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Abstract

The MolFind application has been developed as a nontargeted metabolomics chemometric tool 

to facilitate structure identification when HPLC biofluids analysis reveals a feature of interest. 

Here synthetic compounds are selected and measured to form the basis of a new, more accurate, 

HPLC retention index model for use with MolFind. We show that relatively inexpensive synthetic 

screening compounds with simple structures can be used to develop an artificial neural network 

model that is successful in making quality predictions for human metabolites. A total of 

1955 compounds were obtained and measured for the model. A separate set of 202 human 

metabolites was used for independent validation. The new ANN model showed improved accuracy 

over previous models. The model, based on relatively simple compounds, was able to make 
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quality predictions for complex compounds not similar to training data. Independent validation 

metabolites with feature combinations found in three or more training compounds were predicted 

with 97% sensitivity while metabolites with feature combinations found in less than three training 

compounds were predicted with >90% sensitivity. The study describes the method used to 

select synthetic compounds and new descriptors developed to encode the relationship between 

lipophilic molecular subgraphs and HPLC retention. Finally, we introduce the QRI (qualitative 

range of interest) modification of neural network backpropagation learning to generate models 

simultaneously based on quantitative and qualitative data.

Graphical Abstract

INTRODUCTION

Compared to targeted metabolomics where a predefined list of metabolites is examined, 

nontargeted metabolomics employs a less biased analysis of small-molecules present 

within a biological system.1 Recent advances in nontargeted metabolomics have led 

to the identification of disease biomarkers2–9 and generated optimism for gains in 

understanding disease mechanisms and associated druggable targets. Advances have arisen 

from parallel improvements in analytical and computational methodologies. High resolution 

high-performance liquid chromatography−mass spectrometry (HPLC-MS) has enabled high­

throughput detection of metabolites in biological samples. Improvements in computational 

tools have enabled rapid discrimination of “features” that show significant variation across 

sample groups. A “feature” refers to an observed HPLC-MS peak corresponding to a 

specific metabolite. For non-targeted metabolomics, the ultimate goal is to match each 

feature with a verified molecular structure. As structures for the majority of human 

endogenous metabolites have not been enumerated, structure identification methodology 

remains a central focus of metabolomics research.

Currently, the typical structure identification process involves searching metabolite specific 

databases such as Metlin,10 HMDB,11 and KEGG12 using the experimental exact mass of 

the feature of interest. Even when exact mass matches are found, additional experimental 

data are necessary to confirm the match and such corollary metadata are typically absent. 

In many cases, an exact mass match is not found because metabolite specific databases 
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are incomplete. For this reason, there are advantages in searching larger, more diverse, 

databases such as PubChem.13 Unfortunately, such searches return an excessive number of 

compounds, many of which are not biological. This is the principal dilemma when using 

databases for structure identification; small specific databases often do not contain the 

unknown, and large general databases contain too many false positives.

To address this dilemma, our group has developed MolFind14–17 to facilitate structure 

identification of features observed in HPLC-MS assays. In MolFind, a feature of interest 

is considered as a “target unknown”. The HPLC-MS exact mass of the target unknown 

is used to query large chemical databases and generate a candidate list of matches. The 

candidate list is filtered using multiple attributes predicted by computational models. The 

predicted attributes are retention index (RI)17–19 Ecom50,15,17 drift index (DI),14 whether 

a compound is biological or nonbiological (BioSM),20 and collision induced disassociation 

(CID) spectra (i.e., MS/MS).14,21 An experimental value for each attributes is measured 

for the target unknown and compared with predicted values for each candidate. Candidates 

whose predicted values most closely match the experimental values of the target unknown 

are returned as the most likely candidates. Comparisons are based on a “filter range” for 

each model derived from model validation statistics. Each filter range is centered on the 

experimental value of the target unknown and candidates whose predicted value falls outside 

the filter range are eliminated. The goal is to filter out false positives returned by the 

exact mass search thus reducing the candidate list to a manageable number to purchased or 

synthesize for final confirmation.

The effectiveness of the MolFind is dependent on the accuracy of its computational models 

and is thus also dependent on model training data. For optimal performance, training data 

needs sufficient structural diversity to cover the structure−property space where predictions 

are made. The width of the filter range is based on the standard error (SE) of prediction, thus 

the SE needs to be small to maximize the number of eliminated compounds. An ideal model 

will eliminate a large number of false positives while retaining the true positive (the match 

to the target unknown). Both high sensitivity and specificity are necessary for the models to 

provide meaningful enrichment in filtration.

HPLC retention index (RI) is an important attribute that has been modeled and used 

for filtration in MolFind.19 A major advantage of the HPLC-RI assay is the ease of 

transferability between laboratories since RI is based on relative (rather than absolute) 

retention time. Though RI has advantages as an attribute to measure, there are disadvantages 

in using RI as an attribute to model. Since every atom affects the RI value, it is optimal 

to have training set examples of every combination of chemotypes likely to be found in 

metabolites. Also, a wide range of RI values have been observed for metabolites and it 

is ideal to have data that uniformly covers the observed range. Thus, there is a large 

and diverse structure−property space to be populated to form the basis of a reasonable 

model. This leads to difficulty optimizing the model structure space using readily available 

compounds.

One goal of such a model is to predict RI for compounds in metabolomics specific 

databases. However, an ideal RI model must also generate reasonable RI predictions for 
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metabolites that are not yet confirmed to exist in humans. Adequate modeling of currently 

unknown biochemical structure space presents significant challenges. In addition, it is 

impractical to obtain sufficient numbers of commercially available metabolites; both in 

terms of cost and the sheer numbers required for creating a model with adequate coverage 

of the applicability domain of human metabolites. Our previous RI model was based on 

390 compounds and showed marginal performance on new data with 78% of independent 

validation (ival) compounds predicted within ±2 validation set SE.19 The lower than 

expected sensitivity was likely because of limitations in the measured RI range and the 

number of relevant chemotypes missing from the model data.

Here we have addressed these issues by developing a new artificial neural network (ANN) 

model based on 1955 synthetic compounds that were selected, purchased, and measured 

for the study. Compound selection was intended to project to both observed and likely 

human metabolite structure space. The experimental RI range was increased by 42% and 

an effort was made to minimize the occurrence of singletons or features of low population. 

New descriptors were also formulated to address observed deficiencies in QSRR structure 

description.

MATERIALS AND METHODS

Selection of Synthetic Compounds for the Model Data Set.

The goals of compound selection are similar to those of selecting a combinatorial library 

where an optimal data set has maximal diversity, uniform coverage of property space, and 

minimal redundancy.22 The challenge is to use inexpensive synthetic compounds to populate 

a human endogenous metabolite-like structure/property space, where much of that space is 

not fully enumerated. The resulting data must form the basis of a model that can make 

reasonable predictions for compounds whose composition is not known a priori with any 

certainty. In order to address this, an examination of the applicability domain is necessary. 

With our previous model, a bitkey analysis19 was used to define the applicability domain. 

A bitkey is a bit string where each bit encodes presence/absence of a structure features. 

The total string represents a predetermined set of features deemed to be important to the 

model target end point. The bitkey has one on-bit for each structure feature present such 

that compounds with the same bitkey value have the same combination of features from 

the predetermined set. For this study, each bit was set to encode a different heteroatomic 

structure feature. In the previous study, a 20% smaller SE was observed for predicted 

compounds that had three or more model training compounds with the same bitkey.19 This 

would suggest that a reasonable structure/property space could be created by generating 

bitkeys for known metabolites and obtaining at least three synthetic compounds to match 

each bitkey. An analysis of 3480 HPLC positive-ion MS detectable human metabolites 

showed 328 bitkeys, (328 unique combinations of heteroatomic features) ranging from 1 to 

16 on-bits. For 198 bitkeys, there were 1 or 2 metabolites with that combination of features. 

With 328 bitkeys, it would be reasonable to consider creating a ∼2000 compound data set 

based on 3−8 compounds per bitkey but there are multiple problems with this approach.

Available compounds were not found to match every observed bitkey. Because there can be 

significant structure variation and a wide RI range among compounds with the same bitkey, 
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it is unlikely that coverage could be obtained with 3−8 compounds. Since much of known 

human metabolite space is sparsely populated, use of known metabolites as a template 

for a model data set could result in isolated clusters separated by large, under-populated, 

interpolation regions.

For these reasons, a different approach was taken. We here hypothesize that a model for 

RI prediction in human endogenous metabolite-like space can be based on compounds 

with simple features and feature combinations, not unlike combinatorial chemistry building 

blocks.22,23 A triplet of three features can be described by three feature pairs, so if data 

is available for each possible pair, the ANN can make virtual combinations of higher 

order feature combinations and estimate their effect. We hypothesize that newly discovered 

metabolites will likely be composed of combinations of known structure features that 

have been observed in the nearly 8000 confirmed human metabolites. For this reason, the 

construction of the data set focused on obtaining compounds that sample single features and 

simple feature combinations found in confirmed human metabolites.

The first step was to enumerate classes of single heteroatomic functional groups found 

in HPLC-MS positiveion mode detectable metabolites. These compounds are comprised 

of carbon, hydrogen, and a single type of heteroatomic functional group including amine, 

pyridine, aniline, pyrrole, permanent charge nitrogen, amide-like (amide, urea, imide, etc.), 

thioamide-like (thioamide, thiourea, thioimide, etc.), and alpha-beta unsaturated ketone. 

Commercially available compounds were sorted into sets based on these types. Each set was 

sorted on the number of heteroatoms and the number of carbon atoms to roughly parallel 

the anticipated RI value. The compound with the largest number of heteroatoms and smallest 

number of carbon atoms was selected. Also, the compound with the largest number of 

carbon atoms and only one heteroatom was selected. Compounds were sampled from the 

space between to create a representative group from the set. An effort was made to select 

diversity in branching, ring structure, aromaticity, and shape in a process is similar to visual 

selection in a cluster-based design.22 A total of 414 compounds were selected to populate 

the single functional group sets.

Next, compounds with feature “pairs” were selected by taking the half triangle of the 

single functional group matrix (amine-pyridine, amine-aniline, etc.) and adding pairs with 

functional groups found in metabolites that cannot be detected on their own. Added 

groups included acid (carboxylate, phosphate, and sulfate), phenol, alcohol, ether, ester, 

ketone, furan, thiol, thioether, thioketone, and thiophene. The same sorting process was 

applied as was used for the single functional group sets and compounds were selected 

in the same manner. A total of 1290 compounds were selected to populate the “pairs” 

sets. Feature “triplets” were also examined, but examples of most combinations were not 

commercially available and only 197 compounds with three features were included. An 

additional 54 compounds with 4−6 features were also included. A total of 202 confirmed 

human endogenous metabolites were set aside as an independent validation set.

Bitkeys for the resulting data set ranged from 1 to 9 on-bits with 1866 compounds having 5 

or fewer on-bits. This is in contrast to human metabolite data where 178 of the 328 observed 

bitkeys have 6−16 on-bits. For the 202 compound metabolite validation set, more than half 
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have 5 or more on-bits with a maximum of 11. In general, human metabolites are more 

complex than the selected training data in terms of combinations of features and the number 

of features per molecule. This study will provide an indication concerning the plausibility of 

making predictions for complex structures using a model based on compounds with simple 

combinations of features from which the complex combinations are composed.

After the selected compounds were obtained, the decision was made to switch from 

modeling with structure descriptors based on the neutral form to the descriptors based on 

the calculated major microspecies and tautomer at the pH of the HPLC mobile phase. This 

resulted in changes to the structure space not accounted for during compound selection 

such as the internal rearrangement of some structures. Also, RI measurements were not 

obtained for every compound. These complications resulted in a model data space with less 

coverage and diversity than was intended. The structure and predicted major microspecies of 

all compounds used in the study are provided in Supporting Information files S1−S4.

Experimental Determination of Retention Index (RI) Values.

The determination of HPLC retention times of the model test compounds and the calculation 

of the corresponding nitro-n-alkane and n-amide retention indices has been described 

previously.19 Briefly, solutions of C1−C10 n-alkanes, C3−C14 n-amides, test compounds, 

internal control compounds, and external control compounds were prepared and analyzed 

by HPLC/MS using an OptiGuard (1 mm × 17 mm, 5 μm) guard column linked to a 

Zorbax SBC18 (1 mm × 150 mm, 3.5 μm) analytical column with a linear gradient of 

0.01% heptafluorobutyric acid (HFBA)/water/acetonitrile with detection by positive ion 

electrospray mass spectrometric analysis. Specifically, the HPLC analysis was performed on 

an Agilent 1100 HPLC system using a solvent gradient of 100% 0.01% (v/v) HFBA/H2O 

to 100% 0.01% (v/v) HFBA/90% CH3CN/H2O at a flow rate of 75 μL/min. Using UV 

detection, a homologues series of nitro-n-alkanes (C1−C10) were analyzed on the same 

HPLC system at the beginning and end of each batch of sample analyses. The retention 

times of the sample compounds and the fourth-order polynomial relationship between the 

nitro-n-alkanes retention times and one hundred times the respective number of carbons 

in the nitro-n-alkane structure were used to calculate the retention index of each test and 

control compound. Since the homologues series of n-amides have the advantage of being 

detected by mass spectrometry, the nitro-n-alkane retention index values of each test and 

control compound were converted to a retention index value referenced to the C3−C14 

homologous series of n-amides analyzed on the same HPLC system.

The positive ion electrospray detectable homologous series of n-alkylamide retention 

compounds were chosen such that they eluted within a similar retention time range as 

the non-MS detectable homologous series of nitro-n-alkanes that were previously used 

in our retention indices studies. The earliest eluting n-alkylamide, n-propanamide, has a 

retention time of approximately 2.3 min which compares with the 2.2 min retention time 

for the earliest eluting nitro-n-alkane, n-nitromethane, and the last eluting n-alkylamide, 

n-tetradecanamide, has a retention time of approximately 19.7 min which is similar to the 

19.6 min retention time of the last eluting nitro-n-alkane, n-nitrodecane. The RI values of 

compounds that eluted before n-propanamide or after n-tetradecanamide were extrapolated, 
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respectively, from the logarithmic linear regression equation for compounds eluting in the 

isocratic mobile phase or the fourth order polynomial equation for compounds eluting in the 

gradient portion of the mobile phase. Extrapolated values suffer a loss off accuracy since 

the nonlinearity of the system is unclear outside the range of standards. These values do, 

however, give a qualitative indication of the retention magnitude. In addition, compounds 

that elute substantially before n-propanamide elute very near the column void time and are 

not substantially retained. The RI variation for these compounds likely arises from different 

mechanisms than for compounds that are substantially retained. This creates three categories 

of measured values. Values > 1400 retention index units (RIU) suffer from extrapolation 

error. Values < 300 RIU suffer from extrapolation error and also likely arise from a different 

mechanism. Values between 300 and 1400 RIU are not entirely consistent with the other 

two categories of measurements. It is likely that the relationship between RI and descriptor 

values will also not be consistent across all three categories and this creates difficulties in 

using all of the available data for a model.

Despite measurement difficulties, a number of MS detectable human metabolites have been 

observed to elute outside the range of N-alkylamide standards. It is optimal for MolFind to 

be able to account for any MS detectable compound that appears as a feature of interest, 

even if it elutes outside the range of standards. This necessitates that the MolFind RI model 

account for measurements in all three categories. Our approach to this is discussed in the 

Materials and Methods section.

Structure Descriptors.

A total of 47 structure information representation (SIR) descriptors24–29 were used to build a 

series of ANN ensemble models. Descriptors values were calculated using winMolconn, 

v2.1.30 Descriptors were not selected by a statistically based selection algorithm. The 

descriptor set was chosen in an attempt to explicitly encode all molecular characteristics 

that influence reverse phase HPLC retention under known measurement conditions. 

Though the extent to which that goal has been met it is still being investigated, this 

description methodology has been used to create multiple successful models of HPLC data 

sets.14,15,17–19 A complete description of the descriptor set is given in the following sections.

Major Microspecies Calculation.—The pH of both HPLC mobile phase components 

was measured to be 2.5. There are multiple functional groups in model compounds whose 

protonation or ionization state is uncertain at this pH. Protonation adds a positive charge and 

a hydrogen bond donor, while occupying a hydrogen bond acceptor. Ionization has similar 

effects. Preliminary models suggested that these changes were too impactful to approximate 

with neutral structures. To address this, the Marvin Beans Calculator (cxcalc)31 was used 

to convert structures to the major macrospecies and tautomer at pH 2.5. All structure 

descriptors were calculated for the predicted major macrospecies.

Heteroatomic Feature Descriptors.—Most heteroatomic features were described using 

the Interaction Group (IGroup) E-State described previously.18,19 The IGroup indices were 

created for modeling solution properties and have been successfully used to model HPLC-RI 

of diverse data sets.18,19 IGroups explicitly encode information about every heteroatom by 
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grouping Atom-level Electrotopological State (E-State)26 values for atoms that participate 

in similar noncovalent solution interactions. IGroups are created by assigning atoms from 

related functional groups to a unified set of descriptors. A list and description of the IGroup 

feature descriptors used for the study model is given in Table 1.

Additionally, two E-State based internal hydrogen bonding indices were used to encode 

internal hydrogen bonding configurations. An integer count positive charge descriptor was 

used to encode the charge of protonated atoms and permanently charged nitrogen species 

(quaternary amine, pyridinium, etc.). An integer count negative charge descriptor was used 

to encode the charge of ionized atoms.

Lipophillic Features.—One of the most difficult aspects of structure description as 

it relates to reverse phase RI is the description of the lipophilic parts of the molecule 

(lipophilic subgraphs). Lipophilic subgraphs interact with the HPLC stationary phase by Van 

der Waals dispersion and are responsible for retention. Many previously utilized description 

systems characterizing the potential for dispersion interactions are whole molecule 

approximations of molecular polarizability expressed as molar refraction (Rm).32,33 When 

examining a series of compounds with identical branching, heteroatom composition, and 

heteroatom position, Rm explains essentially all RI variance. For the series of amines, 

propylamine (Rm = 19.4, RI = 415), butylamine (Rm = 24.0, RI = 522), octylamine (Rm = 

42.6, RI = 776), nonylamine (Rm = 47.6, RI = 785), undecylamine (Rm = 56.6, RI = 895), 

tridecylamine (Rm = 69.0, RI = 1014), and hexadecylamine (Rm = 81.6, RI = 1202), Rm 

correctly rank orders the series and accounts for 99% of RI variance.

Molar refraction, however, does not always correlate with RI over a series of structurally 

diverse compounds with similar Rm. Figure 1 shows nine C8H19N isomers with 33% 

variance in RI. Experimental Rm varies by only 3% and has a negligible correlation with RI.

An examination of the isomer series does not reveal any obvious descriptors (count of 

H-bond donors, count of methyl groups, etc.) that parallel RI. These data highlight the lack 

of an adequate system of description to relate the characteristics of lipophilic subgraphs to 

RI for molecules with similar Rm.

When polarizability is similar across a series of molecules, other factors must be examined 

to explain RI variance. It is not only dispersion potential that influences stationary 

phase interactions, but also interaction efficiency. An examination of Figure 1 suggests 

structural characteristics that influence the efficiency of lipophilic subgraph stationary phase 

interactions. A compound is more efficiently retained when all of the lipophilic atoms are 

contained in a single continuous subgraph. For isomers with the same number of subgraphs, 

increased branching leads to shorter retention times. Based on such observations, we here 

introduce the lipophilic molecular subgraph descriptors (LpSgrN, where N is the subgraph 

number). The LpSgrN indices are a new system of structure description to encode the 

size, dispersion potential, distribution of hydrophilic centers, and branching of individual 

lipophilic subgraphs in molecules. The LpSgrN indices were calculated as follows.
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A graph search algorithm was used to enumerate each lipophilic subgraph using a list 

of hydrophilic atom types as search stop atoms. Any protonated or ionized atom was 

considered a stop, along with phosphorus, oxygen (excepting −O− in ether or ester), 

and nitrogen (excepting pyrrole and nonprotonated pyridine). Carbon and sulfur were 

assigned as lipophilic. Once the atom list for each separate subgraph was identified, an 

atom-level refraction (AtR) value was assigned based on hydrophobic constants suggested 

by Ghouse and Crippen.32 Next, each AtR was adjusted to account for the influence of 

nearby electronegative atoms. Strongly electro-negative atoms reduce the polarizability 

of neighbors by withdrawing electron density. To take this into account, each AtR was 

modified according to eqs 1a and 1b.

∑KHEΔ i = ∑ KHE i − KHE j /dij
2

(1a)

∑KHEΔ(i) = sum of Kier−Hall electronegativity difference adjustments for atom i; KHE(i) = 

Kier−Hall electronegativity for atom i; KHE(j) = Kier−Hall electronegativity for atom j; dij
2 

= square of path distance between atoms i and j

KHEΔ_AtR i = scale × ∑KHEΔ i × AtR i (1b)

KHEΔ_AtR(i) = KHE difference adjusted atom-level refraction for atom i; scale = scale 

factor = 0.1; AtR(i) = Ghouse Crippen atom-level refraction for atom i.

Using eq 1a, for each pair of atoms i,j, the Kier−Hall electronegativity difference (KHEΔ) 

was taken and divided by the square of the i,j path distance so the effect is more pronounced 

for close neighbors. For each subgraph atom i, the absolute value of KHEΔ for every 

atom pair is accumulated in a sum ∑KHEΔ(i). The absolute value was added to ∑KHEΔ(i) 
where KHE(i) < KHE(j), meaning that i is less electronegative than j and is losing electron 

density to j. Where KHE(i) > KHE(j), the absolute value was subtracted because i is gaining 

electron density from j. The larger the accumulated sum, the more electron density is lost 

resulting in loss of polarizability. AtR for each atom was modified by ΣKHEΔ according to 

eq 1b where AtR for each atom i was multiplied by the product of ∑KHEΔ(i) and a scaling 

factor. The result is the Kier−Hall electronegativity difference adjusted atom-level refraction 

(KHEΔ_AtR).

Next, steric interference from hydrophilic atoms was addressed by reducing KHEΔ_AtR(i) 
for lipophilic subgraph atoms with at least one hydrophilic neighbor. KHEΔ_AtR(i) was 

multiplied by an interference coefficient based on the count of hydrophilic atoms alpha and 

beta to i. The interference coefficient was 1.0 if there were no alpha or beta hydrophilic 

neighbors. KHEΔ_AtR for each atom was multiplied by its interference coefficient and 

the resulting values were summed across atoms in the subgraph to create the Kier-Hall 

electronegativity difference adjusted, hydrophilic steric interference adjusted, subgraph 

refraction (KHEΔ_HSI_SubGrR). The steps for applying the interference coefficients to 

the lipophilic subgraph of three phenylenediamine isomers are illustrated in Figure 2. The 

full table of interference coefficients is included in Supporting Information file S5.
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Finally, each KHEΔ_HSI_SubGrR was adjusted according to eq 2 to take branching and 

rings into account. A “branch degree” term was created from the quotient of the simple chi 

path 2 value for an unbranched structure with the same number of atoms as the subgraph 

(2χn) and the actual simple chi path 2 (2χs) value of the subgraph. Since chi path 2 increases 

with branching, the branch degree is 1 where the lipophilic subgraph is unbranched and gets 

smaller with each branch point.

branch_degrees = 2χn/ 2χs (2)

LpSgr ‐ s = KHEΔ_HSI_SubGrRs × branch_degrees

KHEΔ_HSI_SubGrRs = sum of Ghouse Crippen atom level refraction values for subgraph s 
after Kier−Hall electro-negativity difference and steric adjustments have been applied; 2χn 

= simple chi path 2 index for straight chain structure with the same number of atoms as s; 
2χs = simple chi path 2 index for lipophilic subgraph s; LpSgr-s = final lipophilic subgraph 

index value for subgraph s.

The resulting product gives the final descriptor value for each lipophilic subgraph (LpSgr) 

where the sum of the Ghouse and Crippen hydrophobic constants for the subgraph atom 

has been reduced by the presence of local electronegative atoms, steric interference from 

hydrophilic centers, and the presence of rings and branching. The LpSgr-s index values 

for each molecule were rank ordered and each value was assigned to a distinct descriptor 

where LpSgr1 is the lipophilic subraph with the largest value, LpSgr2 is the second largest 

value, etc. Looking at Figure 1, LpSgr1 explains 91% of RI variance and LpSgr1 and 

LpSgr2 together explain 99% of RI variance where Rm explains only 6%. The first 7 

lipophilic subgraph index values (LpSgr1−LpSgr7) were used in the model. An example of 

the calculation steps of LpSgr1 and LpSgr2 for dibutylamine and di-sec-butylamine is given 

in Figure 3.

Graph Based Feature Descriptors.—Graph based feature descriptors used in the 

model included the count of rings, circuits, and rotatable bonds. Molecular connectivity 

indices were also used including 4χpc (chi simple path-cluster 4), 3χp (chi simple path-3), 

and 10χp (chi simple path-10) indices.34,35

Global Descriptors.—Global descriptors encode structure characteristics common to 

every compound and seven were used for this study. The molecular connectivity 0χv index 

(chi valence 0)35 was used to approximate molecular volume. A pair of global indices 

(rvalHyd and sumLpSubGr) was used to characterize hydrophilicity and lipophilicity. The 

rvalHyd index (ratio valence hydrophilic index)19 gives the sum of atom level E-State values 

of hydrophilic atoms divided by the total atom level E-State for the molecule. This index 

quantifies the proportion of valence electron density associated with hydrophilic atoms. 

A new global index of lipophilicity, sum of lipophilic subgraph refraction (sumLpSubGr) 

was created for this study as the sum of the LpSgr1−LpSgr7 lipophilic subgraph indices 
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described above. The global shape descriptors 2κα (kappa alpha 2),27 flatness, and inv_dx2 

(inverted difference simple chi 2) described in previous HPLC RI models19 were also used.

A list of descriptors and their definitions is given in Supporting Information file S6, and the 

descriptor values for all study compounds is given in Supporting Information files S7 and 

S8.

Input Normalization and Scaling.

When using the RPROP36 learning algorithm, the fann library,37 on which the ANN model 

software is based, restricts descriptor and target input values to a range of 0.0−1.0. To 

accommodate this requirement, descriptor values were normalized by Z-score and scaled. 

Feature descriptors were normalized using the mean and standard deviation of rows with 

nonzero values. Feature descriptors values of 0.0 were not normalized so as to retain their 

null set information. Global descriptors were normalized using the mean and standard 

deviation for all rows. Following normalization, all global descriptors and feature descriptors 

with nonzero normal values were scaled from 0.1 to 0.7. The use of 0.7 as a maximum 

leaves “headroom” for any compound predicted by the model that has a larger input value 

than the data set maximum. Feature descriptor normal values of 0.0 were not scaled. The 

flatness and inv_dx2 global descriptors were scaled from 0 to 1 since both have a theoretical 

minimum and maximum that cannot be surpassed.

Descriptor Reduction Tests.

Though a statistically based descriptor selection algorithm was not employed in this study, 

the set of 47 descriptors was subjected to a reduction test. An ANN model was built for 

each n − 1 subset (all possible models with 46 of the 47 descriptors) and analyzed by the 

statistical criteria used for the n = 47 model. The top 10 models were kept and models were 

built for n − 2 subsets (models with 45 of the 46 model descriptors). The procedure was 

implemented up to n-3 but no model was found with validation statistics superior to the n = 

47 model.

Descriptor Correlations.

The linear correlation of input descriptors is of less interest when a nonlinear modeling 

method is used but a correlation analysis is necessary to complete the descriptor profile. 

A total of four pairs of model descriptors have a linear correlation >0.90. The alaphatic 

nitrogen (alph_N) and hydrogen on alaphatic nitrogen (alph_NH) descriptors are correlated 

at 0.95. The thioamide-like double bond sulfur (tamide_dS) and thioamide-like single bond 

nitrogen (tamide_N) descriptors are also correlated at 0.95. The acid-like double bond 

oxygen (acid_dO) and acid-like single bond oxygen descriptors (acid_sO) are correlated at 

0.93. The chi valence 0 and chi simple path 3 descriptors are correlated at 0.92.

The intercorrelation of the amine descriptors is likely because nearly all amines are 

protonated by Marvin cxcalc at the pH of the mobile phase. The two descriptors run 

largely in parallel because every amine has at least one associated hydrogen atom. The 

intercorrelation of the thioamide descriptors likely results from the over representation of 

secondary thioamides in the data. The intercorrelation of the acid-like descriptors likely 
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results from too many of the acid groups being carboxylates, each with one = O and one 

−OH. In these cases, nearly 90% of the information from the descriptor pair is redundant. 

However, the descriptor reduction tests demonstrate that the model is not improved by the 

removal of either of the descriptors so it is likely that the independent 10% of information is 

useful. A correlation matrix is given in Supporting Information file S9.

MODELING METHODS

Data Set Partitioning.

The 1955 compound data set was partitioned into a 4 × 10 × 10 ensemble described 

previously.19 To create the ensemble, the 23 IGroup feature descriptors were used to 

generate a bitkey for each row. Compounds were sorted by bitkey to generate 278 classes 

of compounds where all class members have the same heteroatomic features. Classes were 

organized from simple to complex as defined by the count of on-bits. Within each class, 

compounds were rank ordered on experimental RI. Classes with the same count of on bits 

were then ordered based on the number of row members. The result was an organization 

of the data such that the first compounds were the 1-on-bit class with the largest number 

of members and the last compounds were the 9-on-bit class with the fewest members. No 

compounds in the model data set had more than 9-on-bits, meaning nonzero descriptor 

values for more than 9 of the 23 IGroup descriptors.

After ordering, rows were divided into four fit/validate splits (A, B, C, D). Each split was 

constructed by iterating through the bitkey order and assigning every fourth compound to 

validate. Assignment to validation started with the first row for split A, the second row for 

split B, the third row for split C, and the fourth row for split D. The result was ∼25% of 

data rows assigned to the validate set of each split with the remaining ∼75% in the fit set. 

Assignment to validation was mutually exclusive where each compound was assigned to the 

validate set of exactly one of the four splits. The fit set of each split was further subdivided 

into 10 folds by assigning every 10th compound to test. Test set assignment was similar to 

validation assignment in that for the first fold, test set assignment began with the first row 

and every 10th compound thereafter. For the second fold, test set assignment began with the 

second row, etc. This resulted in ∼90% of the data for each fold in a training set and ∼10% 

as a test set for cross validation. Test set assignment is also mutually exclusive where each fit 

set compound was in the test set of exactly one fold.

In each of the four fit/validate splits, ∼75% of the overall data resides in 10 folds of training 

data and each fold has its own leave-10%-out test set. Additionally, ∼25% of the data is 

reserved for validation. Since the ensemble contains four fit/validate splits, a validation 

prediction was available for every data set compound and every compound was used for 

training in three splits. Because the data rows were ordered in both structure and property 

space using the bitkey and RI values, a relatively equivalent number of structures from 

each structural class was assigned to train, test, and validate for each fold in the data split. 

The ordering of each bitkey class on RI helps to ensure an even distribution in property 

space.15,17,18
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Additionally, 202 confirmed human endogenous metabolites were set aside as an 

independent validation set. Since MolFind is intended to identify metabolites from a 

candidate set, it was decided to set aside all metabolites in a second validation set. Since all 

compounds in the model data set were synthetic, this method will provide information as 

to the effectiveness of using synthetic compounds as the basis of a model to predict human 

endogenous biochemicals.

ANN Learning Method.

A separate 10-fold ensemble model was built for each of the four fit/validate splits. Each 

model employed an architecture of an input layer with 47 input neurons, 1 hidden layer with 

23 hidden neurons, and an output layer with 1 output neuron. The architecture was based on 

the previous model where the optimal architecture was found to have a single hidden layer 

with half the number of hidden neurons as model inputs.19 Each of the 10 folds of each split 

was trained separately by generating 50 models for the fold, each trained from a different set 

of random starting weights. Model training utilized the RPROP36 algorithm implemented in 

a proprietary application built with the fann library.37 A previous study showed that the use 

of validate statistics for the stopping and model selection criteria produced a more effective 

model for predicting new data than a model developed with test set stopping and selection.19 

For this reason, each model was trained on the fold training set rows using the validation set 

mean absolute error (MAE) as the stopping criteria (training continued until the validation 

MAE minimized). Validation MAE was also used as the model selection criteria meaning 

that the validation MAE was evaluated for all 50 fold models and the model with the lowest 

validation MAE was selected as the final fold model. Test set predictions were also made for 

the purpose of statistical analysis. This process was repeated for all 10 folds resulting in 9 

train predictions and 1 test prediction for fit set rows and 10 predictions for validate rows.

The above process was repeated for each of the four fit/validate sets resulting in 40 final fold 

models selected from 2000 total models. To create final ensemble statistics, averages were 

taken over all 40 models. Each compound was assigned to the training set in 36 of the 40 

models, the test set in three models, and the validation set in 10 models. Final train, test, 

and validation prediction values were created by averaging the predictions from each set. 

Finally, each of the 40 models in the ensemble was used to make a prediction for the 202 

independent validation compounds and the 40 predicted values were averaged to create an 

independent validation prediction. Statistics were calculated for the train, test, validate, and 

independent validate sets of the data based on the averages.

Since test set stopping is the more common procedure, a second 4 × 10 × 10 ensemble 

model was created using test set stopping and model selection. This model was developed 

in identical fashion to the first ensemble except that models were trained until the test set 

MAE minimized and the fold model with the best test MAE was selected as the final fold 

model. Model statistics were calculated in the same way as for the model built on validate 

set statistics.

After the final ensemble models had been generated, network architecture was optimized by 

creating new models based on networks with a single hidden layer of 5−55 hidden neurons 

in increments of 5. The stopping MAE was plotted against the number of hidden neurons 

Hall et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2021 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and a polynomial curve fit was applied to interpolate the number of hidden neutrons where 

the polynomial minimized. A new model was created using the architecture suggested by the 

polynomial interpolation as well as models for n − 1, n − 2, n + 1, and n + 2 of the suggested 

number of hidden neurons. The best model was found to have a network architecture of a 

single hidden layer with 22 hidden neurons which is similar to that found in the previous 

study.

Quantitative Range of Interest (QRI) Adjustment.

Here we introduce a novel adjustment to the RPROP method implemented to address 

the issue of measured RI values that fall outside the range of N-amide standards. This 

adjustment is called quantitative range of interest (QRI). As mentioned in the Materials 

and Methods section, compounds that elute before the first standard (n-propanamide) elute 

very near to the column void time. These compounds are not substantially retained by the 

column. The RI variation of these compounds likely arises from fundamentally different 

mechanisms than compounds that are substantially retained. Because confirmed endogenous 

metabolites have been observed to elute in this same region, it was deemed necessary 

to include this data as a means to facilitate predictions for endogenous compounds that 

also elute before the first standard. Also, it is unknown how accurate extrapolation is for 

compounds that elute after the last standard. The QRI adjustment specifies a “quantitative 

range of interest” in the target end point where the data are reliable and it is important 

for predictions to be as accurate as possible. Data points that fall outside the QRI are 

still utilized during learning, but qualitative predictions are considered sufficient. The QRI 

adjustment modifies the ANN cost function for rows outside the QRI to zero the row error 

as long as the prediction is qualitatively correct. For compounds with measured RI values 

below 300 RIU, the contribution to the cost function for that row will be 0.0 as long as the 

prediction is also below 300 RIU. These qualitatively correct predictions are considered true 

positives regardless of the magnitude of the residual. If the prediction is above 300 RIU, 

the prediction is qualitatively incorrect and the cost was assessed as predicted−observed. 

The result is that once a prediction for a data row outside the QRI is pushed past the QRI 

boundary, the model is no longer aware of any error for that row and no additional weight 

adjustments are made regarding that row.

It was necessary to make a parallel modification to the program that was used to calculate 

model statistics. Predictions for compounds with RI values outside the QRI that classify 

as true positive predictions were not included in the MAE, meaning that the MAE was 

calculated only on rows in the QRI, plus rows outside the QRI that were false negatives.

RESULTS

Validation set and I-val set statistical results for the ANN-t (test set stopping) and ANN-v 

(validation set stopping) models are given in Table 2 along with the parallel statistics from 

our previous ANN RI model.19

As can be seen from Table 2, the results from the ANN-t and ANN-v methods are similar. 

Results from the ANN-v model will be discussed in full because the validate MAE, and 
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SE, and i-val set sensitivity were slightly better than for the ANN-t model. Results and 

discussion about the ANN-t model can be found in Supporting Information file SI10.

The ANN-v model showed a train r2 (square of the Pearson correlation coefficient) of 0.98, 

test q2 of 0.94, and validation r2 of 0.95. The ANN-v MAE was 28.8 RIU for train, 46.9 RIU 

for test, and 39.3 RIU for validate. The SE was 38.6 RIU for train, 60.5 RIU for test, and 

50.7 RIU for validate. The ±2SE filter range based on the ANN-v validation statistics is 203 

RIU which is 14.7% of the total data range of 1381 RIU.

Recalling the QRI adjustment, it was necessary to statistically account for predictions made 

for these compounds. These predictions are qualitative and were not included in the r2, 

MAE, and SE cited above. In Figure 4, QRI predictions are shown as black diamonds. 

Predictions for compounds with RI values outside the upper and lower QRI boundaries are 

shown as white circles at either end of the plot. The range of predictions made for these 

compounds is shown on the y-axis and the same x-axis value is used for every data point. In 

order to use this model to make predictions for a target unknown that elutes outside the QRI, 

it is necessary to apply a filter similar to the ±2SE filter range used for the QRI compounds. 

SE is the standard deviation of the error such that 95% of residuals are smaller than ±2 SE. 

To create a value similar to the SE to apply to the qualitative predictions outside the range 

of standards, we evaluated the magnitude of the cutoff value necessary to capture 95% of the 

validation predictions made for compounds outside the QRI.

For the ANN-v model, a cutoff of 427 RIU captures 94% of predictions for compounds 

with RI values below the lower boundary. Similarly, a cutoff of 1278 RIU captures 94% of 

predictions for compounds with RI values above the upper boundary. If a target unknown 

elutes before the first standard, predictions will be made for compounds in the candidate 

set and compounds with predicted values >427 RIU will be excluded. If a target unknown 

elutes after the last standard, candidate set compounds with predicted RI < 1278 will be 

excluded. These cutoff values are shown in Figure 4 as the shaded gray boxes at each end of 

the validate plot. Plots of the train and validation predictions for the ANN-v model are given 

in Figure 4.

Comparison of Statistics for Predictions Made in Retention Time Units.

HPLC RI measurements are made as retention time (tR) and converted to retention index 

(RI) based on the measured tR values of the 11 N-amide standards. The distribution median 

of tR for the 1955 compound model data set is 8.9385 min with a first quartile (Q1) of 

7.1478, third quartile (Q3) of 11.8675, mean of 9.5440, and standard deviation of 3.8401. 

The distribution median of RI is 652 RIU with Q1 of 541, Q3 of 858, mean of 708, 

and standard deviation of 251. Where the distributions are so different, it is instructive to 

report the validation set statistics calculated for predicted tR along with predicted RI. The 

validation set r2 for predicted versus experimental tR is 0.942 which is slightly lower than 

the validation set r2 for predicted versus experimental RI of 0.949. This is a small difference 

considering that the tR range is much smaller than the RI range. The validate MAE values 

cannot be compared directly because of the difference in units but the relative average error 

for the tR predictions is 3.59%, which again is slightly larger than the relative average error 

for the RI predictions of 3.57%.
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Independent Validation.

The ANN-v model was used to make predictions for the 202 compound independent 

validation (i-val) set. These predictions simulate a match to a target unknown present on 

a candidate list. Each compound on the candidate list is considered a “positive” because 

their exact mass matches the observed exact mass of the target unknown. The role of the 

RI model in MolFind is to filter out false positives while leaving the true positive (actual 

structural match) on the list. In this context, each i-val compound can be considered a 

match where a true positive prediction is expected. To be a true positive, a prediction must 

fall within the ±2SE filter range for QRI compounds, or within the boundary cutoff for 

compounds outside the QRI.

Figure 5 shows the ANN-v i-val predictions. The gray boxes at the far left indicate the 

prediction cutoff for 95% true positive predictions of compounds that elute before the 

first standard. White circle points within the box are true positive predictions while gray 

diamonds outside are false negatives. The predictions for compounds eluting before the 

first standard were very good with only one false negative prediction. Overall, the model 

achieved 94% sensitivity with the i-val data.

DISCUSSION

The aim of this study was to develop an improved ANN RI model for use with MolFind. 

Improvements included expanding the structure space of the previous model. Because it was 

not possible to obtain examples of every observed chemotype and likely combination of 

chemotypes, a method was employed to populate the space of single features and feature 

pairs as completely as possible. This design was based on the hypothesis that a neural 

network can infer reasonable predictions for higher order feature combinations based on 

the information contained in relatively simple feature combinations. Feature triplets were 

populated to the extent possible given compound availability and the data included a small 

number of compounds with up to 6 features available from previous studies. With this 

method, we were able to use simple, relatively inexpensive, synthetic compounds to generate 

of a model designed to predict RI values for endogenous metabolites.

It was also necessary to expand the RI data range to encompass that observed in human 

metabolites. Data range expansion included the introduction of the QRI methodology 

to allow for the inclusion of compounds with measured values outside the range of RI 

standards. Finally, structure description was addressed with the introduction of the lipophilic 

molecular subgraph descriptors. A 202 compound independent validation set of confirmed 

human metabolites was used to evaluate the relative success of the methodology.

The ANN-v model exceeded the performance of the previous model in the absolute 

magnitude of the ±2SE filter range. The performance increase is more substantial when 

comparing the magnitude of the filter range to the overall data range. Figure 6 gives the 

magnitude of the filter range as a percentage of the RI data range for the previous model and 

the study models.

Hall et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2021 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because the chemical composition of human metabolites is not fully enumerated, an 

important goal of this investigation was to create a model that could make reasonable 

predictions for compounds with metabolite-like chemotype combinations not found in the 

training data. Predictions for the 202 compound i-val set were used to evaluate success in 

this regard. The measure of effectiveness is the ability of the model to predict compounds as 

true positives even where the training data has no compounds with a bitkey match. Figure 7 

gives the results of this sensitivity and applicability domain analysis for the ANN-v model.

In Figure 7, true positive predictions are shown in green while false negative predictions 

are shown in red. Since MolFind uses a ± 2SE filter range, to count as a true positive, 

the predicted value must fall within ±2SE of the measured value. The ±2SE cutoff is 

marked as the gray shaded area on the figure. The column on the left shows predictions 

for 69 compounds with no data set bitkey matches. False negatives are only observed for 

compounds with 8 or fewer bitkey matches. Sensitivity was 97% for compounds with 3 

or more matches. Sensitivity is lowest for compounds with 0 matching bitkeys but is still 

reasonable at 90%. For the ANN-v model, lower boundary QRI predictions are true positive 

if the predicted value is <427 RIU. Forty one of the lower boundary QRI predictions were 

true positive and one was a false negative.

The ANN-v model was able to make reasonable predictions for the majority of compounds 

that were more complex than those found in the model data. The maximum number of 

on-bits in the model data was 9. For the ANN-v model, 9 of 10 compounds with 10 or 11 

on-bits were predicted as a true positive. Of the 12 total false negatives, only one has 10 

on-bits and the rest range from 1 to 8 on-bits with an average of 5. Though the model data 

consisted of compounds with an average of 3.5 on-bits, the model was able to make useful 

predictions for compounds with up to 11 on-bits. Though the number of compounds in 

this category is quite small, 90% sensitivity for compounds more complex than the training 

data suggests that the method of basing the model on relatively simple compounds has 

yielded interesting results and did not greatly harm predictions made from more complicated 

structures.

An analysis of the data displayed in Figure 7 suggests that it would be necessary to use a 

filter range closer to ±3SE in order to achieve 95% sensitivity for compounds with <2 bitkey 

matches. Since the bitkey values can be generated for all compounds being screened, it may 

be helpful in practice to use the ±3SE filter range when making predictions for candidate list 

compounds with <2 bitkey matches in the model data.

Though the performance of the ANN-v model is encouraging, there are several limitations 

of this work. The overall model data are skewed toward the bottom end of the RI range 

with approximately three compounds <750 RIU for every compound >750 RIU. This is in 

part because a number of purchased compounds anticipated to have large RI values were 

insufficiently soluble to obtain RI measurements. As a result, the validation SE is higher for 

compounds in the upper RI range. The existence of an improved model should allow for the 

identification of additional compounds that can be added to even out the RI distribution.
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Because model descriptors were calculated based on the major microspecies and tautomer 

at pH 2.5 as calculated by Marvin cxcalc, it is likely that some RI predictions were 

compromised by inaccurate pKa predictions used to generate the major microspecies. Since 

models based on the neutral form were not nearly as successful, there does not appear to 

be any simple remedy for this issue other than improvements to the cxcalc software or the 

identification of a more accurate pKa predictor.

Concerning the model data space, there are a number of observed human metabolites with 

bitkey values that are absent from the current model data. Though the bitkey coverage of 

known metabolites is much greater with the models from this study than in the previous 

model, it would undoubtedly be helpful to obtain compounds to represent observed bitkeys 

for all known metabolites. Based on the i-val data, 100% sensitivity was only achieved when 

there were at least 10 bitkey matches in the model data. While good sensitivity was seen 

with three bitkey matches, the additional population of all bitkeys with <10 examples would 

likely be helpful.

CONCLUSIONS

The use of a human endogenous metabolite data for independent validation allowed for 

evaluating the sensitivity of the ANN-v model. The model showed improved specificity 

when predicting new data as compared to the previous model.19 This would suggest that 

the combination of the selection process for compounds to expand the model data space, 

the addition of the lipophilic subgraph descriptors, and the implementation of the QRI ANN 

learning methodology were collectively useful in advancing one of the major goals of the 

study. The data generated by this study does not provide insight into the specif icity of the 

ANN-v model. This is the true negative prediction rate, or in this case, an indication of how 

effective the model would be in filtering out false positives from the candidate list. The fact 

that the ±2SE filter range for the best ANN model is 47% smaller than the filter range for the 

previous model suggests that the new model will be a more effective filter, but this must be 

confirmed by additional work.

Given the chemical diversity of known and likely metabolites, the reasonable predictions 

made for compounds with no bitkey matches and for compounds more complex than 

training data suggest that a model can be built using compounds with simple features and 

feature combinations and still make predictions for more complex feature combinations that 

are not represented in the model data. Additional confirmation of this methodology would be 

significant in the development of global models in general.

It is likely that the model could be further improved through the addition of compounds that 

satisfy bitkey values from observed human metabolites currently missing from model data. 

Since there are approximately 3 to 1 compounds in the lower half of the RI data range, it is 

also likely that improvements could be made by adding compounds to the upper half of the 

RI range in both the model data and the human endogenous metabolite validation set. Since 

the model is somewhat dependent on the prediction of the correct major microspecies and 

tautomer at the mobile phase pH, new pKa prediction software should also be evaluated on 

an ongoing basis.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

HPLC high performance liquid chromatography

Tof-MS time-of-flight mass spectroscopy

MLR multiple linear regression

QRI quantitative range of interest

i-val independent validation set

MAE mean absolute error

SE standard error
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Figure 1. 
Retention index (RI), molar refraction (Rm), and lipophilic subgraph descriptor values 

(LpSgr1–3) for a series of C8H19N isomers. Rm does not parallel RI variation over a series 

of isomers. The Rm:RI correlation explains only 6% of RI variation. The value of the largest 

lipophilic subgraph descriptor for each isomer (LpSgr1) explains 91% of the RI variation 

and thus captures the structure property relationship to a greater extent.
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Figure 2. 
Calculation of hydrophilic steric interference adjustment for the lipophilic subgraph in three 

phenylenediamine isomers. The KHEΔ_AtR values are adjusted to take into account the 

steric interference of dispersion interactions caused by hydrophilic atoms associated with 

solvent. The interference coefficients are given in the color coded key and are based on 

the count of alpha and beta hydrophilic atoms. The KHEΔ_AtR values do not vary nearly 

as much as RI and explain only 76% of RI variance. Following the steric interference 

adjustment, the HSI_KHEΔ_SubGrAtR values explain 96% of RI variance. This ortho, 

meta, and para series of isomers illustrate that when hydrophilic atoms are close together 

relative to the lipophilic subgraph, the lipophilic subgraph is more exposed resulting in 

a longer retention time. The o-phenylenediamine isomer has a longer retention not only 

because of greater lipophilic subgraph exposure but also because an internal hydrogen 

bonding configuration has been introduced and because the major microspecies is only +1.
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Figure 3. 
Calculating lipophilic subgraph descriptors for dibutylamine and di-sec-butylamine. Step 1 

assigns atom-level refraction (AtR) values based on the Gouse Crippen approximation. Step 

2 adjusts AtR by summing the Kier−Hall electronegativity difference against all other atoms 

in the molecule and multiplying AtR by a scaling factor to create KHEΔ_AtR(i) for each 

atom. The third step adjusts KHEΔ_AtR by multiplying an interference coefficient based 

on the count of alpha and beta hydrophilic atoms to create KHEΔ_HSI_AtR(i). Finally, 

KHEΔ_HSI_AtR(i) for each atom in the subgraph is summed and multiplied by a branch 

degree coefficient. The series of four steps results in descriptor values that reflect the 

difference in RI value where molar refraction does not. Intermediate subgraph sum values 

are given for each step to illustrate.
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Figure 4. 
ANN-v train and validate results for 1955 compound data set. Round data points on each 

end represent compounds with experimental values outside the QRI (outside the range of 

N-amide standards, RIU < 300, RIU > 1400). On the validate data plot, the gray boxes 

at each end indicate the prediction cutoff for ∼95% true positive predictions. Data points 

within each box are true positive predictions while those outside are false negatives. These 

cutoff values approximate the ±2SE filter range for compounds with predicted values outside 

the range of standards. The center gray box illustrates the y-range of the ±2 SE filter range 

which constitutes 14.7% of the overall data range of 1381 RIU.
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Figure 5. 
ANN-v independent validation set prediction results for 202 human endogenous compounds. 

The shaded gray area represents the region of true positive predictions based on the ±2SE 

filter window of 203 RIU from the ANN-v validation set statistics and the lower QRI 

cutoff. Points inside the gray area are the true positive predictions (black diamond and white 

circles). Points outside the gray area are the false negative predictions (gray diamonds). 

The worst predictions are for two porphyrins; coproporphyrin I AE = 305 RIU, and 

hematoporphyrin AE = 320 RIU. The MAE and SE are significantly worse than for the 

validation set data. Much of this difference is due to the two poorly predicted porphyrins. 

Sensitivity is close to the 95% that would be expected with the ±2SE filter range.
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Figure 6. 
Percent of total RI data range covered by ±2SE filter range for study models and the 

previous model.19 The absolute magnitude of each data range and filter range are given 

along with the percent coverage. The bar graph is rendered using percent coverage because 

the data range varies across the models shown. The top bar illustrates the 100% data range. 

Each bar underneath represents the percent covered by the filter range of the listed model. 

The best result is for the ANN-v model where the filter range covers 14.7% of the data 

range and is 47% smaller than the coverage of the previous model. The percent coverage is 

an estimate of the effectiveness of each model in filtering out false positives from the exact 

mass candidate list.
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Figure 7. 
ANN-v bitkey applicability domain analysis for the 202 compound human endogenous 

metabolite i-val set. The x-axis groups compounds by the number of bitkey matches in 

the model data set. Prediction absolute error is shown on the y-axis. Green dots in the 

shaded area are true positive predictions based on the ±2SE filter range. Red dots above the 

sensitivity cutoff are false negative predictions. The ±2SE sensitivity cutoff is marked on the 

right. Compounds represented by green boxes at the bottom are true positive predictions for 

compounds below the QRI lower boundary. The number of true positive predictions is given 

in the number to the right of the box. The red box at the top of the plot, column 0, represents 

a false negative prediction for a compound outside the QRI lower boundary. The ANN-v 

model showed an overall sensitivity of 94%. Sensitivity was 97% when there were three or 

more compounds in the model data with a bitkey matching the predicted compound and 90% 

where there were two or fewer compounds in the model data with a matching bitkey.
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Table 1.

IGroup E-State Descriptors

index atom types
a

functional groups
b

pyridine_N aNa pyridine, diazole

pyridine_NH −H on protonated pyridine

alph_N
c >N−, =N− amine, guanidine, imine

alph_NH −H on any alph_N

aniline_N >N−, =N− aniline, benzamidine

anilne_NH −H on any aniline nitrogen

pyrrole_N aNa− pyrrole, indole, diphenylamine

pyrrole_NH −H on any pyrrole nitrogen

prot_N >N+<, aaN+− quaternary amine, pyridinium

amide_O =O amide like groups

amide_N >N−, =N− amide like groups

amide_NH −H on amide-like nitrogen

thioamide_dS =S thioamide-like groups

thioamide_N >N−, =N− thioamide-like groups

acid_dO =O acid-like groups (COOH, PO3)

acid_sO −O acid-like groups (COOH, PO3)

phenol_O −OH phenol

alph_ssO
d −O− ether, ester

alph_dO
e =O ester, ketone, aldehyde

alph_sOH −O alcohol

arom_O aOa furan, oxazole

alph_S
f −S−, −SH, =S thioether, thiol, thioketone

arom_S aSa thiophene, thiazole

a
Valence state atom types included in the index.

b
Index is comprised of atoms from these functional groups.

c
Unassigned nitrogen atoms are added to this group by default.

d
Unassigned −O− oxygen atoms are added to this group by default.

e
Unassigned =O oxygen atoms are added to this group by default.

f
Unassigned sulfur atoms are added to this group by default.
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