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SUMMARY Parasitic neglected tropical diseases (NTDs) affect over one billion peo-
ple worldwide, with individuals from communities in low-socioeconomic areas being
most at risk and suffering the most. Disease management programs are hindered by
the lack of infrastructure and resources for clinical sample collection, storage, and
transport and a dearth of sensitive diagnostic methods that are inexpensive as well
as accurate. Many diagnostic tests and tools have been developed for the parasitic
NTDs, but the collection and storage of clinical samples for molecular and immuno-
logical diagnosis can be expensive due to storage, transport, and reagent costs, mak-
ing these procedures untenable in most areas of endemicity. The application of
membrane technology, which involves the use of specific membranes for either sam-
ple collection and storage or diagnostic procedures, can streamline this process,
allowing for long-term sample storage at room temperature. Membrane technology
can be used in serology-based diagnostic assays and for nucleic acid purification
prior to molecular analysis. This facilitates the development of relatively simple and
rapid procedures, although some of these methods, mainly due to costs, lack acces-
sibility in low-socioeconomic regions of endemicity. New immunological procedures
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and nucleic acid storage, purification, and diagnostics protocols that are simple,
rapid, accurate, and cost-effective must be developed as countries progress control
efforts toward the elimination of the parasitic NTDs.

KEYWORDS neglected tropical diseases, parasites, point-of-care diagnostics, rapid
diagnostics, helminths, protozoa

INTRODUCTION

The disease burden due to parasitic infections is considerable, with over 1 billion
people affected by neglected tropical diseases (NTDs) due to these pathogens (1,

2). Parasites causing NTDs include helminth, protozoan, and arthropod infections and
predominantly afflict people in low-socioeconomic areas of the tropics and subtropics,
although several also occur in more temperate regions (3, 4) (Table 1). These patho-
gens cost local economies billions of dollars each year due to medical treatment costs
and loss of production in infected animals; nonetheless, they generally receive little
public attention (1). Assessment of the years of life lost (YLL) and the years of life lived
with disability (YLD) rather than mortality caused by various diseases led to the devel-
opment of the term disability-adjusted life years (DALYs), allowing for a new way to
illustrate the health impacts of NTDs (5, 6). Globally, NTDs caused by parasites result in
the loss of over 25 million DALYs (5, 6). Management of these diseases involves treat-
ment through chemotherapy, vector control (when applicable), improving hygiene
and sanitation in areas of endemicity, education programs, and accurate diagnosis for
surveillance (1, 7–9).

While some success has been achieved in NTD control, for example the near elimi-
nation of Guinea worm (Dracunculus medinensis) infection in Asia and some African
countries (10), and schistosomiasis (due to Schistosoma japonicum) in China (11), dis-
ease management programs exhibit some limitations. The majority of these infections
occur in rural, low-socioeconomic communities with poor sanitation and limited road
access (12–16), and these areas generally lack the infrastructure necessary for accurate
parasite diagnosis such as reliable electricity, making diagnostic tests that require com-
plicated equipment and an adequate power supply nonviable. This lack of resources
also makes collection, storage, and transport of clinical samples (blood, serum, feces,
urine, skin scrapings, and saliva) to in-country or external laboratories capable of
undertaking the relevant diagnostic procedures difficult and costly (Table 2).
Furthermore, the absence of reliable electricity makes refrigeration of samples before
and during transport difficult if not impossible (17). Another factor affecting parasite
control is climate change, which has significant effects on parasite distribution and
control, causing changes in the environment and animals available for zoonosis (18).
Increasing temperatures have caused an expansion of the tropical and subtropical
zones, giving ideal soil conditions for soil-transmitted helminth (STH) survival, allowing
increased vector distribution, and encouraging expansion of parasitic disease distribu-
tion to areas that previously had not been regions of endemicity (18–21). Globalization
has caused in an increased risk of foodborne helminths due to immigration and global
exportation and importation of food and live animals. Furthermore, urbanization has
caused increased contact between wild animals and humans, allowing wildlife-main-
tained parasites to infect humans and domestic animals (22–24).

Accurate diagnosis of NTDs is essential for the treatment and epidemiological moni-
toring of disease burdens. Mass drug administration (MDA) is the gold standard for
large-scale treatment of parasitic diseases in areas of endemicity. However, due to a
lack of education in many regions of endemicity, patients may not understand why
they must take the drug, increasing mistrust and decreasing compliance and leading
to low population coverage and little impact on overall prevalence (25). Furthermore,
up to 80% of patients will experience transient side effects, causing these and others in
the community to refuse taking part in future MDA due to apprehension about taking
the drug (25, 26). Furthermore, since chemotherapy does not prevent reinfection,
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individuals can become reinfected almost immediately after treatment (26–28).
Education programs, such as the Magic Glasses intervention for STHs, successfully
tested in China, aim to change behavior and prevent infection by increasing knowl-
edge about locally acquired parasite infections and correct hygiene practices, thereby
decreasing reinfection rates after MDA (8, 29, 30). As such, community engagement is
an essential component of improved MDA compliance (26, 31, 32).

Diagnostic tests for NTDs caused by parasites include laboratory-based methods,
such as molecular and immunology-based assays. Samples are either sent to a central
laboratory for analysis, or point-of-care (POC) testing is undertaken, where the assays
are performed close to or near the patient. POC testing can result in decreased costs of
diagnosis, improved efficiency, and optimized treatment regimens useful in resource-
poor endemic countries with deficient infrastructure (33).

In 2015, the World Health Organization (WHO), The Foundation for Innovative
Diagnostics (FIND), and the Centers for Disease Control and Prevention (CDC) defined
criteria to be used as a benchmark for the use of POC diagnostic tests known as
ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-
free, and Deliverable to end-users) applicable in resource-poor endemic regions (34).
The acceptability of a suitable diagnostic test must conform to this six-step guide
(Table 3). This method of selection has been successfully employed in the implementa-
tion of a number of diagnostic tests for malaria (35), but few accurate and accessible
POC diagnostics and monitoring tests for the NTDs have been developed (36, 37).
Recently, the ASSURED criteria have been reassessed and improved to give
REASSURED (Real-time connectivity, Ease of collection, Affordable, Sensitive, Specific,
User-friendly, Rapid and robust, Equipment free/simple and environmentally friendly,
and Deliverable to end-user), aiming to improve disease control, strengthen health sys-
tems, and improve patient outcomes (38, 39) (Table 4).

The WHO has recently put out a call for expert advice on diagnostics targeting
schistosomiasis and STH, highlighting issues with currently available diagnostics and
looking toward the development of POC diagnostics, particularly for schistosomiasis.

TABLE 1 Parasitic NTDs and worldwide case numbersa

Condition Organism(s) No. of cases worldwide
Protozoa
Human African trypanosomiasis (HAT) Trypanosoma brucei ,1,000
Chagas disease Trypanosoma cruzi 6–7 M
Cutaneous leishmaniasis Leishmania tropica, Leishmania mexicana,

Leishmania major 30,000
Mucocutaneous leishmaniasis Leishmania braziliensis
Visceral leishmaniasis Leishmania donovani
Filariasis Wuchereria bancrofti, Brugia malayi, Brugia timori,

Loa loa
120 M

Helminths
Soil-transmitted helminthiasis (STH) Ancylostoma duodenale, Necator americanus,

Ascaris lumbrcoides, Trichuris trichiura,
Strongyloides stercoralis

1.5 B

Onchocerciasis Onchocerca volvulus 20.9 M
Drancunculiasis Dracunculis medinensis 54
Echinococcosis Echinococcus granulosus, Echinococcus

multilocularis
1 M

Taeniasis/cysticercosis Taenia solium 2.79 M
Fascioliasis Fasciola hepatica, F. gigantica 10,635
Schistosomiasis Schistosoma japonicum, Schistosoma mansoni,

Schistosoma aematobium
240 M

Arthropods
Scabies Sarcoptes scabiei 200 M

aWorldwide cases based on information from the WHO (332–334) and from the Global Burden of Disease Study 2016 (335) and other sources (336, 337). M, million; B, billion.
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The focus is on easy interpretation by field workers and low cost (less expensive than
two to three rounds of MDA), and any necessary equipment should be highly trans-
portable and battery powered if electricity is required at all; the whole procedure
should take less than a day between sample collection and interpretation of result and
treatment decision (40).

In this review, we provide an overview of the challenges posed by currently avail-
able collection, storage and diagnostic procedures for parasitic NTDs and emphasize
how revolutionary membrane technologies can be used to streamline these processes.
Specifically, we focus on (i) a description of the commonly used procedures used for
clinical sample collection, storage, and an appraisal of the diagnostic methods avail-
able; (ii) the application of membrane technology for clinical sample collection, stor-
age, and transport; and (iii) the uses of membrane technology for clinical sample prep-
aration, including nucleic acid purification and antigen/antibody detection.

OVERVIEW OF CURRENT DIAGNOSTIC METHODS
Microscopy-Based Procedures

Accurate diagnosis of a parasitic infection involves the use of laboratory techniques,
clinical history, geographic location, and travel history (28, 41). The current gold stand-
ard of diagnosis involves microscopic identification of parasitic stages in clinical sam-
ples, usually blood, urine, or feces (28, 41, 42). Low-cost and accessible microscopy-
based procedures in areas of endemicity include the Kato-Katz thick-smear method
(KK), the formalin-ether concentration technique (FECT), and urine filtration (for
Schistosoma haematobium) (26–28, 43–47) (Table 2). However, these methods can be

TABLE 3WHO guidelines for evaluation, validation, and implementation of POC diagnostic
testsa

Step Description
1 Define the purpose of the test (why, what, where, and who?)
2 Review the market
3 Review the regulatory approval by international and national bodies
4 Determine optimal diagnostic accuracy of test
5 Determine practical diagnostic accuracy of test
6 Monitor routine use of test
aSource: World Health Organization (34).

TABLE 4 REASSURED criteria and definitions

Acronym Criterion Definition
R Real-time connectivity Tests can be connected and/or a mobile phone or reader can be

used to power the reaction and/or read test results to provide
required data to decision-makers.

E Ease of specimen collection Tests should be designed to use specimens collected by
noninvasive procedures.

A Affordable Tests must be affordable to the end-users and healthcare
system.

S Sensitive Avoid false negatives.
S Specific Avoid false positives.
U User-friendly Simple procedure for testing: the test can be performed in a few

steps that require minimal training.
R Rapid and robust Results must be available rapidly following patients first visit

(about 15min to 2 h); tests are able to survive supply chains
without the need for specialized transport and storage
conditions.

E Equipment free or simple and
environmentally friendly

Tests do not require special equipment or equipment can be
operated by simple devices that are powered by solar or
battery power (completed tests should be manufactured from
recycled materials that require simple disposal).

D Deliverable to end-user Accessible to those who require tests the most
aSources: Gordon et al. (3) and Machado et al. (389).
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time-consuming and require skilled laboratory scientists that must pass regular compe-
tency testing to identify parasite eggs, larvae, and cysts (42). Furthermore, good-quality
microscopes with light sources, thus requiring electricity, are necessary for parasite
detection and also include correct objectives, including oil immersion objectives, cali-
bration, and regular maintenance, making them problematic in resource-poor regions
(42). Microscopy-based procedures also lack sensitivity and specificity due to the diffi-
culty in identifying parasites to the species level, even with strict morphological criteria
to follow (28, 48–50).

Another important factor affecting microscopic diagnosis is timing, since the para-
site may not be identifiable if investigation is undertaken too early or too late during
infection. For example, during Schistosoma spp. infections, diagnosis by microscopic
identification of parasite eggs in fecal samples is not possible until the infection
becomes patent, when eggs are being produced, 4 to 8 weeks postinfection (51, 52).
Another example is lymphatic filariasis, where microfilariae may not be present in the
patients with overt clinical symptoms or exhibit periodicity (53, 54). Damage to lym-
phatic systems which results in elephantiasis may occur years before the physical man-
ifestation of edema, decreasing the utility of microscopy as a diagnostic in late infec-
tions or chronic diseases where antigen testing is preferred (54) (Table 2).

Immunodiagnostics

Serological assays use organism-specific antigens or antibodies to diagnose para-
sitic diseases. Antigens consist of shed parasite-derived products that are detectable in
the blood, serum, urine, saliva, and vaginal fluids of infected individuals (12, 55–59),
whereas antibodies are specific responses by the host to the invading parasite and can
be primarily detected in blood and sera. Antibody detection can have issues with
cross-reactivity, and interpretation can be difficult in some later flow assays; since the
parasites are present long after the infection has cleared, however, these methods can
be useful in areas of low endemicity or chronic infections, where parasitemia may be
low in infected individuals (12, 60) (Table 2). The majority of RDTs are based on anti-
body detection.

Serological methods include the indirect hemagglutination test, direct or indirect
immunofluorescent antibody tests (DFAs or IFAs), complement fixation (CF) tests, rapid
diagnostics tests (RDTs), such as immunochromatographic antigen detection and the
enzyme-linked immunosorbent assay (ELISA) (61–64) (Table 2). ELISAs use 96-well
plates that have been coated to allow for protein binding (65–67). The wells are coated
with the antigen of interest or primary antibody before being washed and blocked,
using agents such as bovine serum albumen, ovalbumin, and other animal proteins to
prevent nonspecific protein binding (65–67). The samples are then incubated with an
enzyme-conjugated antibody (primary and/or secondary), followed by the addition of
a substrate, such as horseradish peroxidase or alkaline phosphatase, which initiates a
visible color change within 30 min (65–67). Replacing the plastic wells used for ELISA
with a nitrocellulose membrane simplified the method significantly, giving rise to the
Dot-ELISA (68, 69). This change also reduced cost the associated with the traditional
ELISA (68, 69).

Most available POC tests are immunology based due to their accessibility and rela-
tive simplicity for use in the field and have been widely used in the past for diagnosis
and control program monitoring (Tables 2 and 5). More details, as well as examples for
RDT immunodiagnostics, are presented below in “RDT Immunodiagnostics.”

Molecular-Based Diagnostics

Nucleic acid amplification tests (NAATs) exhibit high sensitivity and specificity in
areas with both high and low intensity parasite infections and involve a number of PCR
(PCR)-based methods, including conventional PCR, direct-PCR, real-time PCR (qPCR),
droplet digital PCR, and loop-mediated isothermal amplification (LAMP) (Table 2)
(70–72). NAATs have many advantages compared to other diagnostic methods, includ-
ing increased sensitivity, specificity, and flexibility of testing (58, 71–73). One of the
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main factors preventing widespread use of NAATs as POC diagnostics is the cost of
reagents equipment, the need for electricity, the requirement for a unidirectional work-
flow to minimize contamination, and the cost of the methods required to purify nucleic
acids from clinical samples (74, 75). Recently, however, new molecular-based machines,
including the Djinni chip (which we discuss below in “DNA-Based RDT”) and GeneXpert
(76, 77). GeneXpert is a module which runs and reads Xpert cartridges for various tests,
including tuberculosis (TB) in sputum samples (78) and, more recently, COVID-19, for
which emergency FDA approval has been granted (79). The GeneXpert units have
been placed in diagnostic laboratories across Africa, and thus their presence could be
leveraged for the molecular diagnosis of endemic NTDs, including parasitic diseases.

A disadvantage of NAATs is that the sensitivity and specificity of some methods can
be decreased for certain parasite species and sample types. For example, during
chronic Chagas disease, where the causative parasite, Trypanosoma spp., is not circulat-
ing in the blood, NAATs are unable to reliably detect infection (80). In these cases, sero-
logical tests are necessary to confirm infection; indeed, parallel antigen tests are sug-
gested for improved diagnostic accuracy for Chagas disease (80) (Table 2). However,
PCR can be useful in monitoring for reactivation of disease (Table 2). The three most
commonly used nucleic acid purification methods are: (i) organic methods using phe-
nol-chloroform; (ii) inorganic methods based on binding nucleic acids to silica/Chelex
substrates in the presence of high-salt solutions; and (iii) solid-phase extraction meth-
ods, which act by binding DNA to paramagnetic or silica beads (81–84). A series of
wash and centrifugation steps remove contaminants that may be present in the sam-
ple before the final elution step (81, 82, 85, 86). These methods are often laborious,
involving complicated reaction steps and necessitating trained technicians and

TABLE 5 Advantages and disadvantages of different protocols used in the diagnosis of parasitic NTDsa

Diagnostic test/sample collection tool Advantages Disadvantages
Immunoassaysb

ELISA High sensitivity and specificity, high throughput,
simple, rapid

Lab-based technique, requires specialized
technicians, high reagent costs.

Dot-ELISA Simple, rapid, results easy to interpret visually,
require small sample volumes, can be
performed external to a lab.

High reagent cost, samples must be stored below
4°C, sensitivity, specificity dependent on
parasitemia.

LFIA Rapid, simple, higher sensitivity and specificity
than ELISA, can be interpreted visually, require
small sample volumes

Samples must be stored below 4°C, sensitivity and
specificity depend on parasitemia, cross-
reactivity issues, some problems with false
negatives/positives and trace bands.

Schistosomiasis POC-CCA
cassette-based test

Antigen detection. Commercially available POC
detection of S. mansoni and S. haematobium

Significant issues with detecting false positives,
difficult test interpretation, cross reactivity
noted with other helminth species.

Molecular
Whatman Samples stable at room temp for 10 yrs, small

sample volumes required, simple sample
collection, low-cost transport.

Complex processing requirements, no research
on use of Fusion 5 in parasitic NTD diagnosis.

Fusion 5 Increased wicking speed, increased efficiency of
DNA capture; effective for DNA extraction from
blood, pig mucin, saliva, buccal swabs, and
cigarette buds.

High cost, requires large sample volumes, only
studied on saliva and blood, no research on use
of AOMs for parasitic NTD diagnosis.

DNA dipstick Low cost, can be combined with LAMP assay.
Simple workflow.

Not tested on clinical samples, only tested on S.
japonicum parasite material and infected snails.

AOM Rigid membrane, increased wicking speed, high
sensitivity for diagnosis of bacterial and viral
infections

Complex processing requirements, no research
on use of Fusion 5 in parasitic NTD diagnosis.

Djinni Chip Low cost, LAMP assay on the chip. Simple
workflow.

Not yet used for parasite NTD diagnosis.
Contamination in a “mock field” trial.

SPS and microfluidic chip SPS separates plasma for blood without
electricity. LAMP occurs on the chip.

Has only been performed in laboratories and on
blood spiked with S. mansoni DNA

aELISA, enzyme-linked immunosorbent assay; LFIA, lateral flow immunodiagnostic assays; AOM, aluminum oxide membrane; SPS, superhydrophobic plasma separator.
bIn antibody-based ELISAs, it can be difficult to distinguish between past and present infections.
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electrical equipment, and expensive. Thus, these methods are problematic for incorpo-
ration in POC diagnosis in resource-poor areas of endemicity (87, 88).

Clinical Samples and Parasite Locations

Parasites that cause NTDs have differing life cycles and infect different bodily tissues
and fluids that can vary depending on the life cycle stage and infection status (acute
versus chronic), and some, such as lymphatic filariasis, experience periodicity in periph-
eral blood; this affects the type of clinical sample harboring parasite material that can
be utilized for diagnostic purposes (57, 89, 90). Parasites that invade the circulatory sys-
tem as adults or larval stages directly release waste products, surface materials, eggs,
and DNA into the circulatory system, which can be detected subsequently in host bod-
ily fluids (57). For example, sloughed-off tegument from adults and schistosomula lar-
vae and eggs, and DNA, including cell-free DNA, have been successfully detected in
the feces, blood, serum, urine, saliva, and vaginal fluids of mammalian hosts harboring
Schistosoma blood flukes in the blood vessels surrounding the gut (S. mansoni and S.
japonicum) or the bladder (S. haematobium) (12, 57, 58, 70).

Intestinal helminths release eggs, immature and adult life cycle stages, waste prod-
ucts, surface material, and DNA directly into the gastrointestinal tract, which can be
detected in fecal samples. Material from intestinal worm infections can also be detected
in blood and serum, urine, and saliva (12, 91, 92). This may be due to mucosal changes
leading to “leaky gut” syndrome caused by some parasites, such as Strongyloides stercor-
alis (65, 93), or due to migrating larval stages such as is the case for hookworm species,
S. stercoralis and Ascaris lumbricoides, which all enter the bloodstream at various stages
of their life cycle (94–97). A. lumbricoides and hookworm also undergo tracheal migra-
tion, which accounts for parasite material detectable in saliva (96, 97). The main gastroin-
testinal parasites are the soil-transmitted helminths (STHs), which include hookworms
(Ancylostoma duodenale, Necator americanus), whipworms (Trichuris trichiura), and round-
worms (A. lumbricoides) and are estimated to infect over 1.5 billion people globally (98,
99). These parasites reside in the gastrointestinal tract, releasing eggs into the external
environment in the feces, which develop into infectious larvae or mature eggs, ready to
continue the life cycle (99, 100). DNA, antigens and whole parasite stages have been suc-
cessfully detected in feces, blood, and serum of hosts infected with STHs (100).

The quality and quantity of parasite material in clinical samples are integral for pre-
cise diagnosis of NTDs (101–103). Accurate parasite diagnostics for human and animal
hosts are key to ensuring both effective treatment and in surveillance, thereby helping
to reduce rebound infections in areas where treatment is curtailed and where less-sen-
sitive diagnostic tools may have been applied so as to confirm that parasite control
measures leading to elimination have been successful (8, 12, 104). Key to this are the
collection, storage, and transport of clinical samples to designated laboratories for NTD
diagnosis.

Storage and Transport of Clinical Samples

Clinical samples that can be used in parasite diagnosis are feces, urine, skin scrap-
ings, blood and sera, and saliva; each of these present different issues for collection,
storage, and processing. Subjects can collect saliva, urine, and stool samples them-
selves when provided with appropriate containers, whereas trained professionals are
required to collect blood, sera, and skin scrapings, thereby increasing labor costs (105,
106). After collection, these samples must be stored correctly, often by refrigeration or
freezing, and rapidly transported to a laboratory for analysis.

The cost of storage and transport depends on the sample (Table 1). Blood and se-
rum must be stored in individual EDTA tubes, which themselves have a high cost, but
are also expensive in terms of transport and shipping due to their weight (107). Fecal
storage containers themselves can be lower in cost, but samples must undergo fixa-
tion, which increases costs. Which fixatives are used depends on whether it is a clinical
setting or a field setting and on the downstream application—molecular, microscopy,
or immunodiagnostics. Fixation often takes place in 10% formalin, 80% ethanol,
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polyvinyl-alcohol (PVA) solutions, sodium acetate acetic acid and formalin, zinc sulfite-
polyvinyl alcohol, or fresh, with costs ranging from $2 to $5 (AUD) per sample in addi-
tion to the transport costs (108–110). Some of these fixative methods can impact the
method of detection; for instance, killing trophozoites or larvae mean that they are no
longer motile and cannot be seen on a wet mount, but the dead parasites can be
stained and viewed as a fixed mount. Other fixatives impact DNA integrity, and thus
downstream detection needs to be considered. A clinical setting, where samples will
be sent to a lab for testing quite quickly, will not have the same requirements as in the
field, where times between defecation and fixing the sample can vary and long distan-
ces between field collection and processing in a laboratory can be quite lengthy and
often without refrigeration (109, 111, 112). Urine and saliva collection containers are
also low cost but must be refrigerated or frozen until used in diagnostic processing
(113, 114). Saliva samples can also be fixed in PVA and 10% formalin and stored at
room temperature in specially designed collection kits, again resulting in increased
cost (113).

Parasite NTDs primarily occur in remote communities located in predominantly
lower socioeconomic regions of the tropics and subtropics (12–16). Accordingly, col-
lected samples may remain at room temperature for prolonged periods before trans-
port to a testing facility (101–103). Furthermore, they are often exposed to high tem-
peratures during transportation, which can result in the disintegration of protozoan
trophozoites and cysts, as well as increased lysing of some helminth eggs (hookworm)
and the disintegration of larvae (Strongyloides) (101–103). Consequently, storage and
transportation procedures must be effective, accessible, and affordable.

Whatman FTA cards: sample collection and storage.Whatman Flinders Technology
Associates (FTA) matrix cards (Fig. 1) consist of cellulose and contain a proprietary mix
of chemicals that lyse cells on contact and physically entrap and stabilize DNA (105,
115). This occurs when the long DNA molecules become entangled with fibers of the
filter paper, while other cell debris and contaminants are washed through the paper
(116). This protects nucleic acids in most clinical samples, including blood, tissues, and
buccal scrapes, from degradation by oxidation, ultraviolet light, and fungi at room tem-
perature for up to 10 years (117–121).

The compact nature of Whatman filter paper technology permits their transport via
standard mail, while still maintaining DNA stability, which allows for cost-effective and

FIG 1 Whatman FTA classic card. Sample pads contain cellulose matrix for DNA sample capture.
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reliable storage and transport (122). Furthermore, this technology can also help
streamline sample collection. For example, a small finger prick is all that is necessary to
obtain a blood sample, instead of collection by venipuncture, which requires the pres-
ence of a trained professional (105). FTA cards can be stored at the collection location
at room temperature as long as required instead of the immediate transportation to a
reference laboratory or the immediate refrigeration that is normally required for analy-
sis of clinical samples (117–120). Whatman FTA cards have been utilized to store DNA
from forensic, bacterial, and viral samples, cytological materials, and parasites (115,
123–127). Parasite entrapment has mainly focused on protozoa, including Plasmodium,
Trypanosoma, Leishmania, and Babesia (Table 2), with studies successfully utilizing FTA
cards for short- and long-term storage of clinical samples containing parasite DNA.

RAPID DIAGNOSTIC TESTS

Rapid diagnostic tests (RDTs) are compact and affordable POC diagnostic tools that
give rapid results. RDTs of varying efficacy have been developed for all NTDs except for
scabies, STH, and dracunculiasis (128–147). Many available RDTs for NTDs utilize immu-
nochromatography to detect circulating parasite-specific antigens (148) (Table 2). RDTs
can come in dipstick or cassette form and can give results in approximately 20 min
(149). RDTs that are based on immunochromatographic methods and utilize nitrocellu-
lose membrane, which is a porous membrane with a high affinity for the hydrophobic
binding of proteins (150, 151). The nitrocellulose allows wicking when the clinical sam-
ple is added, resulting in the formation of a single-colored control line for a negative
result or two-colored lines (one the control line) for a positive result (152). Absence of
the control line invalidates the test, and it must be repeated. These lines appear due
the binding of parasite antigens present in the clinical sample to specific antibodies
present on the nitrocellulose, which will be bound to gold nanoparticles, dye-loaded
polymeric beads, fluorescent beads, magnetic nanoparticles, or carbon-based nanopar-
ticles (153–158).

Molecular based RDTs are rarer; however, there are a few in early development
stages that utilize LAMP in conjunction with a rapid DNA extraction step (76, 77,
159–162). These methods to date have also included the use of nitrocellulose mem-
branes for DNA capture, with one molecular based RDT, the DjinniChip (76, 77), giving
a similar read out to immunochromatographic diagnostics, with a test and control line
appearing as the reaction completes, while others rely on fluorescence, turbidity, or
other visual changes in the reaction mix to determine positivity.

RDT Immunodiagnostics

Dot-ELISA. The ELISA is a solid-phase enzyme immunoassay that acts by the com-
plexing of antibodies and antigens with substrates to give qualitative results that are
visible to the naked eye (66, 67, 163). There are four types of ELISA: direct ELISA, indi-
rect ELISA, sandwich ELISA, and competitive ELISA (163). Direct ELISA involves the
direct binding of enzyme-linked antibodies to the antigen of interest (163) Indirect,
sandwich, and competitive ELISAs work in multiple processes, involving the action of a
primary antibody and a secondary enzyme-linked antibody (163).

Dot-ELISA (Fig. 2) utilizes a sandwich ELISA, capturing the antigen of interest
between a primary and secondary antibody (164). To begin the process, the appropri-
ately labeled primary antibody is incubated on pieces of nitrocellulose paper and
allowed to dry. The nitrocellulose is then incubated with blocking solution for 15 min
to prevent nonspecific protein binding (150, 151). Next, the nitrocellulose is incubated
with the clinical test sample for 30 min, followed by incubation with a conjugated anti-
body (69, 150). Finally, the nitrocellulose is incubated with an enzyme substrate for 30
min, which reacts with the enzyme and allows for the formation of a colored dot if par-
asite antigens are present (69, 150). A positive clinical test sample is observed as a color
change on the paper, allowing direct visualization of the result (150, 151). The use of
nitrocellulose reduces the nonspecific binding of proteins usually observed with plastic
plates, increases the sensitivity and specificity, and requires substantially less parasite
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reagent and clinical test sample than the standard ELISA (150, 151). However, the sta-
bility of many of these antibodies can decrease significantly if not stored below 4°C
(165).

The Dot-ELISA has simplified the ELISA procedure and made it more accessible for
POC diagnosis, giving sensitive results without the requirement of electrically powered
equipment (69, 166). It is also rapid, can be completed at room temperature, and gives
results that can be readily interpreted visually (151). However, due to the requirement
for costly reagents and the high cost of storage to maintain sample viability, this assay
remains generally inaccessible in resource poor regions (Table 4) (165). Nevertheless,
to date, this method has been used, with a sensitivity and specificity similar to that of
traditional ELISA, for the diagnosis of many parasitic diseases including: malaria, trypa-
nosomiasis, leishmaniasis, toxoplasmosis, theileriosis, schistosomiasis, echinococcosis,
fascioliasis, toxocariasis, taeniasis, and trichinosis (69, 150, 167–176) (Table 1).

Dot-ELISA dipsticks. Nitrocellulose-based dipsticks were first developed to improve
the accessibility of the Dot-ELISA (177). Dipsticks are prepared before going to the field
by cutting nitrocellulose paper into small strips impregnated with a specific antigen or
antibody for the parasite species to be identified to give test and control lines and
glued to acetate strips. In the field, the strips are incubated with patient serum for 7
min, washed, and incubated with a conjugated antibody for 7 min before incubation
with a specific enzyme substrate for a further 2 min (153, 154). Positive results are
observed as the appearance of control and test bands in the test cell, which occurs
due to a sandwich immunoassay in the presence of the targeted biomarker (153, 154).
Nitrocellulose paper can also act as a blood separator, allowing for the separation of
serum from blood cells by capillary action. The separated serum then travels up the
strip, and the used blood separator can be removed and discarded, allowing for POC
testing using whole blood samples (156–158). The BinaxNOW malaria assay and
Diamed OptiMAL are RDTs that can successfully diagnose Plasmodium falciparum and
P. vivax infections—and likely P. ovale, P. malariae, and P. knowlesi infections as well;
however, sufficient testing has not been performed to determine the sensitivity and
specificity of these species (178–180). Furthermore, RDTs cannot detect low parasite-
mia, leading to false negatives (181) (Table 4). Nitrocellulose-based dipsticks have since
been improved to allow for higher sensitivity, specificity, and applicability for POC
diagnostics, giving rise to lateral-flow immunochromatographic assays (LFIAs).

Lateral-flow immunochromatographic assays. LFIAs are promising POC diagnostic
devices due to their simplicity, low cost, robustness, and ease of implementation in
remote regions of endemicity (182). The inclusion of nanotechnology in LFIAs has sig-
nificantly improved disease detection by spectroscopic, optical, fluorescent, and elec-
trochemical readouts, allowing for improved sensitivity and lower costs (152). Dipstick-
based LFIAs, also known as test strips (Fig. 3), utilize chromatographic methods to

FIG 2 Diagram showing Dot-ELISA diagnostics, showing interpretation of positive and negative
samples.
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separate different sample components based on longitudinal or transverse flow
through a carrier and immunochemical reactions to detect positive infections; the
immunoreagents are immobilized on the carrier through which the sample fluid flows
(183). A sample is dropped on the base of the strip, usually made of nitrocellulose or
glass fibers, and eluted using a small amount of buffer that contains the immunore-
agent. This dye-labeled complex is present on the nitrocellulose strip in a small test
line, along with a control line (184). The control line contains antibodies specific for the
indicator-labeled antibody complex and will appear in all tests, including negative
results, due to a color change upon binding of the antibody complex. Test lines are
embedded areas of target indicator-labeled antibodies and change color upon binding
of target antigens present in a sample (178). Immunochromatography is rapid, stable
at temperatures up to 40°C, and reagent and energy conservative, and hundreds of
samples can be processed simultaneously, making it ideal for POC diagnosis and epi-
demiological monitoring (154). Furthermore, capture antibodies can be placed onto
the membrane in advance and then blocked, dried, and stored for up to 3 months at
4°C, while maintaining stability for use (185). LFIAs have been studied extensively for
the diagnosis of malaria (P. falciparum and P. vivax primarily), visceral leishmaniasis, fil-
ariasis, trichomoniasis, toxoplasmosis, piroplasmosis, amoebiasis, cryptosporidiosis,
giardiasis, trypanosomiasis, schistosomiasis, taeniasis, fasciolosis, trichinellosis, and
echinococcosis (154, 156–158, 178–180, 186–213) (Table 1). Currently, however, there
are only a small number of approved LFIAs for POC diagnosis of malaria, visceral leish-
maniasis, giardiasis, amoebiasis, cryptosporidiosis, and schistosomiasis (74).

Nitrocellulose-based LFIAs appear to be a promising tool for POC diagnosis of para-
sitic diseases, with research demonstrating that LFIAs exhibit higher sensitivity and
specificity than other immunodiagnostic methods—such as ELISA, immunofluores-
cence antibody tests (IFATs), and direct antiglobulin tests (DATs)—and microscopy-
based diagnostic methods (210, 214). However, as shown with studies on malaria, the
sensitivity and specificity of LFIAs depend on infection intensity (195, 203, 214) (Table
4). Low parasitemia (,250 parasites/ml) fails to reach the threshold of detection and
can result in false negatives. False negatives can also be seen in individuals with very
high levels of parasitemia, the prozone effect, due to excess antigens binding to the
detecting antibody, leaving no epitopes available for capture or the test band anti-
body, which results in no band occurring for the test band (215). LFIAs cannot quantify

FIG 3 Diagram of a nitrocellulose based lateral flow assay showing interpretations for positive,
negative, and invalid results.
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infection burdens and, like other immunodiagnostic tests, generally fail to detect low
parasitemia or low intensity infections; however, due to their relative simplicity, they
could be used by untrained technicians in areas of endemicity where laboratories are
not accessible or are poorly equipped (203, 206). However, despite ease of use, the
interpretation of results can cause difficulty due to trace bands or multiple bands
(216). In parasite-endemic areas, low levels of parasitemia may lead to asymptomatic
infections, and thus a positive RDT with fever may indicate a plasmodium infection but
not the cause of the fever (215); thus, sole reliance on RDT diagnostics can be problem-
atic. Instead, RDTs can be one of several diagnostics, along with clinical symptoms and
patient history, to determine patient status which is suggested for a number of para-
sitic NTDs (215) (Table 2). In malaria, changes to parasite antigens may also result in
false negatives, such as variations in Pf-HRP2 or pLDH in Plasmodium falciparum (215,
217).

The timing of reading a lateral flow assay can also affect interpretation. A lateral
flow assay for Chagas disease, PATH-Lemos, had optimal sensitivity and specificity
(99.5 and 96.8%) after 20 min, which decreased slightly at 25 min (98.9 and 94.0%)
(131). Longer times were not tested, but it might be expected to drop, and thus it may
be critical for this, and other POC immunoassays, to read results at the right time. In
addition to these issues, incorrect and length of storage can affect test reliability. While
the inclusion of nanotechnology in immunoassays has greatly improved the rapidity
and usability of LFIAs, there are several issues that are often overlooked. This includes
nonspecific absorption of protein and gold nanoparticles, which can have serious
effects on readability and sensitivity and result in high rates of false positives and nega-
tives (152). Furthermore, LFIAs exhibit problems with cross-reactivity when blood sam-
ples are used instead of serum, causing decreased sensitivity (Table 4). This is due to
the presence of cellular enzymes in whole blood or of fibrinogen and paraproteins in
unclotted plasma, which prevents increased viscosity and hinders accurate sample
pipetting (74).

The LFIA used for diagnosis of echinococcosis (VIRapid HYDATIDOSIS; Vircell,
Granada, Spain) (serum) exhibits cross-reactivity when Taenia solium coinfections occur
(218), while a dipstick LFIA for Schistosoma japonicum diagnosis (serum) exhibits cross-
reactivity with Clonorchis, Paragonimus, or Angiostrongylus cantanensis coinfections
(219, 220). An LFIA developed for Wucheria bancrofti infection detection (serum) exhib-
ited high specificity and sensitivity, with little cross-reactivity observed in patients with
Onchocera, Loa Loa, or Strongyloides infections (221), further suggesting that LFIAs may
function more optimally when used on serum samples, which requires a centrifuge,
thereby increasing costs (194, 195, 206). However, an LFIA developed for O. volvulus
detection was shown to work as well with blood as with sera (222). In addition, a super-
hydrophobic plasma separator and microfluidic chip (162), which we discuss in more
detail below, can separate serum from blood without electricity and may in future be
combined with LFIAs to produce an optimal RDT for POC diagnostics in areas of ende-
micity. In clinical settings in developed nations, LFIAs may be used as part of a diagnos-
tic process that often requires parallel testing with different diagnostics to improve
sensitivity (Table 2).

Schistosomiasis POC-CCA cassette-based test. The POC-CCA cassette assay is the
only commercially available (Rapid Medical Diagnostics) POC for schistosomiasis detec-
tion, detecting S. mansoni primarily, although can detect other schistosome species, S.
haematobium and S. japonicum, with less sensitivity (223). While treatment is the same
for all species, species determination can be important when considering disease and
damage caused by infection, for example, risk of bladder cancer with S. haematobium
infection (224). The cassette uses urine to determine infection. There have been two
iterations of this cassette, with an earlier version requiring a buffer addition, with the
latest no longer requiring it. However, a high rate of false positives, low sensitivity or
low reactivity in individuals not excreting eggs, and interpretation of trace results are
barriers to successful implementation of this diagnostic (225). The test is also much
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more sensitive in detecting S. mansoni infections compared to S. haematobium, and
there may be issues with use in areas with only S. haematobium present, or where the
two schistosomes are coendemic. This obviously limits its potential use, particularly in
Africa where both species are present, often in the same geographical setting. The
presence of hybrid schistosome species in Africa may also be confounding factors for
test accuracy (226–229). There has also been cross-reactivity identified with other hel-
minth parasites (230). Interpretation of trace results remains a major stumbling block
for replacement of KK with the POC-CCA (225, 231, 232). As part of the REASSURED
(Tables 2 and 3) criteria that POCs should meet, usability and interpretation are key for
field personnel with minimal training, as well as avoiding false negatives and positives
(40).

The WHO is currently seeking expert feedback for target product profiles (TPPs) in
concordance with the new 2021-2030 roadmap where diagnostics are highlighted as a
crucial target. Within these TPPs the POC-CCA test, previously recommended by the
WHO for control programs, has been highlighted as problematic due to low sensitivity
in low-prevalence areas, with high false positivity in areas where prevalence is ,10%
(40). Manufacturing issues were also highlighted that resulted in variable performance
in different product lots, including very high false-positive rates. A recent study in
Brazil tested the POC-CCA RDT in an area where schistosomiasis was not endemic
(233). All study participants were negative by microscopic methods (KK and helmintix);
however, 37.9% were positive by POC_CCA, giving a specificity of 62.1% (233).
Furthermore, there were differences in test results in fresh urine compared to the same
urine samples stored at –20°C for 1 year, as per the manufacturer’s instructions. The
reported difference was more than could be accounted for different batches of test
were used. We highlight here specificity issues with the test that need to be addressed.
There is an ongoing clinical trial into the sensitivity and specificity of a POC-CCA for S.
japonicum that is due to finish in early 2021 and may shed more light on the sensitivity
and specificity of the POC-CCA (234).

DNA-Based RDT

Whatman FTA cards: DNA-based diagnostics. Standard filter papers or qualitative
filter papers differ in content from Whatman FTA cards since they do not contain the
proprietary chemicals for DNA capture and storage (119). Standard filter paper technol-
ogies have been used widely for genetic and protein analyses; however, improvements
in whole-genome amplification, single-nucleotide polymorphism analyses, and DNA
extraction methods are required (235–244). Studies utilizing dried blood spots (DBS)
from newborn screening found that samples stored below –20°C for up to 20 years
maintained viability equal to that of fresh DBS; however, DNA recovery declined in
samples stored at room temperature for over 10 years, particularly for amplification of
larger DNA fragments (236, 243). Serological detection of parasite antigen eluted from
DBS on conventional Whatman filter paper has been successfully applied in the diag-
nosis of strongyloidiasis and lymphatic filariasis, but samples still require storage in a
4°C refrigerator at collection locations and at –20°C until analysis (245–247). This means
that while filter papers can be useful for large-scale sampling (248), diagnostics, and
rapid DNA purification and extraction, they cannot maintain DNA stability at room
temperature as efficiently as Whatman FTA cards (119, 161, 249, 250). As such, samples
stored on filter papers would either require storage at –20°C during transport, or they
would need to be transported and processed rapidly at room temperature.

Limited research has been undertaken to determine the efficacy of Whatman FTA
cards for storing parasite DNA; however, parasite samples stored on FTA cards have
been used successfully in PCR and LAMP assays for diagnosis, genotyping, and popula-
tion screening (102, 105, 251–261) (Table 1). Recent studies utilizing qPCR and direct
PCR for detecting Dirofilaria repens microfilariae in blood stored on FTA cards suggest
that loss of parasite DNA during extraction may be an issue due to the heterogeneous
distribution of parasites and the lower volumes of blood used in spots compared to
that of normal whole-blood samples used for conventional DNA extraction (262–264).
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However, these studies also found that although in low quantity, sufficient DNA could
be recovered from FTA cards for conventional PCR analysis (264, 265). A study of differ-
ent preservative methods for hookworm (Necator americanus)-spiked fecal samples sug-
gested that FTA cards maintain DNA stability for long periods at 32°C compared to other
storage methods, including 5% potassium dichromate, 90% ethanol, Formalternate,
PAXgene, RNAlater, two-step desiccation ethanol-silica gel, and storage at –20°C (101).
Despite the relatively high cost (AUD $2.20/sample) of FTA cards (101, 266), this initial
outlay is compensated by savings in transport and storage costs (101, 266). By combin-
ing FTA cards with a comparatively low-cost diagnostic method, such as LAMP or direct
PCR, diagnosis could become straightforward and accessible in remote, resource-poor
areas (267–272).

DNA dipstick. The DNA dipstick is a rapid method for DNA extraction and is made
from Whatman filter paper number 1 that is dipped in paraplast, leaving a small sec-
tion for DNA binding (159, 161). The dipstick was initially developed for extracting
DNA from plants, and plant pathogens but has a universal application, and the method
could be performed by lay persons in the field since the workflow is quite simple and,
when combined with a LAMP assay, it is a potential low-cost POC diagnostic. The sam-
ple DNA is being extracted from is placed in a tube with ball bearings, shaken vigo-
rously, and then the DNA dipstick is inserted three times into the lysate. The DNA dip-
stick is the dipped three times into a tube containing wash buffer and then three times
into the tube containing LAMP reagents. The LAMP is run, and the result is visualized
by a color change or flocculation. To date, the dipstick has been tested on S. japonicum
parasite material (adult worms and eggs) and infected snails (273). The method needs
to be tested on clinical samples to determine whether the method would be able to
extract—and then detect with a subsequent LAMP assay—parasite DNA from clinical
samples.

DjinniChip. The DjinniChip (Fig. 4) is a novel LAMP-based molecular diagnostic
assay that has been used for the diagnosis, surveillance, and control of trachoma,
caused by Chlamydia trachomatis (274). The chips are assembled by injection-molding
cyclic olefin copolymer, and the required LAMP reagents are freeze-dried into the
channel (274). A lateral-flow test strip (LFS) is then placed into the chip, and the bot-
tom of the chip is sealed. The clinical sample is added to the chip, and the sample

FIG 4 Schematic principle of the DjinniChip. (A) LAMP product on lateral flow strip. (B) Components
and processes. The DjinniChip contains lyophilized reagents (1) and a lateral flow test strip (2). A
liquid sample (3) is loaded onto the chip through its inlet. The liquid sample reconstitutes the
reagents (4). Chlamydia trachomatis DNA is amplified at 65°C. The reaction mix is pumped gently
with a syringe to the lateral flow test (5). The appearance of the control band (labeled “C”) indicates
the correct function of the lateral flow test. The appearance of the test band (labeled “T”) indicates
the presence of C. trachomatis in the sample. (C) Detection on DjinniChips. (Reproduced from
reference 77.)
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extract is driven by capillary action into the reaction channel, reconstituting the LAMP
reagents, and the chip is further sealed (274). After a 35-min incubation at 65°C, the
sample is then on placed on ice blocks to stop reactions, and chromatographic buffer
is used to manually drive the amplified reaction toward the LFS, giving a visible result
within 10 min due to the use of gold nanoparticles attached to anti-fluorescein-anti-
bodies (274). The DjinniChip is low cost (,$2 [US] per test), is rapid, has a total test
time of 50 min, requires only a portable heat block that can be powered with a car bat-
tery, and can be completed by untrained personnel, making it accessible in resource-
poor regions (274). The requirement for ice, which was transported in a cool box in a
“mock field” trial, will limit some usage in very remote areas (76, 77).

The DjinniChip has yet to be used for parasite diagnosis, but given the low price,
simplicity, ease of assembly, lack of requirement for expensive laboratory equipment
and trained personnel, rapid results visible to the naked eye, and stability in many envi-
ronmental conditions, this chip provides an exciting opportunity for rapid accessible
POC diagnosis of parasitic NTDs. However, the DjinniChip still requires further optimi-
zation to prevent contamination, which occurs due to the manual handling steps, to
the improve the sensitivity and specificity of the test. A “mock field” trial on spiked
samples resulted in a higher number of false positives (76, 77). Contamination in field
settings will be an ongoing issue for all RTDs. At least some training may be required
on proper aseptic techniques for those using the tests in field situations.

Superhydrophobic plasma separator and microfluidic chip. The superhydrophobic
plasma separator (SPS) was developed to separate plasma from whole blood without
electricity, making it ideal as part of an RDT (Fig. 5) (162). Whole blood often inhibits
downstream applications such as PCR or LAMP, necessitating the removal of the blood
cellular components or the separation of the blood by centrifugation with only the
plasma section retained. In this case, the SPS was combined with a LAMP assay per-
formed on a microfluidic chip with plasma separated from whole blood by the SPS
(162, 275). Then, 200ml of whole blood was spiked with S. mansoni DNA with a recov-
ery rate of 84.5% compared to the more traditional method of centrifugation for sepa-
ration of plasma from whole blood. As the amount of S. mansoni DNA increased, so
also did the recovery rate, although not significantly, and the detection limit was iden-
tified as 0.5 fg of S. mansoni DNA (162).

The SPS is made up of a hinged slide coated in hydrophobic substrate, with the
lower slide containing a small well for the blood to be placed, and a small membrane
on the upper slide. After whole blood is placed in the well, the slides are closed to-
gether, forming a smear. The SPS relies on natural sedimentation, with the heavier red
and white blood cells moving down toward the bottom of the well, leaving the top
portion clearer and containing primarily plasma. The plasma is filtered through the

FIG 5 Diagram (A) and images (B) of the superhydrophobic separator. (Reproduced from reference
162 with permission of the Royal Society of Chemistry.)
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membrane for further cleaning of the sample. Once the plasma was separated, it was
then removed and tested for S. mansoni using a real-time LAMP on a microfluidic chip
(275).

This method has not been tested under field conditions or on “real-world”’ samples
and may require further optimization for the field. Any schistosome DNA detected in
plasma will be cell-free DNA and therefore present in small amounts. This method only
uses 200ml of whole blood, and a minimum concentration of cell free schistosome
DNA is required for detection. It would also be difficult to produce large numbers of
the SPS device for field testing since it is currently produced by three-dimensional
printing, nor is it clear whether the SPS or microfluidic chips could be re-used, which
may increase costs. However, the SPS is a promising method that can also be used in
conjunction with immunodiagnostics where plasma separation may also be beneficial.

Fusion 5. Fusion 5 technology is a silica-based filter (GE Healthcare, USA) designed
to replace the solid materials that are currently used in lateral flow immunoassays and
allows the manufacture of lateral-flow tests on a single sample (116). This technology
reduces test times and costs and is naturally hydrophilic (116). Standard test strips are
made of many different components laid over each other with an overlap, requiring
the correct pressure between each layer to allow the sample to flow efficiently from
one component to the next (116). Fusion 5 consists of glass fibers containing a plastic
binder, which increases its mechanical strength, maintains hydrophilicity, and allows
fast wicking speed, giving quicker test times (116). Fusion 5 technology has been
shown to exhibit increased nucleic acid capture efficiency rates compared to that of
other Whatman cellulose-based filters (116). These attributes allow Fusion 5 to have
many functions, including a blood separator, a sample pad, a reaction substrate, and a
conjugate release membrane (116).

In 2009, a nucleic acid extraction method was designed, called filtration isolation of
nucleic acids (FINA), utilizing Fusion 5 technology as the nucleic acid capture mem-
brane (276). Briefly, a Fusion 5 disk was sandwiched between 707 blotter paper and
Parafilm, with a hole in the center for the disk where a clinical blood sample for testing
was applied. This was then washed and placed directly in a PCR tube for amplification
(276). Using this procedure, HIV proviral DNA was successfully extracted and provided
98.8% sensitivity and 100% specificity in all qPCR experiments compared to viral load
data obtained through reverse transcription-PCR (276, 277). Importantly, dried blood
modules stored at 37°C for up to 5weeks maintained DNA stability of samples (276).
Lysing the red blood cells with Triton-X and attaching the disk to the side of the PCR
tube further optimized the method, yielding 100% sensitivity and specificity (278).
These methods produced a low-cost device for DNA extraction; however, they are only
applicable to blood samples. In 2015, a study created a novel paper-based micro-fluid
device using Fusion 5 as the sample capture filter. For this method, the sample was
loaded onto the capture filter and washed three times with water. NaOH, HCl, and
water were then aspirated through the filter, which was then taken for PCR verification
(116). This device was able to purify genomic DNA from more diverse clinical samples,
including whole blood, dried blood spots, buccal swabs, saliva, and cigarette butts
with high efficiency (116).

Fusion 5 has also been used as part of a simple paper microfluidic device for sample
preparation and nucleic acid extraction. In this “microfluidic origami,” a stack of flat
polymer sheets is combined in a way that folding activates the DNA purification pro-
cess (279). Fusion 5 membrane, cut to specific measurements by lasers, was used as
the DNA capture filter with this device (279). The DNA capture filter was placed on the
origami device, and a number of folding steps preceded placement of the sample on
the filter, which was then washed, dried, and eluted using a low concentration of salt
solution (279). This study successfully purified Escherichia coli DNA from pig mucin for
conventional PCR amplification (279). The use of Fusion 5 technology for nucleic acid
purification is still in its infancy; however, this technology presents an exciting oppor-
tunity for the development of simple and cost-effective purification of parasite
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genomic DNA, including parasite cell-free DNA that might be present particularly in
blood, saliva, and urine, combined with isothermal amplification.

Aluminum oxide membrane. Aluminum oxide membranes (AOMs) form through
the anodization of aluminum in acid electrolytes resulting in a semiordered parallel po-
rous oxide membrane with a closed base (280, 281). The anodizing voltage and choice
of electrolyte mediates AOM pore size, ultimately giving a rigid membrane that has
50% porosity, which allows a high rate of liquid flow (282). This has allowed AOMs to
have many functions, including the filtration of biological materials (e.g., blood and bo-
vine serum albumin), as a matrix for artificial tissue growth and cell culture, and as a
template for nanodevice manufacture (255, 283, 284). An AOM, functioning as a filter,
allows nucleic acid extraction, with the nucleic acids being localized to the surface
(255, 283, 284).

Since their development, AOMs have been widely studied for detecting viral and
bacterial infections from extracted genomic DNA (282, 285–290). Single-tube nucleic
acid extraction methods using AOMs have been designed wherein the membrane is
built into a 0.2-ml PCR tube (Fig. 6) (285, 286). This has successfully been used for hepa-
titis C virus detection with accuracy comparable to that of conventional extraction
methods to which it was compared (285, 286). PCR amplification of DNA extracted
using AOM filtration provided results that were close to 100% efficient (282). AOMs can
be incorporated into microfluidic chips for DNA extraction from blood and saliva, a
procedure that has been used to detect both methicillin-resistant and -susceptible
strains of Staphylococcus aureus and HIV (282, 285–290). AOMs have yet to be utilized
for parasite DNA extraction and, given the requirement for blood collected by veni-
puncture, these methods may not be ideal for use in parasite diagnosis due to cost
(282). As such, for AOMs to be considered for wide-scale POC diagnostic application,
further optimization would be required to allow DNA extraction from small sample vol-
umes or from dried blood spots.

ANIMAL HOSTS AND RDTs

Many of the parasitic NTDs are zoonotic, with animal reservoir hosts important in
transmission and maintaining the parasite in the environment (18). Schistosoma japoni-
cum, as an example, has 46 potential mammalian definitive hosts (291), as well as a
molluscan intermediate host, that complicate control efforts. Dracunculus medinensis,
otherwise known as guinea worm, has almost been eliminated. However, complica-
tions in Chad, one of the last remaining countries where the guinea worm is still

FIG 6 PCR tube (0.2ml) with AOM insert. (Reprinted from reference 286 with permission of Elsevier.)
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endemic, including potential paratenic hosts and zoonotic transmission in dogs, may
set back elimination of this disease (292–294).

It is therefore highly important that animals are also included in control programs
by testing and treating infected animals, as well as using other control interventions to
prevent transmission of parasites. For example, in China, bovines have been identified
as major reservoir hosts, and these animals have been removed from areas of endemic-
ity, while in the Philippines interventions to prevent fascioliasis transmission from
bovines, such as drying and storing animal feces for a set amount of time before using
on fields and keeping bovines away from flooded fields, have been implemented
(295–297). For some parasite-related diseases, such as schistosomiasis, fascioliasis, tae-
niasis, dracunculiasis, and STH, environmental monitoring of water and soil is appropri-
ate and can indicate active transmission sites for formation of risk maps (298–305).

In control programs and field research studies of zoonotic parasites, a number of
diagnostic methods, including microscopy, immunodiagnostics, and molecular assays,
have been used to diagnose animal infections (71, 306–321). RDTs used on humans
would ideally also be able to identify animal infections for rapid treatment and man-
agement of animal cases, as well as prevent transmission to humans from animal reser-
voirs of infection in cases of zoonotic transmission.

Several RDTs have been developed for canine visceral leishmaniasis. The Kalazar
Detect Canine Rapid Test (Inbios; rK39) and the Canine and DPP CVL (BioManguinhos)
RDTs both detect leishmaniasis from serum samples (146, 147). The sensitivity of the
Inbios rK39 increases with increasing parasitemia, and it is therefore more sensitive in
animals exhibiting clinical disease symptoms than in those who are asymptomatic—
86.7 and 59.3%, respectively—from a meta-analysis on rK39 (146).

Animal African trypanosomiasis (AAT) is caused by species that generally do not
cause infections in humans (T. congolense, T. vivax, and T. brucei brucei), although there
are some cases of AAT causing human infections (322). AAT can cause significant eco-
nomic losses in Africa (322). Two RDTs developed for detecting human African trypano-
somiasis (HAT) have been tested in cattle for detecting AAT using fresh whole blood
from cattle in Kenya and thawed serum samples from cattle in Uganda (323). The first
RDT, the 1G RDT (SD BIOLINE HAT; FIND and Alere/Standard Diagnostics), is available
commercially, while the second, p2G RDT, is a prototype. The specificity in animals
from regions of endemicity was low for both tests (14.6 to 22.6%), while the specificity
in areas of nonendemicity was high (97.5%) for the p2G RDT but low for the 1G RDT
(57.9%). In both cases neither RDT is suggested for use in detecting AAT (323).

There are a number of immunochromatography (ICT) RDTs that detect Toxoplasma,
a zoonotic protozoan parasite, in animals and humans (324). The majority detect anti-
bodies in sera, with three of the available ICT tests commercially available for use in
humans (324).

REGULATORY APPROVAL

In vitro diagnostics (IVDs) utilize human clinical samples to diagnose diseases and
can be in the form of commercial test kits or laboratory-developed tests (LDTs).
Although the cost of diagnostic testing comprises a fraction, ,5%, of overall of medi-
cal and hospital costs, IVDs contribute to up to 70% of treatment decisions (325, 326).
This highlights the critical requirements for highly accurate IVDs that are reliable, effec-
tive, and accessible. IVDs are constantly evolving and advancing due to increasingly so-
phisticated scientific techniques, biomarkers, and available assays. Further, there is an
increased demand for point-of-care and home-based testing kits that provide rapid
results, aiming to reduce the diagnosis times and ensure that patients receive appro-
priate medical treatment as quickly as possible (325, 326). However, many barriers
affect the adoption of new innovative diagnostic tests in routine medical practice.

The U.S. Food and Drug Administration (FDA), the Therapeutic Goods Administration
(TGA; Australia), and the European Medicines Agency (EMA) regulate the development of
IVDs. IVDs are divided into three classes: class I (low to moderate risk), class II (moderate
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to high risk), and class III (high risk). There are three main approval routes available for
IVDs, 510(k), premarket approval (PMA), and de novo reclassification, each of which
requires the availability of samples and associated data, the use of relevant samples for
the market, compliance with informed consent, and lack of any ethical issues (327, 328).
The 510(k) is a regulatory pathway for tests that are shown to be equivalent to an existing
test, while PMA is required when a test is not similar to an existing test. De novo reclassifi-
cation allows for a low to moderate risk test that does not have a comparable device,
which is usually required when 510(k) applications are rejected due to not being similar
enough. These regulatory hurdles are complex, and the process of approval can be
lengthy, taking up to 5 years from time of submission. Laboratories can avoid these hur-
dles by developing in-house diagnostic tests (LDTs); however, these tests have recently
begun being more closely scrutinized by the FDA, which threatens to significantly slow
down the development and use of innovative LDTs.

Of all the NTDs, only the following three have FDA-approved molecular diagnostics:
Dengue (CDC DENV-1-4 Real-Time PCR Assay); Leishmania spp. (SMART Leish), which
has limited availability (military use only); and Trachoma (multiple tests) (329). The
EMA and TGA currently do not have lists of approved IVDs; however, the TGA indicates
that one will be available by July 2022.

As part of the new roadmap for NTDs 2021 to 2030, the WHO has highlighted diag-
nostics as one of four key priority areas (330, 331). As part of this the WHO has estab-
lished a diagnostics technical advisory group (DTAG) for collaborative development of
new diagnostic tools. Key areas of responsibility for the DTAG include reviewing diag-
nostics needs in NTD programs, defining use cases and target product profiles, and
linking with key partners to support test development and validation. A “silver lining”
of the COVID-19 pandemic has been an increase in molecular testing capacity in coun-
tries that previously had low capacity, increasing the likelihood of adoption of molecu-
lar methods, at least in the short term. However, reagent costs may still place tradi-
tional molecular diagnostics for NTDs out of reach.

CONCLUSION

The ideal diagnostic test should be simple, rapid, and low in cost; require few steps;
and exhibit high sensitivity and specificity—features particularly relevant in areas of
endemicity where infection intensity is reduced as the result of MDA programs operat-
ing. Although serological tests, especially dipstick assays, provide diagnostic simplicity,
they can lack sensitivity and specificity and may not distinguish between past and cur-
rent infections, since antibodies generally remain in circulation after drug treatment.
Furthermore, antibody levels do not accurately correlate with parasite burden (61–64,
187). Moreover, the current costs associated with LFIAs prohibit their extensive use in
resource-poor areas of endemicity.

Cellulose-based Whatman FTA cards have been utilized extensively for parasite di-
agnosis and in epidemiological studies. These cards can maintain nucleic acid stability
under less-than-optimal conditions, providing low-cost storage and transport of clinical
samples for subsequent nucleic acid purification. Fusion 5 technology, AOMs, and the
DjinniChip have yet to be tested or utilized for parasite nucleic acid extraction, but
with such promising results obtained for other pathogens using whole blood, saliva,
and buccal swabs, they represent a promising advance (274, 276, 278). These methods
allow for rapid and simple nucleic acid extraction and require only small sample vol-
umes which can be stored at temperatures up to 37°C, while maintaining DNA stability
(276, 278). Given their efficiency for DNA extraction from blood, these methods may be
particularly useful for diagnosing blood-borne parasites.

A major consideration in molecular diagnosis remains the high cost of DNA extrac-
tion. Many NAATs, except for LAMP, remain expensive and complicated, making them
generally inaccessible for POC diagnosis. Therefore, as countries look toward NTD elim-
ination, new nucleic acid purification techniques that are simple, rapid, and more cost-
effective must be developed. The use of membrane technology provides a novel
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avenue for simple and cost-effective parasite DNA purification. Further optimization of
this technology could pave the way for significant improvements in the accessibility of
highly sensitive molecular diagnostic techniques applicable to the most affected
regions of NTD endemicity globally.
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