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Abstract

Osteoarthritis (OA) is the most prevalent joint degenerative disease leading to irreversible 

structural and functional changes in the joint and is a major cause of disability and reduced life 

expectancy in ageing population. Despite the high prevalence of OA, there is no disease modifying 

drug available for the management of OA. Oxidative stress, a result of an imbalance between 

the production of reactive oxygen species (ROS) and their clearance by antioxidant defense 

system, is high in OA cartilage and is a major cause of chronic inflammation. Inflammatory 

mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 

(IL-6) are highly upregulated in OA joints and induce ROS production and expression of matrix 

degrading proteases leading to matrix degradation and joint dysfunction. ROS and inflammation 

are interdependent, each being the target of other and represent ideal target/s for the treatment of 

OA. Plant polyphenols possess potent antioxidant and anti-inflammatory properties and can inhibit 

ROS production and inflammation in chondrocytes, cartilage explants and in animal models 

of OA. The aim of this review is to discuss the chondroprotective effects of polyphenols and 

modulation of different molecular pathways associated with OA pathogenesis and limitations and 

future prospects of polyphenols in OA treatment.
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1.0 Introduction

Osteoarthritis (OA) is the most common joint disease and a major cause of disability and 

reduced life expectancy in the ageing population [1, 2]. OA is a multifactorial disease 

with etiology ranging from normal ageing process, sex, genetic background and obesity to 

physical factors which include trauma and injury to the joints and a strong interplay between 

all these factors. OA pathogenesis is modulated by genetic and environmental factors in 

association with the activation of molecular and cellular pathways that participate in the 

advancement of joint injury. Thus, OA is not a single disease, rather it is the final stage 

of joint failure, the initial stage of which could be triggered and propagated by injury 

to cartilage, ligaments or other joint tissues (post-traumatic OA) or other causal factors. 

The diseased joint is characterized by synovial inflammation, oxidative stress, apoptosis 

in chondrocytes, cartilage extracellular matrix degradation, subchondral bone sclerosis 

and osteophyte formation leading to stiffness of the whole joint, pain and joint failure 

(Figure 1). To date, there is no disease-modifying therapy available for the treatment of 

OA due to poor understanding of the disease pathogenesis. Further understanding of the 

molecular and cellular pathways and their association with joint tissues is necessary to 

develop new therapeutic approaches for the prevention and treatment of OA. The currently 

available therapies for the management of OA include non-steroidal anti-inflammatory drugs 

(NSAIDs) which only provide temporary relief and neither prevents cartilage degradation 

nor have any effect on the reversal of cartilage degeneration. In addition, these agents 

have adverse side effects and toxicity [3, 4]. These limitations demand the development/

invention of new therapeutic approaches which have little to no side effects and in addition 

to anti-inflammatory and analgesic effects also improve the cartilage structure and reverse 

the cartilage destruction to improve overall joint health. Recent studies have shown that joint 

inflammation and oxidative stress is directly associated with OA progression [5, 6]. The 
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purpose of this review is to highlight the contribution of oxidative stress and inflammation in 

OA pathogenesis and summarize the therapeutic potential of polyphenols for OA.

2. Oxidative Stressing in Osteoarthritis

Reactive oxygen species (ROS) are oxygen containing free radicals including hydrogen 

peroxide (H2O2), hydroxy radical (OH−), superoxide anion (O2−) and nitric oxide (NO) and 

have unpaired electron which makes them unstable and highly reactive. ROS is normally 

produced in cells at low levels and is essential for the maintenance of cellular homeostasis 

and function [7]. However, the imbalance in this physiological mechanism leads to increased 

expression of inflammatory cytokines and chemokines, which causes oxidation of cellular 

macromolecules such as proteins, lipids and DNA altering their function. The major sites 

of ROS production include mitochondria, peroxisomes and other membranous structures 

containing NADPH oxidases (NOXs), Xanthine Oxidase (XO) and Nitric Oxide Synthase 

(NOS) [8]. It is estimated that approximately 2-3% of O2 consumed in mitochondria during 

oxidative phosphorylation is converted to O2
− rather than to water [9]. NOX complex 

is consist of 3 cytosolic (p40phox, p47phox and p67phox) and 2 membrane associated 

(p22phox and gp91phox) protein components. Under pathological conditions, cytosolic units 

translocate to inner surface of plasma membrane and form fully active enzyme complex 

leading to increased production of ROS. NOX components are expressed in chondrocytes, 

the only resident cell type of the cartilage, and are the major producers of ROS [10, 11]. 

XO produces H2O2 during oxidation of hypoxanthine to xanthine. The evidence of high 

levels of ROS production in OA cartilage comes from either chondrocytes isolated from 

end stage diseased cartilage or from the presence of lipid peroxidation and nitrosylation 

products in synovial fluids and in the cartilage [12, 13]. There are three isoforms of NOS, 

(1) the constitutive isoform mainly expressed in neuronal cell, neuronal NOS (nNOS), (2) 

endothelial NOS (eNOS) and (3) inducible NOS (iNOS). The nNOS and eNOS require 

calcium and calmodulin and produce a very low amounts of NO. The iNOS is the 

inducible form of NOS induced by inflammatory cytokines and produces relatively high 

amounts of NO and require low concentration of calcium for its activity. Reactive nitrogen 

species (RNS) are molecules derived from O2
− and NO and cause damage to the cell 

by inducing nitrosative stress. iNOS expression is highly upregulated in chondrocytes in 

response to inflammatory cytokines stimulation such interleukin-1β (IL-1β), tumor necrosis 

factor α (TNFα), interferon-γ (IFN-γ) and IL-17 etc. [14–17]. Regardless of the source 

of production, NO may react with cellular proteins causing their nitrosylation which 

alter their normal function [18, 19]. NO has been reported to increase inflammation by 

activating nuclear factor kappa B (NFκB) pathway causing increased production of IL-1β 
and TNFα [20]. Under pathological conditions, excessive amounts of ROS function as 

secondary messengers and promote cartilage degradation by inducing the expression of 

matrix degrading proteases, reducing extracellular matrix (ECM) synthesis and inducing 

chondrocyte apoptosis.

Under conditions of increased ROS production, the cellular defense mechanism against 

oxidative stress gets activated and efficiently removes the ROS molecules from the cell. 

The cellular antioxidant defense system includes various enzymes, such as catalases, 

peroxiredoxins (Prxs), glutathione peroxidase (GPx), NADPH ubiquinone oxidoreductase 
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(NQO1) and superoxide dismutases (SODs) and nonenzymatic such as glutathione (GSH), 

ascorbic acid (vitamin C), α-tocopherol (vitamin E) etc. [9, 21]. SODs protect against 

oxidative stress by converting the O2
− to H2O2, which is further eliminated by Prx, 

GPx and catalases. There are three isoforms of SODs, cytosolic SOD (SOD1 or Cu/Zn 

SOD), mitochondrial SOD (SOD2 or MnSOD) and extracellular SOD (SOD3 or EC-SOD) 

which is secreted outside the cell [22]. Prxs protect against H2O2 mediated oxidation of 

proteins by accepting the nascent oxygen at its thiol active site [23]. Catalases provide 

protection against oxidative stress by converting H2O2 to water and oxygen molecules. GPx 

protects membrane lipid oxidation by H2O2 by oxidizing GSH [24]. The expression of 

antioxidant defense system proteins including SOD, catalase and Gpx are downregulated in 

OA joints showing imbalance in redox in OA cartilage [25, 26]. Various in vitro and in vivo 
studies have shown that upregulation of cellular antioxidant defense system in chondrocytes 

suppresses the expression of catabolic genes and improves joint health. Nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2), a master transcription factor regulator of the cellular 

antioxidant defense system, expression is dysregulated in OA and its deletion resulted in 

enhanced disease development in a mouse model of destabilization of medial meniscus 

(DMM) induced OA [27] which suggest a potential role of antioxidant defense system 

in the protection against OA. In a study, Prx3 (mitochondrial Prx) was reported to be 

hyperoxidized in aged and OA human cartilage indicating increased oxidative stress [28]. 

OA chondrocytes treated with Menadione showed high levels of oxidized Prx3 which was 

associated with decreased pro-survival signaling (Akt) and increased pro-death signaling 

(p38)[28]. Interestingly, mitochondria targeted expression of catalase (MCAT) suppressed 

the Menadione induced catabolic effects in chondrocytes and suppressed age-related 

progression of OA in a mouse model [28]. The scavenger of mitochondrial superoxide, 

SOD2 is downregulated in human and mouse OA cartilage [29]. Mitochondrial dysfunction 

or deregulation of SOD2 expression may lead to excessive ROS production which may 

cause irreversible damage to the chondrocytes and induce cell death by apoptosis or 

necrosis [9]. We have shown that autophagic clearance of dysfunctional mitochondria 

and suppression of ROS is essential for the survival of chondrocytes under pathological 

condition [30]. NO and its derivative have also been reported to increase the damage to 

cartilage during OA development [6, 20, 31] and targeting of NO was found to suppress 

the progression of OA in a mouse model of experimental OA [17]. NO is produced 

in chondrocytes in a two-step conversion process of L-Arginine to L-Citrulline which 

is catalyzed by iNOS whose expression is highly upregulated in OA cartilage and in 

chondrocytes under pathological conditions [32].

Oxidative stress is the result of excessive production of ROS, which is beyond the 

capacity of the cellular antioxidant defense system to effectively remove from the cells. 

Overproduction of ROS and induction of oxidative stress in chondrocytes are one of the 

major contributors to OA pathogenesis [6, 9, 33, 34]. Many studies have shown that the 

ROS levels are highly upregulated in the human OA cartilage and chondrocytes [30, 34–

36]. We have shown earlier in an in vitro study that stimulation of primary human OA 

chondrocytes and mouse chondrocytes with IL-1β increases the production of cellular 

and mitochondrial ROS which promotes chondrocyte apoptosis [30] mimicking the in 
vivo condition observed in OA cartilage [37]. Exposure of chondrocytes with H2O2, 
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Menadione, 3-morpholinosydnonimine (SIN1), tert-butyl hydroperoxide (TBHP) or other 

pro-oxidants have been reported to increase inflammation and apoptosis [28, 38] showing 

that oxidative stress induces inflammation in chondrocytes. Increase in oxidative stress 

positively correlates with collagen degradation [34] suggesting a role of ROS in cartilage 

matrix catabolism. In addition, in different studies, NO and H2O2 have been reported to 

suppress proteoglycan synthesis showing the role of ROS in suppressing cartilage matrix 

anabolism [6]. Taken together these studies show that oxidative stress has a detrimental 

effect on joint health and function and targeting these pathways might be of therapeutic 

importance for the management of OA.

3. Inflammation in Osteoarthritis

Inflammation is a necessary cellular response in the fight against infection, however, 

chronic, unregulated inflammation is associated with the pathophysiology of several human 

diseases including neurological diseases, obesity, diabetes, autoimmune disease, cancer and 

rheumatoid arthritis [39, 40]. Recent studies show increased levels of proinflammatory 

cytokines and chemokines in the synovial fluids of end stage OA patients [41–43]. Several 

studies with animal models of OA also show high levels of inflammation in experimental 

OA joints and support the idea of anti-inflammatory approach of treatment of OA.

Chondrocytes are normally quiescent cells, however, during unfavorable conditions, get 

activated and produce a plethora of proinflammatory cytokines and chemokines that increase 

the expression of collagenases and aggrecanases leading to cartilage ECM degradation [44, 

45]. Chondrocytes also express receptors for several of proinflammatory cytokines and 

chemokines. Thus, chondrocytes are the source as well as the target of proinflammatory 

cytokines in OA. TNFα, IL-1β and IL-6 represent the three highly expressed cytokines 

in OA joints and are actively produced by chondrocytes, synoviocytes, macrophages and 

osteoblast and play a critical role in the degeneration of articular cartilage matrix which 

makes them primary therapeutic target. Other than TNFα, IF-1β and IF-6, several other 

cytokines (such as IF-17, IF-18, MCP1, CXCF5, RANTES etc., see table 1), have also 

been reported to be associated with OA pathogenesis and may be targeted for therapeutic 

strategies [46–49] but the data is limited at this stage. Increase in the levels of the cytokines 

in joints play a central role in the pathogenesis of OA by modulating oxidative stress, 

cartilage ECM turnover and chondrocytes apoptosis [50].

Stimulation of primary chondrocytes and cartilage explants with IF-1β and TNFα mimic the 

in vivo pathological conditions by upregulating the expression of catabolic genes including 

IF-6, COX-2, iNOS, collagenases [matrix metalloprotease 13 (MMP-13)] and aggrecanases 

[a disintegrin and metalloproteinase with thrombospondin motif (ADAMTSs)] and by down 

regulating the expression of anabolic genes such as aggrecan and type II collagen [51–55]. 

Animal studies with ADAMTS4 [56] and ADAMTS5 [57] knockout mouse models show 

that ADAMTS5 is the major aggrecanase associated with OA pathogenesis and catalytically 

is multiple fold more active than ADAMTS4 [58]. IF-1β mediated activation of cells 

is through binding and activation of specific cell surface receptor, IF-1 receptor type I 

(IF-1RI). IF-1RI expression is highly upregulated in OA chondrocytes compared to normal 

chondrocytes [59]. Many cell types including chondrocytes express natural competitive 
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inhibitor of IF-1β, IF-1 receptor antagonist (IF-IRa) which binds to IF-1RI but does not 

transduce a signal and has anti-inflammatory properties [60]. TNFα functions as ligand for 

two specific receptors [TNF receptor I (TNFRI) and TNFRII] which are expressed on cell 

membrane on various cell types including chondrocytes. Compared to normal chondrocytes, 

OA chondrocytes express high levels of TNFRI which is the dominant receptor for TNFα 
[61]. Intraarticular injection of either of TNFα or IL-1β into rabbit knee joints triggered the 

progression of OA which was augmented upon combined injection [62]. In another study, 

deletion of IL-1β was reported to reduce the severity of DMM induced OA in a mouse 

model [63]. However, deletion of IL-1β or IL-1β converting enzyme the usual suspects in 

OA pathogenesis, accelerated the development of experimental OA in mouse model showing 

that complete deletion of IL-1β or IL-1β converting enzyme augments the pathogenesis 

of OA [64, 65]. These results show that the proinflammatory cytokines, which appear to 

play pathogenic role in the development of OA, are also important for the maintenance 

of chondrocyte homeostasis and joint health and a fine balance of these inflammatory 

mediators is required for normal functioning of the joint and knowledge in this area is far 

from complete.

IL-6 signaling involves many components including a multimeric receptor complex 

consist of membrane bound IL-6 receptor (IL-6R), soluble IL-6 receptor (sIL-6R) and 

gpl30. Normal chondrocytes express very low levels of IL-6, whose expression is highly 

upregulated upon treatment with proinflammatory cytokines such as TNFα or IL-1β [66–

68]. Treatment of cartilage explants with IL-6 upregulated the expression of MMP-13 [69]. 

Expression of levels of IL-6 and sIL-6R is increased in the synovial fluid of OA patients 

[70]. We found increased expression of IL-6 in chondrocytes of the damaged area of 

human OA cartilage [66]. Suppression of IL-6 expression in Zcchc6 knockout mice reduced 

the severity of experimental OA in a mouse model of post-traumatic OA[67]. Antibody 

mediated neutralization of systemic levels of IL-6 or small molecule inhibitor of STAT3 

signaling (downstream signaling pathway of IL-6 mediated receptor activation) was reported 

to ameliorate cartilage degradation in a DMM induced OA mouse model [71]. Intraarticular 

injection of IL-6 protein promoted cartilage destruction in a mouse model [72]. However, 

in a study using IL-6 knockout mouse, the severity of age-related OA in male mice was 

significantly increased, but not in female mice [73] suggesting that low levels of IL-6 may 

be required to maintain chondrocyte homeostasis and play a protective role at some stage, at 

least in age-related OA.

4. Major signaling pathways in OA pathogenesis

The expression of proinflammatory cytokines, cyclooxygenase, iNOS, MMPs and other 

proteinases in chondrocyte is tightly regulated by inflammatory pathways, including the 

three (ERK, JNK and p38) mitogen activated protein kinases (MAPK), NFκB, API, 

JAK/STAT and Wnt pathway. The pathological effects of ROS, IL-1β, TNFα and IF-6 

in chondrocytes and in cartilage are due to the activation of various proinflammatory 

signaling pathways (Figure 2). Stimulation of chondrocytes with IF-1β initiates a cascade 

of events leading to the activation of p38-, JNK- and ERK-MAPK, PKC, increase in the 

intracellular Ca+2 and nuclear translocation of NFκB, API, STATs and ATFs [45, 51, 

54, 74–76]. Activation of NFκB signaling pathway mediates the upregulation of several 
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inflammatory cytokine and chemokine genes, iNOS and COX-2 and increased expression 

of cartilage ECM degrading proteases such as MMP-1, MMP-9, MMP-13, ADAMTS4, 

and ADAMTS5 [77]. Recent studies have established a significant role of Wnt/β-catenin 

signaling in OA pathogenesis [78]. The expression of Wnt signaling mediators such as Wnt 

ligands and β-Catenin is upregulated in OA cartilage [79]. Activation of Wnt/β-Catenin 

signaling in chondrocytes augmented IF-1β induced expression of MMPs and ADAMTSs 

[80]. Intraarticular injection of a small molecule inhibitor of Wnt/β-Catenin signaling 

pathway reduced the severity of experimental OA in a mouse model [81]. ROS molecules 

function as intermediate signaling molecules in multiple signaling pathways. Stimulation 

of chondrocytes with IF-1β increases the production of ROS which induces mitochondrial 

dysfunction and may augment the IF-1β induced production of ROS [30, 45]. Increased 

ROS levels activate redox sensitive transcription factors such as AP1 and contribute to 

the proinflammatory phenotypic alterations in chondrocytes including the expression of 

IF-6, COX-2, iNOS and their products PGE2 and NO. In addition, increased prooxidant 

load can also suppress proteoglycan synthesis by inhibiting the PI3/Akt signaling and 

activating MEK/ERK signaling pathway [82]. TNFα increased the expression of cFos/AP1 

via NADPH oxidase mediated production of ROS in bovine chondrocytes [83]. IF-1β 
induced expression of cFos and MMP-1 in chondrocytes depends on ROS production [84]. 

Treatment of chondrocytes with prooxidant TBHP activated the MEK/ERK pathway [82]. 

Activation of JNK in chondrocytes by IF-1β and TNFα is dependent on the production 

of ROS indicating a potential role of ROS in OA pathogenesis [85]. In a recent study we 

have shown that IL-1β induced the activation of cFos/AP1 and upregulated the expression of 

IL-6 and MMP-13 [68]. These findings suggest that ROS mediated inflammation is induced 

via activation cFos/AP1 pathway. In addition, direct stimulation of chondrocytes with H2O2 

or NO activated JNK pathway indicating that JNK is the major target of ROS mediated 

inflammatory response [85]. Deletion of JNK prevented the increase in the expression of 

IL-1 and TNF, IL-6, IL-18 and ADAMTS4 in a DMM mouse model of OA [86].

5.0 Targeting oxidative stress and inflammation with plant polyphenols

Polyphenols are secondary metabolites produced by almost every part of plants, including 

fruits, flowers, leaves and bark. Many common fruits (such as grapes, cherries, apples, 

pomegranate, oranges), herbs and spices are very rich source of polyphenols. These 

compounds have potent anti-inflammatory and antioxidant properties. The antioxidants 

property of polyphenols depend on a polyphenol’s ability to scavenge ROS molecules, 

inhibit the expression of prooxidant genes and increase the expression of antioxidant 

genes such as SODs, catalases [87–89]. The anti-inflammatory activity of polyphenols 

depends on their ability to suppress pro-inflammatory signaling pathways such as MAPK, 

API and NFκB. Several studies have demonstrated a potential OA suppressing activity of 

polyphenolic compounds which depend mainly on their antioxidant and anti-inflammatory 

properties [87, 89]. The anti-inflammatory and antioxidant effects of many polyphenols 

including pomegranate extract, Butein, green tea polyphenol, EGCG, Resveratrol, Wogonin, 

Quercetin, Harpagoside, Curcumin, Morin and several others have been tested in in vitro and 

in vivo models of OA.
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We have shown earlier that Butein, a chalcone, rich extract of Butea monosperma flowers 

and purified Butein showed potent antioxidant property and suppressed the expression 

of IL-6 and metalloproteases by enhancing autophagy in chondrocytes via modulation 

of AMPK/mTOR signaling pathway [66, 90]. Butein activates AMPKα by inducing 

the phosphorylation of AMPKαThr-172and suppresses mTOR activity by reducing the 

phosphorylation of mTORSer-2448 [66, 90]. We have also showed that an extract of 

Scutellaria baicalensis and purified Wogonin suppresses the IL-1β induced expression of 

IL-6, COX-2, iNOS and metalloproteases and reduces the production of PGE2 and NO 

[45, 91]. Wogonin increases the expression and activity of Nrf2, the master transcription 

regulator of antioxidant defense enzymes and increased the expression of HOI providing 

resistance against IL-1β induced oxidative stress in primary human chondrocytes [45, 91]. 

Harpagoside, an iridoid, suppressed IL-1β induced expression of MMP-13 and a plethora 

of proinflammatory cytokines and chemokines including IL-6 through the inhibition of 

cFos/AP-1 signaling pathway and independent of c-Jun and NFκB pathway in primary 

human OA chondrocytes [68]. Harpagoside when given in combination with glucosamine 

hydrochloride, chondroitin sulfate, methylsulfonyl methane and bromelain extract showed 

protective effect in formalin induced rat OA model by suppressing the expression of IL-1β 
and TNF-α [92].

Pomegranate (Punicagranatum) fruit extract (PFE) which is rich in gallic acid, ellagic 

acid and punicalagin polyphenols suppressed IL-1β induced expression of MMP-1, −3 

and −13 and COX-2 expression in primary human chondrocytes through the inhibition 

of p38-MAPK and JNK-MAPK and their downstream transcription factors, cJun and 

ATF2 [93, 94]. PFE also suppressed NFκB activation by preventing the phosphorylation 

of IκBα [93, 94]. PFE was found to inhibit the activation of RUNX-2 transcription 

factor via the inhibition of MKK3/p38α-MAPK signaling pathway [75]. Delphinidin, an 

active constituent of pomegranate fruit, suppressed IL-1β induced expression of COX-2 

and PGE2 production through the inhibition of NFκB-inducing kinase (NIK) and IL-1 

receptor-associated kinase-1 (IRAKI) mediated activation of NFκB pathway in human OA 

chondrocytes [53].

Green tea polyphenol, Epigallocatechin 3-gallate (EGCG), a catechin, shows potent anti­

inflammatory properties which depends on its ability to suppress the IL-1β induced 

expression of inflammatory mediators in primary human chondrocytes and cartilage explants 

[16, 54]. EGCG suppressed the expression of several proinflammatory cytokines and 

chemokines including IL-1β, IL-6, IL-7, TNFα, LIF, MCSF, Oncostatin M, MCP-1, MCP-2 

and IL-8 in primary human chondrocytes through the inhibition of NFκB and MAPK 

signaling pathway [16, 54]. EGCG suppressed the advanced glycation end products induced 

expression of TNFα and MMP-13 in primary human chondrocytes via the inhibition of 

ρ38-, JNK- and ERK-MAPK [74, 95]. Intraarticular injection of EGCG in a collagenase­

induced arthritis model in rats suppressed inflammation [96]. Intraperitoneal injection of 

EGCG in a DMM induced OA mouse model was shown to exert chondroprotective effects 

by reducing the expression levels of IL-1β, TNFα and metalloproteases [97]. In another in 
vitro study, EGCG was reported to suppress the expression of inflammatory mediators in 

human fibroblast-like synoviocytes [98].
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Quercetin (3,3’,4’,5,7-pentahydroxy-flavone), a flavonoid found in many common fruits 

and vegetables such as onion, has strong antioxidant activity and reduced the levels of 

ROS by increasing the expression of glutathione and glutathione peroxidase in a rat 

model of OA [99]. An extract of Ginkgo biloba leaves enriched in Quercetin has anti­

inflammatory activity and suppressed IL-1β and LPS induced expression of iNOS, COX-2 

and NO and PGE2 production in human OA chondrocytes and in a rat model of OA 

[100]. Intraperitoneal injection of Quercetin suppressed the oxidative stress and reduced 

the severity of OA in a rat model through the activation of SIRT1/AMPK pathway [101]. 

Intraarticular injection of Quercetin mixed with thermosensitive hydrogel suppressed the 

cartilage degradation and slowed the progression of OA in a rat model [102]. In another 

study, intraarticular injection of Quercetin was shown to suppress inflammatory response in 

a rat model of OA by inhibiting Akt/NFκB signaling pathway [103].

Morin, a flavanol, found in members of Moraceae family, increased the expression of 

HO1 and suppressed the IL-1β induced oxidative stress in chondrocytes via activation of 

the transcription factor Nrf2 [104]. Morin also suppressed the IL-1β induced expression 

of MMP-13, iNOS and COX-2 and their product NO and PGE2 in chondrocytes through 

the inhibition of NFκB signaling pathway [104, 105]. In another study, Morin suppressed 

the IL-1β induced expression of MMP-3 and MMP-13 and upregulated the expression of 

TIMP-1 through the suppression of JNK-, p38- and ERK-MAPK signaling pathway [106]. 

Oral administration of Morin slowed the progression of ACLT induced OA in a rat model 

[106].

Curcumin, a phenylpropanoids and the major constituent of turmeric, is a common spice and 

has been widely shown to have potent anti-inflammatory properties. The chondroprotective 

effect of curcumin has been shown in several in vitro and in vivo studies using chondrocytes, 

cartilage explants and various animal models [107–109]. Oral administration of Curcumin 

and tetrahydrocurcumin suppressed the expression of IL-1β, IL-6 and metalloproteases and 

alleviated the pain and cartilage degeneration in a rat [107] and mouse [108] model of 

experimental OA. Another study showed that chemically modified curcumin suppressed 

inflammation and slowed the progression of OA in an ACLT induced OA model in 

rabbit [110]. Ferulic acid, a derivative of curcumin and a component of the cell walls 

of various plants including oats, rice and the seeds of orange and apples, possess strong 

anti-inflammatory and antioxidant properties and was reported to suppress H202 induced 

expression of TNFα and IL-1β [111].

Resveratrol (trans-3,4’,5-trihydroxystilbene), a phytoalexin, found in the skin of red grapes 

has been shown to have potent antioxidant and anti-inflammatory activity [112]. Intra­

articular injection of Resveratrol in ACLT induced OA in rabbit suppressed the expression 

of iNOS and production of NO [113]. Resveratrol also suppressed the IL-1β, TNF-α and 

IL-6 expression levels in rats with experimental OA [114]. In another study, Resveratrol 

reduced AGEs induced expression of iNOS, COX-2 and MMP-13 in chondrocytes via 

the inhibition of NFκB and API signaling pathways [115]. Resveratrol was found to 

activate SIRT1 in chondrocytes and blocked NFκB activation and suppressed IL-1β 
induced expression of iNOS in human chondrocytes [116]. Resveratrol activated SIRT1 and 

suppressed IL-1β induced expression of HIF-2α in human chondrocytes and intraarticular 
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injection of resveratrol slowed the progression of experimental OA in a mouse model of OA 

[117]. Resveratrol also protected rabbit chondrocytes against sodium nitroprusside induced 

apoptosis by scavenging the SNP induced ROS and NO [118]. Resveratrol induced the 

expression ofHO-1 via the activation ofNrf2 and suppressed oxidative stress in rat with 

OA [114]. Oral administration of Resveratrol suppressed inflammation via the inhibition of 

TLR4 signaling and ameliorated high fat diet induced OA [119].

Olive oil is a rich source of polyphenols and is extensively used in Mediterranean diet [120]. 

Several in vitro and in vivo studies using olive oil have been reported to improve joint 

health and function [121, 122]. Hydroxytyrosol, a polyphenol found in olive oil, activates 

autophagy and prevents chondrocyte’s death [123]. Oral uptake of extra virgin olive oil 

rich diet has anti-inflammatory effects and suppressed IL-6 expression and upregulated the 

expression of lubricin in a rat model of ACLT induced OA [124, 125]. These and other 

studies provide support to the use of Olive oil containing diets as a possible approach to 

maintain healthy joint function.

In addition to the above mentioned plant-derived compounds, several other polyphenols 

were shown to suppress oxidative stress and inflammation in chondrocytes and alleviated 

OA pathogenesis. We showed recently that Imperatorin, a secondary metabolite found 

in the plants of Apiaceae and Rutaceae family members suppressed the expression of 

iNOS and NO production by suppressing ERKl/2-AP1(cFos/cJun) pathway [32]. We also 

showed that Imperatorin can bind to iNOS and suppress its enzymatic activity. In an in 
vitro study, Genistein, an isoflavone, suppressed the LPS and IL-1β induced expression 

of COX-2, iNOS and NO production in chondrocytes [126]. An aqueous extract of Java 

tea (Orthsiphonstaminens) suppressed inflammation in cartilage explant and reduced the 

severity of OA in monosodium iodoacetate (MIA) induced OA in rat [127]. Olive and 

grape seed extracts enriched in hydroxytyrosol and procyanidins (HT/PCy) suppressed the 

expression of iNOS, COX-2 and metalloproteases in chondrocytes stimulated with IL-1β 
and showed chondroprotective effects in post-traumatic models of OA in mice and rabbits 

[128]. In an in vivo study using guinea pig model of spontaneous OA, Oleuropein enriched 

diet significantly suppressed the synovial inflammation and serum levels of PGE2 [129]. 

Chlorogenic acid treatment inhibited IL-1β induced expression of iNOS and COX-2 and 

suppressed the production of PGE2 and NO in human chondrocytes [130]. Chlorogenic 

acid enriched butanol extract of WIN-34B inhibited the expression and production of 

inflammatory mediators TNFα, IL-1β, PGE2 and NO in human cartilage explant and 

chondrocytes through the inhibition of IL-1β induced JNK-, p38-MAPK signaling pathway 

[131]. Chlorogenic acid enriched aqueous extract of Anthriscnssylvestris leaves were shown 

to suppress the expression of inflammatory mediators, such as, iNOS and COX-2 and 

production of NO and PGE2 in rat primary chondrocytes via the inhibition of MAPK and 

NFKB pathway [132]. Oral uptake of Pycnogenol was reported to reduce joint pain and 

other symptoms of OA [133, 134]. Stachydrine prevented IL-1β induced expression of IL-6, 

COX-2 and iNOS in chondrocytes through the inhibition of NFκB pathway [135]. We 

have shown earlier that an extract from cat’s claw (Uncaria guianensis) suppressed IL-1β 
induced production of NO through the upregulation of insulin like growth factor-1 [136]. 

Apigenin was reported to block the IL-1β induced NFκB and Smad2/3 pathway in SW1353 

chondrosarcoma cells [137]. Ginger extract suppressed IL-1β induced expression of TNFa, 
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IL-6 and IL-8 through the inhibition of p38-MAPK, JNK-MAPK pathway using cartilage 

explants and primary human chondrocytes [138].

6.0 Conclusions and Future Studies

Oxidative stress and inflammation in chondrocytes and other joint tissues are associated with 

the progression and severity of the disease making them ideal targets for its management. 

Recent studies have provided new insights and have increased our understanding of 

the molecular pathways involved in the pathogenesis of OA. The studies discussed 

in this review show that polyphenolic compounds, such as EGCG, Butein, Wogonin, 

Resveratrol, Curcumin have strong anti-inflammatory and antioxidant properties and exert 

chondroprotective effects in chondrocytes and cartilage explants cultures and animal 

models of OA. These polyphenols have been shown to scavenge ROS and activate the 

antioxidant defense system in chondrocytes and suppressed inflammation by inhibiting 

pro-inflammatory signaling pathways. Future studies focused on the delivery of therapeutic 

amounts of polyphenolic compounds to the affected joints, which is a major limitation 

associated with OA treatment, are required to increase the treatment efficacy and improve 

joint health and function. In summary, the recent findings have shown that plant polyphenols 

have the potential to be developed as an effective therapy for the management of OA. 

Randomized clinical trial studies with polyphenols and with large number of volunteers are 

required to fully establish the chondroprotective role of polyphenols.
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IL-6 Interleukin 6

IL-6R IL-6 receptor

MAPK mitogen activated protein kinases

MMP Matrix Metalloproteinase

NFκB Nuclear Factor Kappa B

eNOS endothelial Nitric Oxide Synthase

iNOS inducible Nitric Oxide Synthase

nNOS neuronal Nitric Oxide Synthase

NO Nitric Oxide

NOS Nitric Oxide Synthase

NOXs NADPH oxidases

NQO1 NADPH ubiquinone oxidoreductase

Nrf2 Nuclear factor (erythroid-derived 2)-like 2

NSAIDs Non-Steroidal Anti-inflammatory Drugs

OA Osteoarthritis

PGE2 Prostaglandin E2

Prxs Peroxiredoxins

RNS Reactive Nitrogen Species

ROS Reactive Oxygen Species

SODs superoxide dismutases

TNF-α Tumor Necrosis Factor-α

XO Xanthine Oxidase
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Highlights

• Here, we discussed the role of oxidative stress and inflammation in OA 

pathogenesis.

• Here, we discussed the antioxidant and anti-inflammatory activities of 

polyphenols.

• Polyphenolic compounds suppress oxidative stress and inflammation in OA 

joints.

• Polyphenols inhibit the activation of key signaling pathways in OA 

pathogenesis.

• We discuss here the possibility of development of polyphenol(s) for OA 

management.
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Figure 1: 
Schematic representation of normal and OA knee joint. The healthy joint (on left) has 

smooth cartilage surface with normal chondrocyte distribution and OA joint shows cartilage 

degeneration and subchondral bone changes.
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Figure 2: 
Schematic representation of the major signaling pathways activated by proinflammatory 

cytokines (IL-1β, TNFα and IL-6) in chondrocytes and their downstream effects. 

Stimulation of chondrocytes with IL-1β, TNFα and IL-6 leads to the activation of 

JAK/STAT, MAPK, AP1, NFκB and Wnt signaling pathways These cytokines also 

modulate mitochondrial function and ROS production. The activation of these pathways 

lead to increased expression of inflammatory molecules, matrix degrading proteases in 

chondrocytes.
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Table 1:

Cytokines and chemokines and their role in the pathogenesis of OA

Cytokine Role in OA Reference

IL-1β Increased in OA joint synovial fluid, cartilage, synovial membrane and subchondral bone.
It increases the production of iNOS, COX-2, IL-6, TNF-α IL-8, MCP1, RANTES and the levels of PGE2 and 
NO in chondrocytes and in cartilage explants.
Increases the levels of matrix degrading proteases MMP-1, MMP-3, MMP-9, MMP-13, ADAMTS-4 and 
ADAMTS-5 and matrix degradation.
Suppresses the synthesis of type II collagen and aggrecan and proteoglycan.

[52, 74, 86]

TNF-α Increased in OA joint synovial fluid, cartilage, synovial membrane and subchondral bone.
It increases the production of iNOS, COX-2, IL-6, IL-8, MCP1, RANTES and the levels of PGE2 and NO in 
chondrocytes and in cartilage explants.
Increases the levels of matrix degrading proteases MMP-1, MMP-3, MMP-9, MMP-13, ADAMTS-4 and 
ADAMTS-5 and matrix degradation.
Suppresses the synthesis of type II collagen and aggrecan.

[61]

IL-6 Increased in OA joint synovial fluid, cartilage, synovial membrane and serum of OA patients.
Upregulates MMP-13 expression in chondrocytes. Downregulates the expression of type II collagen.

[66, 70]

IL-15 Increased in the synovial fluids of OA joints.
Is associated with joint pain.

[48]

IL-17 Increased in the synovial fluids of OA joints.
Induces IL-1β, TNF-α and IL-6 expression and suppresses proteoglycan synthesis.

[14, 46]

IL-18 Increased in the OA joints cartilage and synovial fluid.
Increases the production of MMP-1, MMP-3, MMP-13.

[47]

LIF Increased in the synovial fluids of OA joint.
Enhances cartilage extracellular matrix degradation.
Increases matrix degrading proteases expression and nitric oxide levels.

[49, 139]

MCP1 Increased in OA joint tissue and in chondrocytes under pathological conditions [54]

RANTES Increased in OA joint tissue and in chondrocytes under pathological conditions [54]

IL-8 Increased in OA joint tissue and in chondrocytes under pathological conditions [54, 70]

IL-4 and 
IL-10

Anti-inflammatory.
Increase the expression of IL-IRa and TIMP and decrease IL-1β, TNF-α expression.

[46, 54]
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