔼ζ[t]
1
K ∑

k = 1

K
G

dξ[t]
k [t]

F

2
∣ ℱ[t], ξ[t] − ∇ A

dξ[t]
F(A[t])

F

2 .

(7)

Taking conditional expectation on both sides of eq.(B.1.3) with respect to filtration ℱ[t] and

randomness of ζ[t] during the stochastic gradient computation and plugging eq.(7) in, we

have

𝔼ζ[t][F(A[t + 1]) ∣ ℱ[t], ξ[t]]

≤ F(A[t]) − γ[t] 1 −
Ldξ[t]γ[t]

2 ∇A(dξ[t])
F(A[t])

F

2

+
Ldξ[t](γ[t])2

2K σdξ[t]
2

+γ[t] ∇A
dξ[t]

F(A[t]) − ∇A
dξ[t]

F(A[t]), ∇A
dξ[t]

F(A[t]) .

We bound ∇A
dξ[t]

F(A[t]) − ∇A
dξ[t]

F(A[t]), ∇A
dξ[t]

F(A[t])  by Young’s inequality, we

have
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𝔼ζ[t][F(A[t + 1]) ∣ ℱ[t], ξ[t]]

≤ F(A[t]) − γ[t] 1 −
Ldξ[t]γ[t] + ρ

2 ∇A
dξ[t]

F(A[t])

F

2

+
Ldξ[t](γ[t])2

2K σdξ[t]
2 +

Ldξ[t]
2 γ[t]

2ρ
1
K ∑

k = 1

K
E

dξ[t]

k [t]
F

2
.

Taking expectation with respect to ξ[t] conditioned on ℱ[t] and substituting

L = max L1, …, LD , σ2 = ∑d = 1
D σd

2 in, we have

𝔼ξ[t][F(A[t + 1]) ∣ ℱ[t]]

≤ F(A[t]) − γ[t] 1 −
Lγ[t] + ρ

2
1
D ∑

d = 1

D
∇A(d)

F(A[t])
F

2

+ L(γ[t]σ)2
2KD + L2γ[t]

2ρ
1
D ∑

d = 1

D 1
K ∑

k = 1

K
E(d)

k [t]
F

2
.

By Lemma B.1 and let γ[t] = t, we have

𝔼ξ[t][F(A[t + 1]) ∣ ℱ[t]]

≤ F(A[t]) − γ 1 − Lγ + ρ
2

1
D ∑

d = 1

D
∇A(d)

F(A[t])
F

2

+ L(γσ)2

2KD +
2L2γ3(1 − δ) σ2 + ω2

ρDδ2 .

(8)

Taking total expectation with respect to all the random variables in ℱ[t], and averaging the

above from t = 0 to T and letting ρ < 2−Lγ, F∗ the optimal value, we have we have

1
T + 1 ∑

T

t = 0
𝔼 1

D ∑
d = 1

D
∇A(d)

F(A[t])
F

2

≤ 1
(T + 1)γ 1 − Lγ + ρ

2
F(A[0]) − F∗

+ 1
1 − Lγ + ρ

2

Lγσ2

2KD +
2L2γ2(1 − δ) σ2 + ω2

ρDδ2 .

(9)

By setting ρ = 1 and using

𝔼 1
D ∑d = 1

D ∥ ∇A(d)
F(A[Output]) ∥F

2 ≤ ∑t = 0
T 1

T + 1𝔼 1
D ∑d = 1

D ∇A(d)
F(A[t])

F

2 , letting
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γ = min 1
2L , ϱ

T + 1/ K + (1 − δ)1/3

δ2/3 T1/3
 for some ϱ > 0, we complete the proof of Theorem

4.1:

𝔼 1
D ∑

d = 1

D
∥ ∇A(d)

F(A[Output]) ∥F
2

≤ 8L
T + 1 F(A[0]) − F∗ + 4

ϱ F(A[0]) − F∗ + 2Lσ2ϱ
D

1
M(T + 1)

+ 4
ϱ F(A[0]) − F∗ +

8L2ϱ2 σ2 + ω2

D
(1 − δ)1/3

δ2/3(T + 1)2/3 .

B.2 Proof Sketch of Theorem 4.2

B.2.1 Auxiliary variables for the proof and iterative relation.

We derive the convergence by regarding the iteration as using inexact gradient, which is

different from the approach used for the smooth case which is regarded as using delayed

variable:

A
dξ[t]

[t + 1] = Prox A
dξ[t]

[t] − 1
K ∑

k = 1

K
Δ

dξ[t]
k [t] =

Prox A
dk [t] − γ[t] 1

K ∑
k = 1

K
G

dξ[t]
k [t]

+ 1
γ[t] E

dξ[t]
k [t + 1] − E

dξ[t]
k [t] .

We define the generalized gradient Z[t] = Z(1)[t], …, Z(D)[t] , where

Z(d)[t] = 1
γ[t] A(d)[t] − Proxr(d)

A(d)[t] − γ[t]∇A(d)
F(A[t])  if

d = dξ[t], A(d)[t + 1] = Proxr(d)
A(d)[t] − γ[t]∇A(d)

F(A[t]) , else if d ≠ dξ[t]A(d)[t + 1] = A(d)[t].

let Φ(A[t]) = F(A[t]) + r(A[t]).

B.2.2 Additional Lemma.

We need Lemma 1 from [30].

LEMMA B.2.—Lety = Proxγr(x − γg), for some g. Then for y, the following inequality holds

for any z,
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r(y) + y−z, g ≤ r(z) + 1
2γ ∥ z − x ∥2

2 − ∥ y − x ∥2
2 − ∥ y − z ∥2

2 . (10)

B.2.3 Main Proof sketch of Theorem 4.2.

By the block-wise smoothness of F, the convexity of r(d)( ⋅ ), and the optimality of

A dξ[t] [t + 1] for Proxr(d)
A(d)[t] − γ ∇A(d)

F(A[t]) , we have

Φ(A[t + 1]) ≤ Φ(A[t]) +
L

dξ[t]

2 − 1
γ[t] A

dξ[t]
[t + 1] − A

dξ[t]
[t]

F

2 . (11)

By Lemma B.2, we have

F A
dξ[t]

[t + 1], A
−dξ[t]

[t] + r
dξ[t]

A
dξ[t]

[t + 1]

≤ F A
dξ[t]

[t + 1], A
−dξ[t]

[t] + r
dξ[t]

A
dξ[t]

[t + 1]

+ A
dξ[t]

[t + 1] − A
dξ[t]

[t + 1], ∇
dξ[t]

F A
dξ[t]

[t]

− 1
K ∑

k = 1

K
G

dξ[t]
k [t] + 1

γ[t] E
dξ[t]

k [t + 1] − E
dξ

k[t]
[t]

+

L
dξ[t]
2 − 1

2γ[t] A
dξ[t]

[t + 1] − A
dξ[t]

[t]
F

2

+

L
dξ[t]
2 + 1

2γ[t] A
dξ[t]

[t + 1] − A
dξ[t]

[t]
F

2

− 1
2γ[t] A

dξ[t]
[t + 1] − A

dξ[t]
[t + 1]

F

2 .

By bounding the third row of the above equation, choosing ρ1 = 2γ[t] and ρ2 = 2, with eq.

(11), and letting γ[t] ≤ 1
2L

dξ[t]
, we have
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Φ(A[t + 1]) ≤ Φ(A[t]) + L
dξ[t]

− 1
2γ[t] A

dξ[t]
[t + 1] − A

dξ[t]
[t]

F

2

+γ[t] 1
K ∑

k = 1K
∇

dξ[t]
F A

dξ[t]
[t] − G

dξ[t]
k [t]

F

2

+ 1
γ[t]

1
K ∑

k = 1

K
E

dξ[t]
k [t + 1] − E

dξ[t]
k [t]

F

2 .

Taking conditional expectation with respect to ξ[t] conditioned on filtration ℱ[t], by Lemma

B.1 and letting γ[t] = t, we have

Φ(A[t + 1]) ≤ Φ(A[t]) + L − 1
2γ

1
D ∑

d = 1

D
∥ ∥ A(d)[t + 1] − A(d)[t] ∥F

2

+ γσ2
D + 1

D
8(1 − δ)

δ2 γ σ2 + ω2 .

Taking total expectation (i.e. with respect to all random variables in ℱ[t]), averaging from t

= 0 to T and using 𝔼 ∑d = 1
D 1

D ∥ G(d)[Output] ∥F
2 ≤ 1

T + 1𝔼 ∑d = 1
D 1

D G(d)[t] F
2

= 1
T + 1𝔼 ∑d = 1

D 1
D A(d)[t + 1] − A(d)[t] /γ

F
2

, by setting

γ = 1
4L , we complete our proof:

𝔼 ∑
d = 1

D 1
D ∥ G(d)[Output] ∥F

2

≤ 16L
T + 1 Φ(A[0]) − Φ∗ + 4σ2

DK + 32(1 − δ)
Dδ2 σ2 + ω2 .
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CCS CONCEPTS

• Information systems → Data extraction and integration; • Applied computing →
Health informatics;

Ma et al. Page 26

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2021 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1:
Illustration of EHR tensor and phenotype extraction via tensor factorization [14].
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Figure 2:
Illustration of collaborative phenotyping via federated tensor factorization [20].
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Figure 3:
Illustration of the execution of FedGTF-EF and FedGTF-EF-PC.
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Figure 4:
Loss decrease with respect to 1) computation time measured by seconds (column 1, 3 for

Bernoulli Logit Loss and Least Square Loss respectively); 2) uplink communication cost

measured by number of bytes (column 2, 4 for Bernoulli Logit Loss and Least Square Loss

respectively). Top: 3-rd order CMS; Middle: 4-th order CMS; Bottom: MIMIC-III.

Ma et al. Page 30

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2021 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5:
Ablation Study on 3-rd order CMS for Bernoulli Logit Loss.
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Figure 6:
Comparison of different number of workers on 3rd order CMS for Bernoulli Logit Loss.
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Figure 7:
tSNE visualization of the patient representation learned by BrasCPD (left) and FedGTF-EF-

PC(τ = 8) (right). Each point represents a patient which is colored according to the highest-

valued coordinate in the patient representation vector among the top 3 phenotypes extracted

based on the factor weights λr = A(1)(: , r)
F

A(2)(: , r)
F

⋯ A(D)(: , r)
F

.
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Table 1:

Symbols and notations used in this paper

Symbol Definition

x, X, 𝒳 Vector, Matrix, Tensor

𝒳 < d > Mode-d matricization of 𝒳

∥ ⋅ ∥1 ℓ1-norm

∥ ⋅ ∥F Frobenius norm

⊛ Hadamard (element-wise) multiplication

⊙ Khatri Rao product

∘ Outer product

⋅ , ⋅ Inner product
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Table 3:

Top 3 phenptypes extracted by FedGTF-EF-PC(τ = 8) on MIMIC-III data. Red, blue, and green indicate

diagnoses, procedures, and medication, respectively.

P10: Diabetic Heart Failure

Diabetes mellitus without mention of complication

Background diabetic retinopathy

Acute systolic heart failure

Acute on chronic systolic heart failure

Chronic diastolic heart failure

Acute on chronic combined systolic and diastolic heart failure

Insertion of one vascular stent

Open heart valvuloplasty of tricuspid valve without replacement

Operations on other structures adjacent to valves of heart

(Aorto)coronary bypass of three coronary arteries

Captopril (ACE inhibitor), Insulin, Pyridostigmine Bromide, Isosorbide Dinitrate

P5: Hypertensive Heart Failure

Pure hypercholesterolemia

Cardiac tamponade

Ventricular fibrillation

Cardiac arrest

Acute systolic heart failure

Percutaneous insertion of carotid artery stent(s)

Pericardiocentesis

Extracorporeal circulation auxiliary to open heart surgery

Other endovascular procedures on other vessels

Rosuvastatin Calcium, Isosorbide Dinitrate, Hydrochlorothiazide, Digoxin, Clonidine HCl

P4: Peripheral Arterial Disease

Congestive heart failure

Atherosclerosis of native arteries of the extremities

– with intermittent claudication

Acute venous embolism and thrombosis of

–superficial veins of upper extremity

Insertion of drug-eluting coronary artery stent(s)

(Aorto)coronary bypass of two coronary arteries

Interruption of the vena cava

Suture of artery

Angioplasty of other non-coronary vessel(s)

Carvedilol, Metoprolol succinate, Amiodarone HCl, Nitroglycerin, Calcium Chloride
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