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Abstract The ability to generate multi-omics data coupled with deeply characterizing the clinical phenotype of individual
patients promises to improve understanding of complex cardiovascular pathobiology. There remains an important
disconnection between the magnitude and granularity of these data and our ability to improve phenotype–genotype
correlations for complex cardiovascular diseases. This shortcoming may be due to limitations associated with tradi-
tional reductionist analytical methods, which tend to emphasize a single molecular event in the pathogenesis of dis-
eases more aptly characterized by crosstalk between overlapping molecular pathways. Network medicine is a rap-
idly growing discipline that considers diseases as the consequences of perturbed interactions between multiple
interconnected biological components. This powerful integrative approach has enabled a number of important dis-
coveries in complex disease mechanisms. In this review, we introduce the basic concepts of network medicine and
highlight specific examples by which this approach has accelerated cardiovascular research. We also review how
network medicine is well-positioned to promote rational drug design for patients with cardiovascular diseases, with
particular emphasis on advancing precision medicine.
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1. Introduction

Our appreciation for the complex pathobiology of cardiovascular dis-
eases has grown rapidly thanks to the wider availability of powerful diag-
nostic tools and large-scale data generation. This progress has been less
dramatic with respect to our understanding of underlying disease mecha-
nisms, however, particularly in terms of genotypephenotype correla-
tions. Despite exponential growth in ‘big data’ collected from patients by
virtue of wearable devices, the electronic medical record, and clinical tri-
als, important limitations persist for translating such valuable clinical pa-
tient data to explicate disease pathobiology. Accomplishing this end is
likely to require strategies designed to interrogate complex biological
systems as a complementary approach to conventional analytical
methods.1

Cardiovascular diseases have been defined and classified traditionally
using the ‘one-gene, one-disease’ reductionist approach; however, most
clinical phenotypes are heterogeneous biologically, limiting the utility of
single-gene disease hypotheses. Taking a broader view, complex diseases
are often determined by a range of epigenetic, transcriptional, and post-
transcriptional events in multiple cell types. Determining the mechanisms
by which these events occur and interact is a necessary step towards un-
derstanding nuanced, but critical, differences between patients with the

same disease diagnosis. Indeed, the precise molecular program driving
phenotypic expression is known to differ for nearly all human diseases
according to genetic context and acquired factors, ultimately causing var-
iation in the pathogenic basis of a clinical disorder recognized at point-
of-care. It follows that treatment responses often differ among patients
with the same diagnosis, and in certain cases, this dilemma is a major ob-
stacle to optimizing patient outcomes.

Network medicine combines the principles of network science and sys-
tems biology, and focuses on biological interactions as a collective. In this
way, pathways regulating complex genotypephenotype relationships can
be determined, yielding novel mechanistic insights that may otherwise be
difficult to assess from large-scale multi-omics datasets.2 In this review, we
introduce the basic principles of network medicine and human disease
networks, and review specific examples of various applications of network
medicine in cardiovascular research, including (i) the identification of novel
disease mechanisms,3,4,5 (ii) the redefinition of complex clinical entities,
(iii) patient prognosis, (iv) biomarker discovery, and (v) drug discovery
and repurposing.5,6 We also review the rising concept of reticulotypes
(patient-specific networks) as an important development in the field and a
key link to precision-based methods for diagnosis and treatment. For addi-
tional reviews focusing on how the network approach has facilitated car-
diovascular research, we refer the reader to refs.7,8
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..2. Basic principles in network
medicine

Networks can be used to represent a wide range of biological systems
(Figure 1A). Notable examples of biological network types include, but
are not limited to, protein–protein interaction networks, gene expres-
sion regulatory networks, Bayesian co-expression networks, and meta-
bolic networks. Each network consists of individual biological entities
(nodes), and their interactions are represented as interconnecting lines
(edges) (Figure 1B).8 The number of edges connected to a node is re-
ferred to as the node’s degree. Topological clustering of interconnected
neighbouring nodes forms a network subunit or module (Figure 1B).9

These network subunits tend to govern unique biological functions as
demonstrated by the network containing multiple modules representing
distinct biological aspects of the inflammatory response following myo-
cardial infarction (MI).10

In most biological networks, only a select few nodes are highly con-
nected to a large number of other nodes (hub) (Figure 1B), while the ma-
jority of the nodes are sparsely connected with the overall network
degree distribution following a power law. In these networks, the hubs
tend to represent essential biological entities while the disease-
associated genes tend to be located in the periphery of the network.
Loss of a hub results in dissolution of the topological integrity of most bi-
ological networks.11

Figure 1 Biological networks and basic network components. (A) Biological networks can represent a wide spectrum of biological dimensions. (B) In bi-
ological networks, distinct biological components, such as genes or metabolites, are represented as individual nodes. Edges connect two nodes and repre-
sent the interaction between them. Hubs are defined as nodes that are highly connected to other nodes. When a node and its neighbours are highly
connected to one another, the resulting network neighbourhood is defined as a cluster or network submodule. Adapted from refs5–7 with permission.

Network medicine in Cardiovascular Research 2187
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Biological networks are scale free,12 which means that their basic net-

work organization properties (such as connectivity) remain invariant
with changes in network size (or number of nodes) change. In these net-
works, the relationship between the logarithmic values of nodal degrees
and their probabilities remain constant across varying network sizes.
This property minimizes the rate of the (molecular) information flow
across a network system and also allows understanding a network’s
function when many of its components are missing or the network is in-
complete (as is the case for most biological networks). These networks
manifest emergent behaviour, which refers to the fact that the function
of a network cannot be predicted based on what is understood about
the function of an individual component studied in isolation.

The biological relationships represented by most networks are static
(static networks), with ongoing efforts in play that incorporate dynamic
processes evaluating network function (dynamic networks). The relative
strengths of biological relationships between two nodes can be specified
by differentially weighted edges (weighted networks). A network can
consist of different types of nodes that represent different biological enti-
ties (bipartite networks, or in some cases, networks of networks).
Examples include a drug target-disease gene network (Figure 1A) where
the proximities between the nodes representing drug targets and those
representing the genes associated with diseases may help predict drug
efficacies and toxicities in silico.5 The computational approaches and tech-
nical details for constructing biological networks are outlined in ref.13

3. Human protein–protein
interactome

Traditional molecular and biochemical inquiry over the last century has
focused on analysing the function of individual molecules and their im-
pact on cellular and physiological processes. However, this reductionist
approach inherently does not capture the complexity that arises out of
placing those individual molecules into a conglomerate, interactive bio-
logical system. An alternative approach is to begin with the premise that
nearly all functions of a biomolecule require that biomolecule to interact
physically with another entity. Biological molecules that interact with
one another can then be grouped together and understood as a larger
unit. Creation of an interaction map, or interactome, encompassing the
totality of biomolecular interactions, therefore, allows both a more ho-
listic and better organized approach to understanding cellular function
than the traditional single-molecule or single-pathway approach.

The goal of creating such a human protein interactome is to represent
protein–protein interactions (PPIs) among all proteins (or at least all of
those that can be ascertained). It is important to note that ‘interactions’
in this context represent direct, specific physical binding of two
proteins.14

In order to elucidate these types of biologically relevant interactions
in a large-scale and unbiased manner, methodologies have coalesced
around two strategies: pairwise, or binary, discovery and co-complex
discovery. While literature-curated PPIs also contribute to the construc-
tion of the interactome, this method does not lend itself to high-
throughput evaluation of a large number of interactions and demon-
strates bias towards better-studied proteins.15,16 Pair-wise discovery is
based on observing interactions between two proteins; the most com-
mon high-throughput pair-wise strategy that has been utilized is the yeast
two-hybrid (Y2H) system17–19 (Figure 2). In Y2H, a transcription factor
necessary for expression of a reporter gene is separated into its constitu-
ent DNA-binding and activation domains. Two plasmids are created:

one that expresses a particular ‘bait’ protein attached to the DNA-
binding domain and a second that expresses a ‘prey’ protein (being inves-
tigated for its ability to interact with the ‘bait’) attached to the activation
domain. If the two proteins physically interact, the binding and activation
domains of the transcription factor will also be in close enough spatial
proximity to mediate transcription of the reporter gene. In co-complex
discovery methods, the ‘bait’ protein is expressed with a fused tag or is
immunoprecipitated with a specific antibody. This ‘bait’ protein is then in-
cubated with target cell or tissue lysates, after which the antibody or tag
is used to isolate the ‘bait’ protein along with its associated ‘prey’ pro-
teins. For high-throughput screening, co-complex discovery often takes
the form of affinity purification with mass spectrometry (AP-MS), in
which the tagged ‘bait’ protein is affinity-purified and associated ‘prey’
proteins are identified using MS20 (Figure 2). Beyond the classic techni-
ques of Y2H and AP-MS, newer technologies are also being utilized to
explore protein–protein interactions. These include protein-fragment
complementation assays (such as biomolecular fluorescence comple-
mentation), in which the bait and prey proteins are attached to protein
fragments that reconstitute to provide a direct signal or chemical
reaction readout of the interaction21; surface plasmon resonance (in
which changes in light refraction at a binding surface are used to deter-
mine binding and binding kinetics of bait and prey proteins); biolayer
interferometry; mammalian protein–protein interaction traps22; and
luminescence-based mammalian interactome.23 Other techniques, in-
cluding nuclear magnetic resonance and isothermal titration calorimetry,
are also used to identify and validate interactions between proteins.

Current high-throughput methodological approaches have drawbacks
that are important to understand in order to appreciate better the
strengths and weakness of the generated PPIs. In the case of Y2H, false
negative results may arise from the inability of the ‘bait’ and ‘prey’ pro-
teins to interact due to conformational changes imposed by the linked
transcription factor domains. The yeast expression system may lack the
post-translational processing necessary for the interaction to occur.
Additionally, complexes may fail to translocate to the nucleus and initiate
transcription. False positives may occur from non-biological interaction
of the ‘bait’ and ‘prey’ proteins arising from overexpression, or auto-
activation of reporter gene expression. In order to overcome these
shortcomings, validation of Y2H data is important to confirm that inter-
actions observed are physiologically relevant. Two-hybrid technology
has also been adapted to mammalian systems to overcome post-
translational processing issues for human proteins expressed in non-
mammalian cells.24,25

Co-complex discovery similarly takes place in the absence of a typical
intracellular environment, which can alter the nature, occurrence, and
properties of PPIs. One major potential limitation of co-complex discov-
ery is detection of both direct and indirect interactions among proteins.
Complexes are isolated in total, and those proteins that are part of the
agglomeration, even if they are not in direct physical contact with the
‘bait’ protein, will nevertheless be identified as ‘prey’ proteins. The inter-
actome, however, is a pair-wise representation of only direct interac-
tions. In order to overcome this limitation and thereby represent co-
complex data in a specific pair-wise fashion, protein interaction affinities
can be computationally modelled. Several strategies to do so have been
utilized, including a matrix model (which assumes interactions between
all members of a complex), a spoke model (which directly pairs two pro-
teins), and a socio-affinity model (a hybrid of spoke and matrix mod-
els).26,27 Optimization of these models is geared towards balancing
stringency of affinity with inclusivity of all likely interactions in order to
minimize false positive and false negative results.

2188 L.Y. Lee et al.
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.Of note, the PPI also may not adequately capture context-specific
effects on protein interactions, such as tissue type, developmental stage,
or cellular environment. This limitation is, in part, due to the use of high-
throughput screening methods and bulk-tissue sources that remove
these context cues during PPI assessment. Bulk tissue sourcing limits the
ability to understand spatial and temporal changes that may be induced
by specific environmental stimuli or dynamic internal processes. Adding
context information and creating subnetworks from these data can im-
prove network predictions and provide better insights into cell-type-
and disease-specific relationships.28–31 Single-cell level data are increas-
ingly being investigated to give very detailed, high-resolution snapshots

of protein interactions and their genetic regulators, as well as to generate
cell atlases characterized by these interactions.32,33 By annotating more
richly the PPI, these approaches hold the potential to elucidate better
common interacting partners and critical hubs in the interactome.

4. Disease networks and
disease–disease interactions

Development of the PPI lends itself to the question of whether higher-
order phenotypes can similarly be represented as a network of inter-

Figure 2 High-throughput methods for determining protein-protein interactions. (A) In the yeast two-hybrid system, a plasmid is created expressing a
‘bait’ protein linked to the DNA binding domain (BD) of a transcription factor (TF) required for expression of a reporter gene. Various ‘prey’ proteins are
then linked to the activation domain (AD) of this TF in separate plasmids. Plasmids are co-transfected in pairs into yeast cells. If the ‘bait’ and ‘prey’ pro-
teins interact, the BD and AD domains of the TF will be in close enough proximity to translocate to the nucleus and initiate reporter gene expression. If
the ‘bait’ and ‘prey’ do not interact, the reporter gene will not be expressed. (B) In co-complex discovery, a ‘bait’ protein is linked to a tag and incubated
with target cell or tissue lysates to allow ‘prey’ proteins to associate. The ‘bait’-‘prey’ complexes are isolated through affinity purification utilizing the linked
tag. The ‘prey’ proteins can then be identified using mass spectrometry.

Network medicine in Cardiovascular Research 2189
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connected constituents. The intuitive logic of this approach is supported
by several decades of research identifying shared mechanisms contribut-
ing to the pathobiology of disease processes. For example, perturbations
in vascular homeostasis, cholesterol metabolism, and immune function
contribute to the phenotype of MI. Using this rationale, different net-
work spaces have been created to describe diseases and disease pheno-
types, including a disease network, in which disease nodes are linked by
shared genes; a disease-gene network, which links genes if they are asso-
ciated with at least one common disease; and a symptom-disease net-
work, in which two diseases are linked by common symptoms or by the
likelihood of being co-morbid in patients.34–36 Disease networks can also
be expanded further by incorporating additional layers of data, including
microRNA associations and metabolic networks,37,38 creating networks
of networks. For cardiovascular diseases, transcriptomic level net-
works39–41 and those incorporating long non-coding RNAs42,43 are being
evaluated and generated for a variety of cardiovascular conditions to
provide a richer representation of important interacting components.

The synthesis of data incorporating diseases, genes, and gene products
into disease networks creates a unique representation of these inter-
related components that can offer new insights into disease pathogene-
sis. These insights can arise from the topology of the network itself.
Disease genes generally tend to populate the periphery of a network,
rather than comprising central hubs34,44 (except for those that are asso-
ciated with embryonic lethality).

Analysis of disease networks has revealed that the genes associated
with a particular disease demonstrate distinct network patterns.
Disease-associated genes show a tendency to be expressed in the same
tissue types and exhibit correlated expression compared to random
control gene sets.34 Disease genes are more likely to interact with each
other, and the products of these genes have overlapping PPIs.15,34,45

These similarities have helped to identify disease modules. A disease
module can be defined as a network feature in which the constituents all
contribute to a particular cellular function, disruption of which leads to a
specific disease phenotype.6 Thus, on a network level, dysfunction in a
disease module forms the underlying basis of disease (Figure 3).

The interconnectedness of disease modules can also help to explain
how alterations in seemingly disparate genes may result in similar disease
phenotypes. On a network level, components of a disease module share
the same neighbourhood within the overall interactome. If two disease
modules overlap, then perturbations in one will affect the other module,
as well, leading to common (or convergent) phenotypes between the
two disease states.13 Furthermore, the degree of overlap between two
disease modules in the network space can be used as a surrogate for the
degree of shared pathobiological links.

One example of how a network approach can help uncover new links
is in the relationship between dementia and cardiovascular disease.
While both entities share common physiological, metabolic, and envi-
ronmental risk factors, including hypertension, obesity, and smoking,
attempts to demonstrate positively-correlated clinical associations be-
tween cardiovascular disease and dementia have been mixed, and results
can vary depending on study type and cohort.46 However, a network ap-
proach to this question yields a more robust relationship. Evaluation of
disease modules in Alzheimer disease and cardiovascular disease demon-
strates shared genes between the two phenotypes within a single (over-
lapping) module47 as well as shared regulatory elements.39 Utilizing a
network-based definition of co-morbidity, Alzheimer disease and cardio-
vascular disease can further be shown to be highly co-morbid at a popu-
lation level, elucidating a relationship that has been difficult to
demonstrate based on clinical data alone.48

5. Uncovering novel disease
mechanisms in cardiovascular
diseases using network analyses

Network medicine emphasizes functional or physical associations be-
tween biological components (e.g., genes, transcripts, proteins, other
intermediaries) as the principal step towards understanding complex
pathophenotypes. In order to dissect complex mechanisms involved in
coronary artery disease (CAD) and MI, for example, network construc-
tion and analysis using the existing inflammation- and MI-related PPIs
(My-Inflamome) revealed 21 highly interconnected but distinct modules
of unique biological properties and endophenotypes, including coagula-
tion, cell death, wound healing, and immune responses.10

Overemphasizing the frequency of a genetic variant without proven
knowledge of its functionality, or a single biochemical reaction without
understanding the global effect of the pathway within which it operates,
offers key challenges to reconciling the pathobiology of complex dis-
eases.49 Data from genome-wide association studies (GWAS), for exam-
ple, have yielded important gains such as the discovery that an
inactivating mutation in NPC1L1 (in particular p.Arg406X) confers pro-
tection against coronary atherosclerotic disease via impaired cellular up-
take of low-density lipoprotein cholesterol.50 Nonetheless, many false
positives are described for this and other association-based methodolo-
gies, and a brief consideration to their limitations may be useful for un-
derstanding opportunities that network medicine aims to address.

5.1 Determining pathogenicity of gene
variants
The true prevalence of ‘rare’ variant(s) in a disease population hinges on
the adequacy of comparator datasets, which is critical to offset back-
ground (benign) genetic variation in the genome. In this regard, it is
worth noting that much influential and highly cited early genomics-era
data from population studies implicating monogenic cause(s) of complex
cardiovascular diseases were based on limited access to sufficient con-
trol populations.51 For example, hypertrophic cardiomyopathy (HCM),
which is characterized by left ventricular hypertrophy in the absence of a
secondary cause, has long been regarded as a disease caused by a patho-
genic gene variant coding one of several cardiomyocyte sarcomere pro-
teins (reviewed in detail in ref.52). However, the phenotypic
heterogeneity of HCM often involves cell-types that do not express car-
diomyocyte sarcomere proteins, but does include endophenotypes be-
yond sarcomere-dependent hypercontractility (e.g., interstitial fibrosis,
mitral valve leaflet elongation, and others).53 This finding suggested that
using simple genetics to inform diagnosis could result in patient misclassi-
fication clinically.

Testing this hypothesis became possible only in the current era owing
to newfound availability of large sequencing databases that include con-
trols with pertinent demographic and clinical data. Manrai et al.54 showed
that among N = 94 HCM-associated genetic variants, N = 5 [TNNT2
(K247R), OBSCN (R4344Q), TNNI3 (P82S), MYBPC3 (G278E), and JPH2
(G505S)] were classified as high-frequency variants, which accounted for
74% of the overall HCM genotype prevalence. Furthermore, African
Americans harboured these variants disproportionately to a greater ex-
tent than white Americans (in part, because of a control population in
which African Americans were severely under-represented), demon-
strating the potential for misdiagnosis in specific ethnic or racial groups
based on inappropriately attributing causality to genetic frequency alone.
Similar observations have been made by other groups studying HCM,55

2190 L.Y. Lee et al.
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overall instilling an important cautionary message to efforts that reduce
heterogeneous and complex cardiovascular disease phenotypes to a
sentinel, easily measurable germline feature, such as a single germline
gene mutation or biochemical reaction.53

5.2 Epigenetic and post-transcriptional
mechanisms of cardiovascular disease
A wide range of functionally critical post-transcriptional events is recog-
nized increasingly in the pathogenesis of cardiovascular disease, but may
be under-represented in studies narrowing on genetic substrate. Indeed,
complex diseases demonstrate a discordance between GWAS-
identified genetic determinants and the relatively low odds ratios of, and
percentage of, genetic variation explained by those GWAS signals.56

Data from intersecting network spaces, including epigenetic modifiers,
transcriptional regulators, and post-translational effects, all influence the
net effect of genetic variation on higher-order phenotypes. The contri-
bution of epigenetics, microRNAs, and post-translational modifications,
to name a few examples, has already been established in pulmonary vas-
cular disease,57 MI,58 and essential systemic hypertension,59 among many
other cardiovascular disorders. Transgenerational epigenetic imprinting
has been documented in mice engineered to express a hypomorphic
mutation in the gene encoding methionine synthase reductase (Mtrr),60

which regulates folate metabolism, and, thus, the bioavailability of pro-
thrombotic and pro-atherosclerotic homocysteine. In pregnant rabbits
fed a high cholesterol diet, an increase in predilection to atherosclerotic
vascular diseases is noted in offspring through five successive genera-
tions.61 These examples provide mechanistic insight into observations
linking perinatal events with adult-onset metabolic cardiovascular dis-
eases, including diabetes mellitus, coronary heart disease, essential hy-
pertension, and pulmonary arterial hypertension (PAH).62

Furthermore, �200 post-translational modifications are reported to
regulate different cellular functions, some of which are already utilized
daily in clinical practice (e.g., haemoglobin glycosylation for diagnosing di-
abetes mellitus). Although some modifications are well-established in
the context of pre-programmed signalling, such as the case for the phos-
phorylation substrate of tyrosine kinases, many of these molecular
responses function as a (mal)adaptive interface with the environment.
For example, the amino acid cysteine is conserved within codons of
higher-level eurkaryotic organisms to a lesser extent than is predicted
computationally. This finding, in turn, suggests evolutionary pressure to-
wards cysteine functionality.63 The sulfur of cysteine contains two pairs
of free electrons, and, thus, in the setting of oxidant stress may react
with oxygen free radicals (e.g., hydrogen peroxide, superoxide anion,
others) to form higher oxidative intermediary species that alter protein
structure and function. This mechanism is attributed to the development
of numerous cardiovascular diseases,64 and articulates a critical interface
between biochemistry and environmental cues, such as nutritional, toxin,
or pollutant triggers, that may drive clinical phenotypes. Taken together,
these points illustrate the additional importance of considering events af-
ter inborn coding that have the potential to affect cellular function and
disease pathogenesis.

5.3 Analytical methods in network
medicine for predicting disease genes
Determining pathogenic nodes or pathways involving a collection of
nodes is important for translating data in silico to observations that may
be tested empirically. To accomplish this end, several validated methods
for interrogating network features have been developed (Figure 3).

Figure 3 Network-based methods to predict disease genes. (A) Linked genetic elements, for example through shared expression quantitative trait loci
(eQTLs) containing a known disease gene, have increased probability that other genes within the linkage interval contribute to the disease process.
Linkage methods can be utilized to uncover these candidate disease genes and proteins. (B) Disease modules identify network regions that contribute to
a disease. Proteins contained within these network elements can be investigated as candidate disease proteins through methods such as the seed connec-
tor algorithm. (C) Diffusion propagation methods start with known disease proteins and then assign probabilities to proteins in the interactome based on
the likelihood they are associated with the disease. This analysis is based on frequency of candidate proteins’ interactions with and network distance from
the known disease proteins. Adapted from ref.6 with permission.

Network medicine in Cardiovascular Research 2191
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5.4 Linkage methods
In this approach, information on important PPIs is derived from genetic
loci that are known to influence the probability of developing a particular
disease. Quantitative trait locus (eQTL) data are used increasingly to de-
scribe genes with strong local regulation within genetic loci.65 Using
eQTL data in networks exploits the assumption that most such loci cor-
respond to complex traits via programmed, integrated gene expression
and downstream pathways.66 The integration of eQTL data with co-
expression gene networks (in which a network edge is defined by correl-
ative differences in expression between two genes) was used recently to
decipher variability in lipid metabolism. Li et al.66 developed co-
expression networks using publicly available liver genome-wide tran-
scriptomic and proteomic data from a multitude of different mouse
strains. The results were refined to modules that included cholesterol
biosynthesis genes, captured using gene ontology datasets, and overall in-
cluded N = 112 cholesterol/lipid metabolism genes that were conserved
across all of the strains. From this approach, N = 25 novel genes were
identified, and cross-referenced with validated GWAS databases
enriched for patient populations with CAD (e.g. Million Veteran
Program).67 The SESN1 gene, which codes for the protein sestrin, was
linked with plasma lipid traits in the GWAS populations, and identified as
a previously unrecognized cholesterol biosynthesis regulator in vivo.
Focusing on eQTLs for pursuing the biological importance of genes has
already been used to understand network features that may be impor-
tant for predicting other common cardiovascular pathophenotypes, in-
cluding the role of NFATC4 in type 2 diabetes mellitus.68 A similar
approach was used recently to implicate SMAD3 in PAH incidence and
clinical risk.69,70

This pathway-based approach to interpreting network data empha-
sizes the high probability that disease-associated proteins localize to dis-
crete topological or functional segments, or modules, within a larger
interactome. Several disease module strategies to determine gene path-
ogenicity have been reported,13,71 including the seed connector algo-
rithm (SCA) approach.72 Seed proteins (or genes) are the specific
proteins of interest with known disease association or other biological
association. In SCA, linking proteins, which are first-order interactors
(also denoted connector proteins) with seed proteins in the interac-
tome, are added sequentially to networks derived from biological data-
sets; these connector proteins, only identified by knowledge of network
topology, provide the ‘missing links’ among seed proteins, facilitating the
identification of discrete disease modules within the PPI. This strategy is
used to uncover potentially important PPIs that are not identified using
seed proteins alone. The SCA approach aims to complement other
established module-related methods, including DIAMOnD,73 prize-
collecting Steiner tree,74 and GLADIATOR,75 which emphasize connec-
tivity patterns of known disease proteins, network efficiency (relative to
nodes and edge totals), and disease-disease phenotype similarities for
pathogenic gene discovery.

5.5 Diffusion propagation
This methodology relies on the assumption that genes underlying like
phenotypes are prone to interact together (or agglomerate in the PPI).13

Starting with a known or suspected (i.e., index) disease-causing gene, an
iterative analysis is conducted to identify the outermost boundary of a
potential, succinct subnetwork. This is accomplished by expanding the
route of connectivity from the index node to additional nodes in a way
that illustrates hierarchical connectivity.76 Capturing nodes that are not
necessarily directly connected to the (actual or suspected) disease-

causing gene is accomplished based on network topology, with consider-
ation given to all potential pathways, and is, thus, a collective strength of
this approach. Random walk and diffusion kernel methods are permuta-
tions of this approach that have been successful at identifying functionally
essential proteins,77 as well as key molecular pathways underlying car-
diovascular pathophenotypes, including heart failure.78

5.6 Specific Applications of network
medicine to cardiovascular diseases
5.6.1 Pulmonary vascular disease
Plexigenic, hypertrophic, fibrotic, and proliferative remodelling of distal
pulmonary arterioles is a cornerstone feature of PAH, which is a highly
morbid cardiopulmonary disease associated with substantial disability
and early mortality in most patients.79 Once perceived as primarily due
to pulmonary arterial hypercontractility, in the contemporary era PAH is
viewed as a complex disease driven by the interplay and cross-talk be-
tween numerous pathogenic signalling pathways.80 Deciphering the mo-
lecular underpinnings of PAH is needed, in turn, to identify novel
therapeutic targets since at present all available pharmacotherapies mod-
ulate the same three signalling axes (the nitric oxide-, endothelin recep-
tor-, and prostacyclin pathways).

Approximately 25% of presumed idiopathic PAH patients will harbour
an established pathogenic variant (e.g. BMPR2, EIF2AK4, SOX17,
others)81; however, most ‘PAH-causing’ genotypes are incompletely
penetrant raising speculation that genetic co-regulation or integrated sig-
nalling pathways may be important in understanding PAH. Early reports
utilizing network medicine in pulmonary vascular disease addressed
post-transcriptional events related to BMPR-2 bioactivity, and observed
that, indeed, hypoxia, inflammation, or genetic inhibition of BMPR-2 (all
of which are reported in PAH patients) up-regulates miR-21 in pulmo-
nary artery endothelial cells.82 Subsequently, numerous bioinformatics
reports expanded the range of miR candidates involved in the develop-
ment of various PAH endophenotypes, including miR-34a-angiopoietin-1
in neonatal lung injury83 and miR-133a in experimental right ventricular
heart failure,84 among others.85 Zhang et al.86 reported recently on the
regulation of abnormal adventitial fibroblast metabolism via miR-124/
polypyrimidine tract binding protein 1/pyruvate kinase muscle signalling.
Interesting, miR-124 was selected for analysis in that study based on its
pathogenic role underlying dysregulated metabolism in carcinoma cells,
reinforcing the importance of cell type-specific regulatory mechanisms in
the pulmonary blood vessel despite the molecular promiscuity that is
reported for many, if not most, miRs. This point has been clarified to
some degree by reports focusing on cross-talk between heterologous
pulmonary vascular cells, including data suggesting that miR-130/301-
specific control of peroxisome proliferator-activated receptor-c may
regulate contractile signalling in pulmonary artery endothelial cells that
affects contractility in pulmonary artery smooth muscle cells.87

Arterial fibrosis increases pulmonary vascular resistance in PAH, al-
though effective anti-fibrotic therapies remain lacking. The conventional
paradigm for understanding fibrosis invokes pro-fibrotic ‘master switch’
molecules, such as transforming growth factor (TGF)-b:88 This frame-
work, however, overlooks collagen biofunctionality, differential sensing
mechanism that regulate collagen transcription across cell types, and
disease-specific molecular mechanisms that promote collagen deposi-
tion. For example, increased TGF-b is implicated in dermal wound heal-
ing, a form of physiological fibrosis, but also in pathogenic and
maladaptive fibrosis in numerous cardiovascular diseases such as HCM
(interstitial fibrosis), MI (replacement fibrosis), and PAH (arterial
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.
fibrosis).89 Moreover, the functional consequences of TGF-b activation
differ across PAH subgroups: hereditary PAH due to a germline BMPR2
mutations and scleroderma-associated PAH are associated with prolifer-
ative- and fibrosis-dominant lesions, respectively, further underscoring
the potential limitations of ascribing the totality of an entire endopheno-
type to a single point of molecular convergence.

Our group addressed this issue recently by developing a PPI fibro-
some, or fibrosis endophenotype module, which was constructed by
considering differences in collagen biofunctionality among network
genes. Specifically, fibrosis genes were collected from numerous vali-
dated gene ontology resources and designated as adaptive or pathogenic
by virtue of their association with wound healing or vascular fibrosis, re-
spectively.7 We focused on genes regulated by aldosterone (ALDO),
which is increased in plasma of PAH patients and promotes fibrotic vas-
cular remodelling in experimental disease models in vivo.82,90,91 The re-
sult was the identification of a novel network that included adaptive,
pathogenic, ALDO-regulated, and overlapping genes (Figure 4). The be-
tweenness centrality metric, which helps identify a key (or bottleneck)
node within a network by measuring its relationship to other nodes’ in-
terconnectivity, was used to rank order ALDO-regulated genes that
were important in transitioning in silico between fibrosis phenotypes.
From this approach, the Cas protein NEDD9 emerged as a potentially
important pro-fibrotic intermediary in PAH, which, in cancer cell lines,
targets the transcription factor SMAD3, itself previously implicated in
BMPR-2-dependent pulmonary vascular remodelling.94 Oxidation of
NEDD9 at Cys20 in pulmonary endothelial cells induced NEDD9-
dependent fibrosis and led to the emergence of NEDD9 as a potential
biomarker and therapeutic target in PAH.95

5.6.2 Pre-eclampsia
Pre-eclampsia is a major obstetrical complication that affects �6% of all
pregnant women. The pathogenesis of pre-eclampsia is multifactorial
and likely varies between patients according to genetic context, epige-
netic mechanisms, age, and other acquired risk factors,96 but a unifying
feature is trophoblastic vascular dysfunction.97 In one analysis, differen-
tially expressed placental gene transcripts between pre-eclamptic and
normal term controls identified N = 4 distinct network clusters, from
which a high density of up-regulated and down-regulated placental genes
were localized to two specific clusters. This approach yielded insight into
trophoblastic differentiation via ZNF554, which is a member of the
KRAB zinc finger family.98 Parallel efforts using PPI networks led to the
discovery that proteins previously described as vasoactive in other circu-
latory beds may also be important in the pathogenesis of preeclampsia,
including FLT1, VEGFA, FN1, LYN, and NDRG1.99 A recent study also
linked maternal vitamin D level with asthma and pre-eclampsia92 and im-
plicated vitamin D receptor and IL-10 signalling in the process (Figure 4).
Further empiric data are needed, however, to clarify the precise circum-
stances by which these putative intermediaries generate or support
pathogenic vascular responses in affected patients.

5.6.3 Calcific aortic valve disease
Calcific aortic valvular disease affects >25% of the population over the
age of 65 years, and when clinically significant, is a high-risk condition that
requires procedural intervention.100 Schlotter et al.93 characterized
pathologic stage-specific differences in the aortic valvular proteome us-
ing a variety of methods, including in-tandem mass spectrometry. From a
bioinformatics analysis, a total of N = 249 significantly enriched pathways
were identified in highly calcific samples. When overexpressed proteins

specific to calcific valvular remodelling were mapped to the human PPI,
the derivative network could be interrogated by betweenness centrality
to identify pathways that were critical to the network topology. This
analysis identified PSMD3 and PSMA1, belonging to the TGF-b-, canoni-
cal wnt-, MAPK, and NOTCH-signalling pathways and important in oste-
oblast biology, as potential therapeutic targets to reverse or prevent
valvular calcification (Figure 4).

5.6.4 Vitamin D receptor biology
The vitamin D receptor is expressed on several cardiovascular cell types,
including cardiomyocytes, vascular smooth muscle cells, and endothelial
cells.101 Several cross-sectional, cohort, and case-controlled studies have
suggested a link between circulating vitamin D3 concentration and angina
pectoris,102 coronary heart disease,103 and systemic hypertension,104

among other cardiovascular phenotypes. Vitamin D-dependent regula-
tion of cardiovascular function is a complex process that lacks a domi-
nant genetic-phenotype relationship. Indeed, differential expression of
>1000 genes is reported in cells stimulated with 1,25(OH)2D3.

105

Vuki�c et al.106 assessed serum 25(OH)2D3 (75 nM) from patients with
insulin resistance in the VitDmet study, which measured the longitudinal
effect of vitamin D3 supplementation on plasma levels.107 Focusing on
N = 24 vitamin D receptor (VDR) genes (including N = 12 that were dis-
covered in the study) derived from established VDR ChIP-seq data or
the transcriptomic signature of B cell/THP-1 cells treated for 24 h with
1,25(OH)2D3, a correlation network was generated. In that network,
Pearson correlation coefficients represented the relationship between
changes in transcriptional data and 25(OH)D3 serum levels through the
VitDmet study. The investigators identified involvement of STS, BCL6,
ITGAM, LRRC25, LPGAT1, and TREM1, among others, in vitamin D3 re-
sponsiveness in vivo. The implications of these data to cardiovascular dis-
ease require further analysis, although several of these genes have been
implicated previously in cardiomyocyte development108 and fibrosis.109

6. Network medicine and clinical
risk stratification and disease
classification reappraisal

Risk stratification tools in clinical cardiovascular medicine generally utilize
probabilistic models. This process includes many point-of-care resour-
ces, such as Framingham110 and TIMI111 risk scores for predicting cardio-
vascular events and 30-day mortality in patients with suspected acute
coronary syndrome. Although linear regression models are valid, there
are several important limitations related to this approach. First, probabil-
istic modelling does not account for relationships between clinical
parameters, and even multivariate calculations consider changes to risk
based on the addition of individual inputs. Second, results may be driven
disproportionately by extreme datapoints within the reference group. In
the case of the REVEAL calculator in PAH, for example, maximized risk
requires a pulmonary vascular resistance level >32 WU, which is ex-
tremely elevated and encountered rarely even in a referral centre,
thereby affecting the wider utility of this scale in daily practice.112

In contrast, network strategies focusing on clinical parameters that are
functionally (e.g., pathophysiologically) related may lead to data on pa-
tient profile information not informed by binary, branch chain, or other
reductionist methods. For example, we developed an exercise correla-
tion network that was derived from clinical parameters collected during
invasive cardiopulmonary exercise testing (iCPET) performed at point-
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of-care.113 Each of the 76 iCPET variables was assigned to one of eight
physiological domains (Figure 5). We focused on a subnetwork that
included 10 iCPET variables (inclusive of variables from five physio-
logical parameters), which was used to identify four distinct patient
clusters that varied by exercise profile and clinical outcome.114

These data were then used to prognosticate 3-year hospitalization
rate; however, this tool was based on Euclidian principles rather

than probabilistic modelling. In this way, the network approach was
distinct from prior efforts classifying exercise profiles using artificial
intelligence115 because in our method no single variable was used
to drive prognostic estimates. Similar strategies have been proposed
through ongoing deep-phenotyping efforts in patients with HCM53

and pulmonary hypertension,116 as well as comorbidities that affect
cardiovascular function, including chronic obstructive lung disease.117

Figure 4 Network analysis to identify novel disease mediators. A network approach has enabled a number of novel disease mechanism discoveries.
Notable examples include the vitamin D receptor (VitDR) and interleukin (IL)-10 pathways in pre-eclampsia (upper left),92 NEDD9 in PAH (upper
right),7 26S proteasome non-ATPase regulatory subunit 3 (PSMD3) in valvular calcification (lower left),93 and nuclear factor of activated T cells 4
(NFATC4) in type 2 diabetes (DM2) (lower right).68 (upper left) Network analysis of 348 differentially expressed vitamin D-associated genes in peripheral
blood of pre-eclampsia patients identified the network modules specific to the changes in maternal immune responses. Of these, the IL-10 signalling path-
way was noted to be closely interacting with the vitamin D signalling pathway with notable down-regulation of IL-10 signalling in pre-eclampsia patients.
(upper right) Betweenness centrality analysis of a novel network consisting of ALDO-regulated genes associated with vascular fibrosis identified NEDD9
as a novel mediator of PAH pathogenesis. (lower left) Construction of the proteomics subnetworks involving the proteins overrepresented in the calcific
stages of human calcific aortic valve disease in the fibrosa layers and betweenness centrality analysis identified fibronectin-1, PSMD3, and PSMA1 as the
potential key disease mediators involved in valvular calcification. (lower right) Control centrality analysis of the human pancreatic islet tissue-specific gene
regulatory network developed from diabetic and non-diabetic donors identified multiple biological pathways driving the type 2 diabetes disease network
with NFATC4 as a key controller of these pathways. Adapted from refs7,68,92,93 with permission.
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7. Network approach to biomarker
discovery
Unbiased network analyses of large human datasets are accelerating
novel biomarker discovery.Metabolomics data analysed for the strengths
of association between a single or group of metabolites with disease
have been most widely used for this purpose. Notable recent examples
include a dynamic network analysis platform integrating patient plasma
metabolite levels from multiple timepoints following alcohol septal abla-
tion (‘planned myocardial injury’) that led to the identification of carno-
sine and glycocholic acid as novel metabolites associated with acute

myocardial injury.118 NEDD9 in PAH is another important example of a
novel biomarker discovery facilitated by the integrative network analysis
of multiple perturbed biological pathways.7,95

At the same time, a paradigm shift that network medicine brings—
approaching disease as a consequence of perturbed interactions among
multiple biological entities rather than a single altered molecular path-
way—highlights the current limitation of relying on a single molecule as a
biomarker for diagnosing, prognosticating, or assessing therapeutic effi-
cacy for a complex disease process (e.g., NT-proBNP in heart failure).
While such biomarkers are unequivocally useful for our current clinical
practice, our ability to collect large sets of patient data in multiple

Figure 5 Exercise correlation network from invasive cardiopulmonary exercise testing. Patients undergoing invasive cardiopulmonary exercise testing
for unexplained exertional intolerance were used to construct an exercise network. Clinical measurements collected at the time of the study were used
to construct this network with 39 nodes and 98 edges, grouped into 7 broader physiological domains. A subnetwork of 10 variables was used to identify
4 distinct patient clusters that differed in exercise profiles and clinical outcomes. Adapted from ref.114 with permission.
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biological dimensions and growing capacity to integrate disease-specific
data using network concepts suggest that a more comprehensive ap-
proach to biomarkers, such as a functionally rational subnetwork con-
sisting of disease-associated molecules or pathways rather than the use
of a single molecule, may become a reality in the near future.

8. Reticulotyping as a novel
approach to precision medicine in
cardiovascular health

Network analysis can also accelerate our current endeavours towards
precision medicine. Multi-omics data collected from an individual patient
can be used to build a set of molecular networks across different biologi-
cal domains (e.g., transcriptome, metabolome, proteome, microbiome).
These networks then can be integrated into a network of networks that
is unique to each patient’s biological makeup, including the interactions
among multiple components; this personalized network is denoted the
‘reticulotype.’ (from reticulum or retiaculum, Lat.).119 An individual’s (mo-
lecular) reticulotype can be expanded and personalized further with his
or her unique set of exposomes, such as environmental exposure, die-
tary or exercise habits, and psychosocial factors. Within this individual-
ized network context established under homeostatic conditions, one
can examine the effect of a specific molecular perturbation on the indi-
vidual’s biological networks as a whole, especially how its effect alters
interactions among the molecular constituents and their other interact-
ing partners well beyond the select individual molecular targets of the
perturbations.

As the baseline topological architecture and dynamic nature for each
individual’s reticulotype likely differ greatly between any two individuals
carrying the same disease diagnosis, it is not surprising that the net out-
come (clinical phenotype) of a given pathogenic perturbant likely would
differ, as well as their treatment responses. For example, the reticulotype
for a 68-year-old male with heart failure with preserved left ventricular
ejection fraction (HFpEF) and chronic obstructive pulmonary disease
with tobacco exposure likely differs vastly from that of a 45-year-old pre-
menopausal female with HFpEF with hypertension, obesity, and diabetes.
The current therapeutic approach to these patients’ HFpEF remains
mostly uniform (diuretics) despite the profound heterogeneity sus-
pected among individuals’ disease mechanisms. The recent randomized
controlled trial studying the efficacy of angiotensin receptor-neprilysin
inhibitor in HFpEF patients (PARAGON-HF) has brought much needed
attention to understanding the phenotypic heterogeneity underlying
HFpEF. Although the overall study demonstrated no differences in the
primary outcomes with sacubitril-valsartan vs. valsartan treatment alone,
the prespecified subgroup analyses suggested possible benefit specific to
female sex [hazard ratio 0.66 (0.49, 0.88)] and lower left ventricular ejec-
tion fraction (LVEF) [hazard ratio 0.76 (0.63, 0.92) per 10% decline in
LVEF].120 While further mechanistic studies are needed to explain these
findings, these observations are consistent with an individual’s baseline
biological makeup as represented in his/her reticulotype and its interac-
tion with (or perturbation by) disease as an important determinant of his
or her treatment response, especially in complex cardiovascular disease
settings such as HFpEF. In addition to facilitating an individual’s geno-
type–phenotype correlation, we propose that reticulotype analysis can
guide identifying a therapeutic target specific to his or her disease net-
work module while helping to avoid adverse off-target effects, benefiting
from the precise knowledge of the topological relationship between the

drug targets and disease- and non-disease genes within an individual’s bi-
ological network (Figure 6).

9. Network medicine and
pharmacology

The prevailing paradigm of drug development and experimental pharma-
cology has relied heavily on single-drug/single-target investigations. This
approach, however, does not take into account that most cardiovascular
diseases arise from the interplay of genetic, metabolic, and environmen-
tal risk factors. In addition, off-target and side effects often become only
after human trials or wide-spread use has begun.

Key areas in which a network pharmacological approach can yield
new insights include drug target selection, repurposing of drugs for novel
applications, and prediction of drug toxicities.121,122 The disease module
hypothesis can serve as a framework for drug target selection. Drug effi-
cacy, specificity, and toxicity can be assessed by mapping a drug’s known
target(s) onto the PPI and assessing how close to this target (pathway) is
to the intended disease module.

An initial step in this process is to understand the full array of drug tar-
gets and assess their interconnectedness. Yildirim et al.123 constructed a
drug-target network composed of all FDA-approved drugs connected
to their target proteins. From this analysis, the authors demonstrated
that a large majority of drugs target more than one protein, and that
there is a subset of proteins that is frequently targeted by many drugs.
After mapping the drug-target network onto the PPI, the authors ob-
served that most drug targets are on the periphery of disease modules
and are less likely to include essential proteins of the module. This obser-
vation suggests that most drugs do not affect core underlying mecha-
nisms of disease, and, perhaps, exert more effects on (disease non-
specific) symptom control. Indeed, drug targets that demonstrate
greater proximity to disease proteins in the PPI (assessed using network
computational methods) demonstrate greater therapeutic effect, while
drugs that have targets farther away from disease proteins are more pal-
liative in nature.124

For cardiovascular diseases, one area to which this approach has been
applied is the study of drugs used to treat MI. While the pathobiology of
atherosclerosis and MI has been described in increasing detail and com-
plexity, clinical treatment is still limited. Azuaje et al.125 constructed a
network consisting of both approved and related drugs for the treat-
ment of MI, the full set of drug-drug interactions of these drugs, the tar-
gets of both the drugs and their interacting partners, and the PPI of this
broad set of targets. From this data set, they determined the interactome
comprised 26 distinct modules, the majority of which showed strong
associations with specific biological functions and pathways, showing that
network modularity correlated with biologically relevant distinctions in
function. Overlaying drug-target information, the authors observed that
more than three-fourths of the total number of drugs are linked to two
pathways: the complement-coagulation cascade and the calcium signal-
ling pathway. Additionally, analysis of drug-drug interactions in this inter-
actome revealed new interacting partners that were previously not
listed in commercially and publicly available drug interaction listings.

Using the same starting point of approved and related MI drugs, an-
other study similarly mapped drug-drug interactors, drug targets, and,
uniquely, MI disease genes and gene products onto a comprehensive hu-
man interactome.126 Creating a network of the drug targets and MI dis-
ease genes/proteins and then overlaying the MI-related drugs and their
interactors onto this network, the authors identified 12 distinct modules
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..(termed drug, drug target, and disease protein or DTD modules). These
DTD modules represented biologically relevant groupings with distinct
and relatively cohesive higher-order function (assessed computationally
by determining functional similarity of the protein pairs in the network).
Additionally, drugs within the modules share similar therapeutic effects
and similar side effects.

These characteristics of the DTD modules allow greater predictive
power for understanding how the included non-MI drugs may be exert-
ing cardiovascular effects. Drugs in a module are more likely to share
mechanistic underpinnings with the other drugs in the module.

Powerfully, this approach can begin to provide a rationale for drug
repurposing. Non-MI drugs with targets that are heavily connected in
these modules may be prime candidates for repurposing to a cardiovas-
cular disease as we have recently shown.5 Another study utilized loci
identified through GWAS for CAD and MI to identify druggable targets
with low likelihood of systemic side effects; this strategy identified three
drugs (adenosine triphosphate, pentolinium, and riociguat) that were tar-
gets for repurposing for MI/CAD.127 Yet another study also utilized
GWAS-identified CAD loci to identify and rank druggable CAD disease
modules to prioritize better drug discovery.128 It is useful to note that

Figure 6 Reticulotype analysis and precision medicine for cardiovascular patients. Complex sets of patient-specific molecular and clinical data can be in-
tegrated into a set of biological networks unique to each individual (reticulotype).119 The study of such network behaviour and the sequelae of its pertur-
bation may facilitate genotype–phenotype correlation and predict treatment response in a patient-specific manner. Adapted from ref.2 with permission.
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traditional cardiovascular therapeutics, including angiotensin converting
enzyme inhibitors or P2Y12 receptor blockers, do not seem to be tar-
geting highly central hubs in these modules, but, rather, more peripheral
nodes.126 This finding is similar to what has been observed in larger drug-
target networks.123 While network incompleteness could partly be an
explanation, this phenomenon does highlight the importance of under-
standing better the connectedness and relationships between the pe-
ripheral nodes and central biological pathways so that drug repurposing
predictions can be made accurately.

Network pharmacology is particularly suited for identifying more ef-
fective and rational approaches to polypharmacy, with a goal of optimiz-
ing efficacy and synergy of medications while minimizing toxicities. For
example, one study demonstrated that multiple interventions in the ni-
tric oxide-cyclic guanosine 30,50 monophosphate (cGMP) pathway were
more effective at raising cGMP levels than a single intervention, providing
an experimental basis for rational polypharmacy.129 Computational net-
work approaches have been utilized to predict optimal drug combina-
tions for cancer treatment and to evaluate drug combinations that will
minimize perturbations in an inflammatory network of arachidonic acid
metabolites.130,131 Network approaches have additionally provided in-
sight into mechanisms of cardiovascular toxicities from cyclooxygenase
2 inhibitors.132 Looking forward to further applications of network phar-
macology for cardiovascular diseases, one area that could particularly
benefit from this approach is treatment of heart failure. Heart failure has
adopted a multi-drug approach, largely driven by clinical data demon-
strating the benefit of additive drug therapy; however, multi-drug therapy
can also be associated with overlapping side effects and enhanced drug
toxicities.133 A network pharmacology approach to this field could help
to determine which combination of available therapies is most optimal
for an individual.

10. Current limitations and future
directions

Current challenges in network medicine are multiple. At the level of the
protein–protein interactome, the current interactome remains incom-
plete albeit is expanding rapidly. Additionally, it is estimated that only
10% of genes are associated with human diseases.8 While this is also an
advantage computationally as it reduces the network space needed to
understand key disease mechanisms, it also suggests that some of the
90% of unassociated genes may become incorporated into disease mod-
ules as the interactome is completed. As the interactome has been
established based on the curated PPIs, inspection bias is inherent in its
construction. Additionally, PPIs curated in experimental settings may be
substantially different from those involving endogenous proteins in the
in vivo environment. The current interactome has thus far limited incor-
poration of more than one isoform or splice variant of a gene product134

or post-translational modifications,135 thereby omitting a major source
of omic dimensionality.

At the network scope level, there is an increasing effort to incorpo-
rate tissue- and biological context-specificity in network construc-
tions.136 Network approaches are also facilitating the studies of
interactions between different organ systems.137 Additionally, going be-
yond the general concept of the exposome,138 there is a growing inter-
est in classifying and defining different domains of an individual’s
environment (e.g., personal, social,139 natural) in order to understand
better how each domain and their interactions contribute to determin-
ing the clinical outcomes of complex cardiovascular diseases.140

At the computational levels, there needs to be more standardized
approaches to large -omic data acquisition, quality control, normaliza-
tion, and analysis pipelines, especially in studies involving proteomics and
metabolomics.141 As none of the biological processes exist in isolation,
studies assessing the interactions between the networks representing
different biological dimensions (e.g., transcriptomics network and epige-
netic modification network) are gaining increasing attention.142

Integration of multi-dimensional data also remains an important chal-
lenge (ref.143 as reviewed in refs.8,144). Notable integrative platforms
include Pathway Representation and Analysis by Direct Reference on
Graphical Models (PARADIGM), which integrates the multidimensional
cancer patient data with biological pathways using a probabilistic graphi-
cal model and thereby infers pathways altered in glioblastoma
patients.145 National Institute of Health-sponsored multicentre study
Pulmonary Vascular Disease Phenomics (PVDOMICS), led by Leopold
et al., is a superb example where complex and heterogeneous clinical en-
tities, such as pulmonary hypertension, are being reappraised through
the network integration of multi-omic patient data (transcriptomics, pro-
teomics, metabolomics) with invasive hemodynamic and physiological
data (cardiac catheterization, iCPET, 6-min walk test), and multi-
modality clinical data (laboratory tests, body fat composition, echocar-
diogram, and cardiac magnetic resonance imaging).116

In summary, network medicine represents a powerful, integrative
framework with which complex cardiovascular pathobiology can be dis-
sected with greater precision at multiple biological levels. Ultimately, this
discipline will facilitate complex phenotype–genotype correlation, im-
prove drug discovery, and promote precision medicine in this multi-
omics era.
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86. Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D’Alessandro A, Tauber J, Riddle S,

Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Je�zek
P, Morrell NW, Hu C-J, Stenmark KR. Metabolic and proliferative state of vascular
adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-
124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/pyruvate kinase muscle axis.
Circulation 2017;136:2468–2485.

87. Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB,
Chau BN, Kuebler WM, Chan SY. The microRNA-130/301 family controls vasocon-
striction in pulmonary hypertension. J Biol Chem 2015;290:2069–2085.

88. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and
a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47:277–290.

89. Liu Q, Zhu LJ, Waaga-Gasser AM, Ding Y, Cao M, Jadhav SJ, Kirollos S, Shekar PS,
Padera RF, Chang YC, Xu X, Zeisberg EM, Charytan DM, Hsiao LL. The axis of local
cardiac endogenous Klotho-TGF-beta1-Wnt signaling mediates cardiac fibrosis in
human. J Mol Cell Cardiol 2019;136:113–124.

90. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA.
Plasma aldosterone levels are elevated in patients with pulmonary arterial hyperten-
sion in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail
2013;15:277–283.

91. Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C,
Bauersachs J, Murthy SK, Hansmann G. Galectin-3 and aldosterone as potential tan-
dem biomarkers in pulmonary arterial hypertension. Heart 2016;102:390–396.

92. Mirzakhani H, Litonjua AA, McElrath TF, O’Connor G, Lee-Parritz A, Iverson R,
Macones G, Strunk RC, Bacharier LB, Zeiger R, Hollis BW, Handy DE, Sharma A,
Laranjo N, Carey V, Qiu W, Santolini M, Liu S, Chhabra D, Enquobahrie DA,
Williams MA, Loscalzo J, Weiss ST. Early pregnancy vitamin D status and risk of
preeclampsia. J Clin Invest 2016;126:4702–4715.

93. Schlotter F, Halu A, Goto S, Blaser MC, Body SC, Lee LH, Higashi H, DeLaughter
DM, Hutcheson JD, Vyas P, Pham T, Rogers MA, Sharma A, Seidman CE, Loscalzo J,
Seidman JG, Aikawa M, Singh SA, Aikawa E. Spatiotemporal multi-omics mapping
generates a molecular atlas of the aortic valve and reveals networks driving disease.
Circulation 2018;138:377–393.

94. Upton PD, Davies RJ, Tajsic T, Morrell NW. Transforming growth factor-beta(1)
represses bone morphogenetic protein-mediated Smad signaling in pulmonary ar-
tery smooth muscle cells via Smad3. Am J Respir Cell Mol Biol 2013;49:1135–1145.

95. Samokhin AO, Hsu S, Yu PB, Waxman AB, Alba GA, Wertheim BM, Hopkins CD,
Bowman F, Channick RN, Nikolic I, Faria-Urbina M, Hassoun PM, Leopold JA,
Tedford RJ, Ventetuolo CE, Leary PJ, Maron BA. Circulating NEDD9 is increased in
pulmonary arterial hypertension: a multicenter, retrospective analysis. J Heart Lung
Transplant 2020;39:289–299.

96. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the pla-
centa. Hum Reprod Update 2011;17:397–417.

97. Krause B, Sobrevia L, Casanello P. Epigenetics: new concepts of old phenomena in
vascular physiology. CVP 2009;7:513–520.

98. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt
RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A,
Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H,
LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A,
Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knofler M, Erez O,
Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated systems biology approach identifies
novel maternal and placental pathways of preeclampsia. Front Immunol 2018;9:1661.

99. Tejera E, Bernardes J, Rebelo I. Preeclampsia: a bioinformatics approach through
protein-protein interaction networks analysis. BMC Syst Biol 2012;6:97.

100. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW,
Otto CM. Clinical factors associated with calcific aortic valve disease.
Cardiovascular Health Study. J Am Coll Cardiol 1997;29:630–634.

101. Merke J, Milde P, Lewicka S, Hugel U, Klaus G, Mangelsdorf DJ, Haussler MR,
Rauterberg EW, Ritz E. Identification and regulation of 1,25-dihydroxyvitamin D3
receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured
bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 1989;83:
1903–1915.

102. Kendrick J, Targher G, Smits G, Chonchol M. 25-Hydroxyvitamin D deficiency is in-
dependently associated with cardiovascular disease in the Third National Health
and Nutrition Examination Survey. Atherosclerosis 2009;205:255–260.

103. Kim DH, Sabour S, Sagar UN, Adams S, Whellan DJ. Prevalence of hypovitaminosis
D in cardiovascular diseases (from the National Health and Nutrition Examination
Survey 2001 to 2004). Am J Cardiol 2008;102:1540–1544.

104. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-hydroxyvitamin D and risk of myo-
cardial infarction in men: a prospective study. Arch Intern Med 2008;168:1174–1180.

105. Heikkinen S, Vaisanen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hor-
mone 1alpha, 25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations
of VDR chromatin occupancy. Nucleic Acids Res 2011;39:9181–9193.

106. Vukic M, Neme A, Seuter S, Saksa N, de Mello VD, Nurmi T, Uusitupa M,
Tuomainen TP, Virtanen JK, Carlberg C. Relevance of vitamin D receptor target
genes for monitoring the vitamin D responsiveness of primary human cells. PLoS
One 2015;10:e0124339.

107. Carlberg C, Seuter S, de Mello VD, Schwab U, Voutilainen S, Pulkki K, Nurmi T,
Virtanen J, Tuomainen TP, Uusitupa M. Primary vitamin D target genes allow a

categorization of possible benefits of vitamin D(3) supplementation. PLoS One 2013;
8:e71042.

108. Yoshida T, Fukuda T, Hatano M, Koseki H, Okabe S, Ishibashi K, Kojima S, Arima M,
Komuro I, Ishii G, Miki T, Hirosawa S, Miyasaka N, Taniguchi M, Ochiai T, Isono K,
Tokuhisa T. The role of Bcl6 in mature cardiac myocytes. Cardiovasc Res 1999;42:
670–679.

109. Zhang X, Zhang MC, Wang CT. Loss of LRRC25 accelerates pathological cardiac
hypertrophy through promoting fibrosis and inflammation regulated by TGF-beta1.
Biochem Biophys Res Commun 2018;506:137–144.

110. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB.
General cardiovascular risk profile for use in primary care: the Framingham Heart
Study. Circulation 2008;117:743–753.

111. Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, Mautner B,
Corbalan R, Radley D, Braunwald E. The TIMI risk score for unstable angina/non-ST
elevation MI: a method for prognostication and therapeutic decision making. JAMA
2000;284:835–842.

112. Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ,
Badesch DB, McGoon MD. The REVEAL Registry risk score calculator in patients
newly diagnosed with pulmonary arterial hypertension. Chest 2012;141:354–362.

113. Maron BA, Cockrill BA, Waxman AB, Systrom DM. The invasive cardiopulmonary
exercise test. Circulation 2013;127:1157–1164.

114. Oldham WM, Oliveira RKF, Wang RS, Opotowsky AR, Rubins DM, Hainer J,
Wertheim BM, Alba GA, Choudhary G, Tornyos A, MacRae CA, Loscalzo J,
Leopold JA, Waxman AB, Olschewski H, Kovacs G, Systrom DM, Maron BA.
Network analysis to risk stratify patients with exercise intolerance. Circ Res 2018;
122:864–876.

115. Arena R, Ozemek C, Laddu-Patel D, Myers J. Refining the risk prediction of cardio-
respiratory fitness with network analysis: a welcome and needed line of inquiry. Circ
Res 2018;122:804–806.

116. Hemnes AR, Beck GJ, Newman JH, Abidov A, Aldred MA, Barnard J, Berman
Rosenzweig E, Borlaug BA, Chung WK, Comhair SAA, Erzurum SC, Frantz RP,
Gray MP, Grunig G, Hassoun PM, Hill NS, Horn EM, Hu B, Lempel JK, Maron BA,
Mathai SC, Olman MA, Rischard FP, Systrom DM, Tang WHW, Waxman AB, Xiao
L, Yuan JX, Leopold JA, Group PS. PVDOMICS: a multi-center study to improve un-
derstanding of pulmonary vascular disease through phenomics. Circ Res 2017;121:
1136–1139.

117. Grosdidier S, Ferrer A, Faner R, Pinero J, Roca J, Cosio B, Agusti A, Gea J, Sanz F, Furlong
LI. Network medicine analysis of COPD multimorbidities. Respir Res 2014;15:111.

118. Baumgartner C, Spath-Blass V, Niederkofler V, Bergmoser K, Langthaler S, Lassnig
A, Rienmuller T, Baumgartner D, Asnani A, Gerszten RE. A novel network-based
approach for discovering dynamic metabolic biomarkers in cardiovascular disease.
PLoS One 2018;13:e0208953.

119. Loscalzo J. Precision medicine: a new paradigm for diagnosis and management of hy-
pertension. Circ Res 2019;124:987–989.

120. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F,
Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ,
Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin-Colet J,
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layer synchronization in non-identical multi-layer networks. Sci Rep 2017;7:45475.

143. Arakawa K, Tomita M. Merging multiple omics datasets in silico: statistical analyses
and data interpretation. Methods Mol Biol 2013;985:459–470.

144. Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional
studies of complex human diseases. Adv Genet 2016;93:147–190.

145. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM.
Inference of patient-specific pathway activities from multi-dimensional cancer geno-
mics data using PARADIGM. Bioinformatics 2010;26:i237–i245.

2202 L.Y. Lee et al.


	l
	l

