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animal health and welfare and for the protection of humans from zoonotic patho-
gens. There is a general perception of cats being treated as “small dogs,” especially
in the field of clinical parasitology. As a result, several important differences between
the two animal species are not taken into proper consideration and are often over-
looked. Dogs and cats are profoundly different under evolutionary, biological, etho-
logical, behavioral, and immunological standpoints. These differences impact clinical
features, diagnosis, and control of canine and feline parasites and transmission risk
for humans. This review outlines the most common parasitoses and vector-borne
diseases of dogs and cats, with a focus on major convergences and divergences, and
discusses parasites that have (i) evolved based on different preys for dogs and cats,
(ii) adapted due to different immunological or behavioral animal profiles, and (iii)
developed more similarities than differences in canine and feline infections and asso-
ciated diseases. Differences, similarities, and peculiarities of canine and feline parasi-
tology are herein reviewed in three macrosections: (i) carnivorism, vegetarianism,
anatomy, genetics, and parasites, (ii) evolutionary adaptation of nematodes, includ-
ing veterinary reconsideration and zoonotic importance, and (iii) behavior and
immune system driving ectoparasites and transmitted diseases. Emphasis is given to
provide further steps toward a more accurate evaluation of canine and feline parasi-
tology in a changing world in terms of public health relevance and One Health
approach.

KEYWORDS dog, cat, parasitology, zoonosis, humans, immunology, behavior

INTRODUCTION

Around 50% of people in developed countries live at least with one companion ani-
mal (1). To date, dogs and cats are at the top of the pet list, and this has relevant

implications for their health and welfare and, at the same time, for zoonotic risks for
owners and general public. Accordingly, in the last decades, new insights on canine
and feline parasitology have come in the spotlight of scientific and medical attention
(2, 3).

There is still a general perception that cats and dogs are biologically closely related
and that cats may be treated as “small dogs.” In the parasitology world, this is not the
case, although many parasites and/or transmitted diseases have the same transmission
patterns for canine and feline hosts. Dogs and cats are carnivorous and share biological
(e.g., hunting and territorialism) and artificial (e.g., living in anthropized environments)
traits, which may favor infections and infestations from the same sources. However,
some parasites are species specific, while many others infect/infest both dogs and cats
via similar and different transmission patterns. For many of them, evolutionary, biologi-
cal, anatomical, immunological, and ethological differences (Fig. 1 and 2) are related to
specific host reactions, pathogenesis, and clinical courses. This means that canine and
feline infections/infestations with the same parasite/s may result in completely differ-
ent epizootiological and clinical outcomes. At the same time, infections or infestations
with the same parasites in either dogs or cats may pose completely different risks of
exposure and diseases for people (3).

This article provides an overview of major canine and feline parasites and vector-
borne diseases with cosmopolitan occurrence, with a focus on the potential impact on
human health. The demarcation line between parasitological worlds of dogs and cats
should be kept in mind by veterinarians in their daily practice and by physicians who
must consider canine and feline parasites in their differential diagnosis. The focus of
the article is directed toward the following: (i) ethologic aspects and host-parasite evo-
lution, such as predator-prey relationships and their influence on the epidemiology of
key parasitic zoonoses; (ii) species-specific behaviors limiting or favoring chances of
infection with certain pathogens rather than others, as is the case of pica, coprophagy,
and grooming; (iii) immunological aspects driving various and diverse susceptibility
and clinical courses for significant diseases in cats and dogs; (iv) analogies and
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differences in dog and cat parasitoses in terms of clinical impact for pets and zoonotic
potential. Accordingly, this article is organized into three macrosections, where parasi-
toses are grouped based on crucial factors influencing their biology and epidemiology.
Zoonotic potential and clinical implications for humans are discussed for each parasite.
In the first section, food sources, host intestine anatomy, and variations in parasite
genetic profile are discussed in relation to major dog, cat, and human foodborne para-
sites. The second section describes the coevolution of parasites with their hosts, with
the aim to interpret the differential significance of nematodes affecting dogs versus
cats and their affiliation to humans. Finally, in the third section, the decisive role of ani-
mal behavior and divergences in their immune systems are perused to interpret the
differences in arthropod species and frequency of infestations in dogs and cats; accord-
ingly, the impact these discrepancies have in the occurrence of vector-borne diseases
and related implications for human health are thoroughly examined.

CARNIVORISM, VEGETARIANISM, ANATOMY, GENETICS, AND PARASITES

Numerous parasitoses are transmitted to vertebrates via the ingestion of food or
water. Major foodborne parasitoses are herein discussed in relation to their transmis-
sion patterns. Insights on the parallelisms and diversities on the impacts they have in
canine, feline, and human medicine are provided. Although predation is a main route
of infection for certain feline parasites, these are discussed in the section dedicated to
nematodes, as different factors are involved in their biology.

Toxoplasma for Cats, Neospora for Dogs

Toxoplasmosis and neosporosis in veterinary medicine. The apicomplexan proto-
zoans Toxoplasma gondii and Neospora caninum have many overlapping biological,
epizootiological, and clinicopathological characteristics, with a life cycle relying on car-
nivorism. Nevertheless, they also show major differences: (i) definitive hosts of T. gondii

FIG 1 Dogs are at more risk than cats to acquire infective stages of roundworms, hookworms, trichurids, and
capillarids due to their tendency to ingest nonnutritive material (e.g., feces) from the soil. The close contact between
dogs and farm animals influences the life cycle of Echinococcus granulosus, Neospora caninum, and Sarcoptes scabiei.
Gray human figure, proven zoonotic potential; white human figure, uncertain zoonotic potential/few cases.
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are felids, while those of N. caninum are canids; (ii) T. gondii is a major abortive agent
in small ruminants, while N. caninum causes abortion in cattle; and (iii) the former has
a high zoonotic potential, while the latter has no impact on human health, albeit
human seropositivity, particularly in immunocompromised individuals (4–7). Therefore,
cats and dogs have very different roles as definitive hosts for these parasites in terms
of both abortive relevance for livestock and public health (7).

Domestic and wild felids are the animals in which the enteroepithelial phase of T.
gondii occurs, making them the only spreaders of the parasite in the environment
through shedding of oocysts via their feces (4). Sporulated oocysts from the environ-
ment, tissue cysts in intermediate hosts, and transplacentally or lactogenically trans-
mitted tachyzoites are the source of T. gondii infection for a plethora of vertebrates,
including humans (7). Conversely, dogs and wild canids, as definitive hosts of N. cani-
num (8), are responsible for the infection of a significantly smaller range of vertebrates
that, according to the current data, does not include humans (7, 9).

Toxoplasmosis has a key impact in veterinary medicine due to the abortions in
sheep and goats and neurological disorders in other animals such as dogs and cats,
while its role in causing abortion in cattle is minimal (10). On the other hand, N. cani-
num is a major abortion agent in cattle that is vertically transmitted from the dam to
the calves and has a minor significance for other animals, except for dogs (7, 11). As a
further difference, dogs are susceptible to T. gondii and may suffer from a systemic dis-
ease (12), while cats acquire neosporosis only experimentally (13).

Clinical feline toxoplasmosis is rare and more severe in congenital infections, while
postnatal infections may develop to clinical disease in immunosuppressed cats, e.g.,
those affected by feline immunodeficiency virus (FIV) or feline leukemia virus (FeLV)

FIG 2 Self-grooming reduces the entity of flea infestations in cats but enhances the chance of ingesting larvated eggs
of roundworms. Predation is a main transmission route of feline parasites, such as roundworms, lungworms,
Toxoplasma gondii, and hookworms. The strong feline predatory instinct has influences on host-parasite affiliations, as
in the case of Notoedres cati. Gray human figure, proven zoonotic potential; white human figure, uncertain zoonotic
potential/few cases.
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(14). Furthermore, a clinical disease due to reactivation of an older latent infection may
occur in cats, when immunoregulators (e.g., cyclosporine but not glucocorticoids
administered at the common anti-inflammatory doses) are administered to induce
immunosuppression (14). Most clinical signs in cats involve the central nervous system
and include anorexia, seizures, ataxia, hyperesthesia, uveitis, depression, fever, and
dyspnea. Vertically infected kittens often die from severe pulmonary and hepatic dis-
eases (14).

Clinical neosporosis in dogs may occur at any age after in utero or postnatal infection
(15, 16). A discrimination between congenital and postnatal neosporosis is hard from a
clinical point of view, especially in older dogs. Nevertheless, postnatal transmission is rel-
atively rare, with a likelihood estimated at ,3% for every year of life and mainly linked
to access to raw meat or bovine fetal tissues (15, 17). Congenital infection is independent
from the gestation age, and it is difficult to predict if puppies will be subclinically or clini-
cally affected or will be born healthy, as this differs significantly within a litter. The per-
centage of seropositive puppies born from seropositive dams has been reported to vary
from 3% to 54%, and only a few of those develop lesions and clinical signs (15).
Furthermore, vertical transmission can occur across two generations (17). Congenital
neosporosis usually manifests soon after birth as a progressive paraparesis, with gradual
rigid hyperextension and atrophy of the hind legs, associated with infection of the spinal
cord and skeletal muscles (16, 18). Incoordination and rear limb paralysis are common
initial signs of clinical neosporosis, irrespective of the age of the dog, because of new
infection or through reactivation of a latent infection, congenitally or postnatally
acquired (19). Muscle atrophy, paralysis of the jaw, heart failure, and liver, spleen, kidney,
and lung damage may also occur. The disease may further progress to encephalomyelitis
and/or cerebellitis with tetraplegia, seizure-like signs due to triggering of epileptogenic
foci, dysphagia, and dyspnea, common reasons for euthanasia of affected dogs if a fatal
outcome does not occur before (18, 19). Cases of ulcerative dermatitis have also been
reported in older or immunosuppressed animals (20).

Key role of the immune system. Lifelong protective immunity to toxoplasmosis
develops after the first infection in cats and intermediate hosts, though long-living
hosts, such as humans, may return seronegative (21). In accordance, in most cases, cats
shed oocysts only after the first infection (22–25), and abortion or congenital transmis-
sion usually occurs only after the first maternal infection or after immunosuppression
with parasite reactivation (26). On the contrary, the transplacental transmission of N.
caninum takes place in consecutive pregnancies of both dogs and cattle (10). The dura-
tion of oocyst shedding by infected dogs and the chance of repeated oocyst elimina-
tion in subsequent infections is not clearly determined yet (10). Dogs shed no or few
oocysts after being fed repeatedly with infectious material, and additionally, young
dogs shed higher oocyst numbers than older dogs. There are cases in which dogs were
still shedding oocysts at 4months up to 2.5 years after initial diagnosis (10). In these
cases, immunosuppression could play a role, but definitive conclusions on the oocyst
elimination patterns in dogs with neosporosis are still lacking.

Although T. gondii and N. caninum are very closely related protozoa with similar
genomes, the existing genetic differences are decisive in the interactions with their
hosts. Rhoptry genes lead to distinct relationships with the host immune system, and
the expansion of surface antigen genes of N. caninum are likely implicated in its narrow
host preferences (7). Differences in genes which interplay with the host response are
potentially associated with variations of pathogenicity in intermediate hosts, i.e., T.
gondii being more pathogenic, and of transmission routes, i.e., mainly horizontal versus
mainly vertical for T. gondii and N. caninum, respectively (11). The reasons behind these
differences are attributed to T. gondii and N. caninum differentiation from a common
ancestor, 28 million years ago, after the divergence of their respective definitive hosts,
i.e., cat and dog (7, 11).

Significant differences for humans. Cats have been blamed for the impact of toxo-
plasmosis on public health for a long time, although humans do not become infected
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through direct contacts with cats. As spreaders of T. gondii oocysts in the environment,
cats indirectly contribute to human infections when people ingest (i) raw and
unwashed vegetables contaminated by sporulated oocysts (i.e., oocysts are not mature
before 24 to 48 h after shedding), (ii) tissue cysts in raw or undercooked infected meat
of intermediate hosts, and (iii) raw milk of ruminants, mainly sheep and goat, with
recently acquired infection (27).

Human toxoplasmosis is very common worldwide, and it is estimated that one-third
of the global population is seropositive (28, 29). The infection in immunocompetent
individuals usually remains asymptomatic, though acute toxoplasmosis can manifest
with fever, malaise, lymphadenopathy, hepatosplenomegaly, and ocular involvement
(Fig. 3) (30, 31). Rarely, a severe disseminated disease, including hepatitis, pneumonitis,
myocarditis, myositis, and encephalitis, may occur in immunocompetent patients (32).
In immunocompromised and immunodeficient people, e.g., AIDS patients or transplant
recipients, toxoplasmosis has severe and potentially deadly health consequences,
including necrotizing encephalitis, commonly due to reactivation of a latent infection
in the brain (Fig. 4), and disseminated pulmonary lesions (30, 33). Cerebral toxoplasmo-
sis is the most frequent opportunistic illness in people infected with HIV (30). Another
major implication of human toxoplasmosis is the infection of a fetus that may occur
when a woman acquires the infection for the first time while pregnant or closely
before conceiving. The impact in congenital infections depends on the gestational
age. During the first trimester of pregnancy, the probability of a fetal infection is low
(around 10% to 15%), and abortion is the typical result, while later in pregnancy, the
chances of fetus infection rise (up to ;70%), but the consequences diminish in severity
(34, 35). Congenital toxoplasmosis may lead to severe and fatal damage to the central
nervous system (e.g., cerebral calcifications, micro- or macrocephaly, bulging fonta-
nelle, seizures, abnormal muscle tone, and mental retardation), eyes (e.g., retinocho-
roiditis), and auditory function, though there are also infants born without any symp-
toms (35, 36). Nevertheless, symptoms may appear later in life (months to many years
after birth) and usually include chorioretinitis and neurological disfunctions (37). It has

FIG 3 Ocular toxoplasmosis in a human patient. Colored photography (top left) and fundus fluorescein angiography of
the same eye fundus with visible lesions caused by Toxoplasma gondii (indicated by arrows). (Courtesy of Paris Tranos,
ICO, FRCS; reproduced with permission.)
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also been suggested that congenital toxoplasmosis may be involved in behavioral dis-
orders and psychosis (38).

To date, N. caninum has no proven zoonotic relevance, and its impact in human
pregnancy is nil or at least unknown, as viable N. caninum forms have never been iso-
lated from people thus far (9). Nevertheless, the serological evidence of human expo-
sure and the ability of the parasite to cause fetal lesions in experimentally infected
nonhuman primates and to infect human cells in vitro should spur further studies of
any possible importance of human exposure to N. caninum (6, 9).

At the end, the diverse evolution of T. gondii and N. caninum from their common
ancestor resulted in the adaptation to different hosts and in different zoonotic roles
(7). Definitive hosts of both protozoa become infected mainly by consuming suitable
preys for their species, i.e., rodents and birds for felids and cattle for canids, but only T.
gondii displays zoonotic potential. Given the impact on public health, prevention of
toxoplasmosis is mandatory, especially in immunocompromised individuals and during
pregnancy. Preventive measures include consumption of adequately cooked meat,
thorough washing of fruits and vegetables when consumed raw, safe raw meat han-
dling, and basic principles of personal hygiene (e.g., hand washing after contact with
soil or cat feces).

Echinococcus: Evolutionary and Adaptation Notes

Epizootiological and epidemiological roles of dogs and cats. Echinococcus granulo-
sus sensu lato and Echinococcus multilocularis tapeworms infect carnivores (definitive hosts),
in which adult worms develop in the small intestine (39, 40). Carnivores become infected
when they ingest the larvae (cystic forms) from the viscera of the intermediate hosts (41).
Herbivores and omnivores, e.g., sheep, cattle, goats, pigs, and humans, serve as intermedi-
ate hosts and become infected by ingesting Echinococcus eggs shed in the feces of infected
carnivores. Intermediate hosts harbor the larval forms, i.e., the hydatid and alveolar cysts for
E. granulosus sensu lato and E. multilocularis, respectively, in the liver, lungs, and other
organs and tissues. Very rarely, carnivores may harbor the cysts, which normally develop
only in the intermediate hosts (41), while human cystic (CE) and alveolar (AE) echinococco-
ses have a great impact on public health.

Dogs and other canids are primary definitive host of various Echinococcus species,
including E. granulosus sensu lato, which conversely does not reach adulthood in cats

FIG 4 Toxoplasma gondii bradyzoites (arrow) in human brain. (Courtesy of Simona Gabrielli,
Dipartimento di Sanità Pubblica e Malattie Infettive, Università La Sapienza, Rome, Italy; reproduced
with permission.)
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(40, 41). Adult E. multilocularis may infect dogs and cats, although felines present var-
ied susceptibilities and uncertain roles in transmission patterns in enzootic areas for
E. multilocularis (40, 42, 43). Of the E. granulosus sensu lato group that may infect dogs,
E. granulosus sensu stricto plays the most important zoonotic role, while the impact on
human health of Echinococcus vogeli, Echinococcus ortleppi, and Echinococcus canaden-
sis is minor and that of Echinococcus equinus is nonexistent (44). Felidae of Central and
South America and lions of Africa are the proper definitive hosts of Echinococcus oli-
garthrus and Echinococcus felidis, respectively (45).

The involvement of dogs and cats in the epidemiology of zoonotic echinococcosis is
reversed compared to that of T. gondii and N. caninum (see “Toxoplasma for Cats,
Neospora for Dogs”), as dogs shed infectious Echinococcus eggs into the environment,
while cats have only an unclear role for one single zoonotic species, i.e., E. multilocularis.

Anatomy, biochemistry, and evolution. The reasons why cats are suitable definitive
hosts of E. multilocularis but not of E. granulosus sensu lato are unknown. The eligibility
of a definitive host for Echinococcus species depends on the size of Lieberkuhn crypts
(intestinal glands between the villi, covered with epithelium), which allow adult worms
to attach to the intestinal mucosa (46), but no prominent differences exist between
dogs and cats (15.8 and 17.5mm, respectively) but rather between them and red foxes
(4.8mm) (43). The space needed for E. granulosus sensu lato to establish in the intestine
is bigger than that for E. multilocularis, and this may explain why red foxes are suitable
hosts for E. multilocularis and not for E. granulosus sensu lato (47, 48). Further data are
necessary to understand if crypt characteristics or other anatomical features drive dif-
ferences in the susceptibility of dogs and cats to adult Echinococcus.

Differences in bile compositions between dogs and cats could be the reason why
the latter animals are unsuitable hosts for adult E. granulosus sensu lato (49), because
host bile composition is decisive for the establishment and development of
Echinococcus. As a result, intermediate hosts do not acquire the intestinal infection via
the ingestion of the cysts, and definitive hosts do not develop the larval forms by
digesting eggs, with only scattered exceptions, as described below (41, 50, 51).

The adaptation of E. granulosus sensu lato and E. multilocularis to dogs and cats as
definitive hosts, rather, depends on the predator-prey associations and the animal spe-
cies serving as intermediate hosts. Those of E. granulosus sensu lato are large mammals
(e.g., sheep, cattle, and pigs), while those of E. multilocularis are small rodents such as
muskrats, voles, and mice (43, 52, 53). The main intermediate hosts of E. granulosus
sensu lato can be preyed by dogs but not by cats, while those of E. multilocularis can
be preyed by both. Thus, the ability of E. multilocularis to develop in cats is a factual ev-
olutionary response to its adaptation to rodents as intermediate hosts.

Animals and people: a different clinical impact. The presence of adult Echinococcus
spp. in the intestines of dogs and cats is generally considered minimally pathogenic, and
heavy infections do not cause apparent clinical signs even though the parasites pene-
trate deep between the intestinal villi (54). In the rare cases when cysts of E. granulosus
and E. multilocularis establish in dogs and cats, the health impact in these animals may
be severe. In fact, the development of larval E. granulosus may result in excessive num-
bers of hydatids that fill up all the peritoneal space, causing life-threatening and intense
dilatation of the abdomen, ascites, and organ dysfunction (50, 51). Alveolar echinococco-
sis in dogs is described in highly enzootic areas, i.e., central Europe and North America
(55, 56), with the typical lesions, mainly in the liver but also in the lungs and other organs
(57). The disease is progressive and fatal if left untreated (58). The alveolar cysts of E. mul-
tilocularis are even rarer in cats (56).

Humans are considered dead-end hosts for Echinococcus spp., as they are normally
outside the prey range of definitive hosts (45). Human CE has a worldwide distribution,
with higher rates in South America, Eastern Europe, Southern and Eastern
Mediterranean, the Middle East, some sub-Saharan countries, and Western China,
where free-ranging livestock farming is spread in rural and suburban areas (45, 59).
Genotypes G1 to G3 (sheep/buffalo strains) of E. granulosus sensu stricto cause most
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human CE cases worldwide, in which cysts develop primarily in the liver (Fig. 5) and
lungs and are often fertile (53, 60). The spreading of CE in many parts of the world is
due to the high infectivity of E. granulosus sensu stricto compared to that of other
Echinococcus species (53). Even though CE may be subclinical and the presence of a
cyst(s) is incidentally revealed during imaging examination performed for other rea-
sons (Fig. 6), symptoms associated with the localization of the cysts and the involved
organ(s) are occasionally severe, potentially fatal, and include upper abdominal dis-
comfort, distress, cholestasis, dyspnea or coughing, neurological disorders, and patho-
logical fractures (40, 54, 59). The prevalence of human CE increases with age, causing a
lifelong health issue for infected people and involving significant medical and social
cost. CE is the most geographically distributed Echinococcus infection though underre-
ported both in humans and animals (60, 61).

Human AE displays significant epidemiological and clinical differences compared to
those of CE. As a result of the narrow intermediate host adaptability of E. multilocularis,

FIG 5 Human cystic echinococcosis, large cyst with internal daughter cysts. (Courtesy of Giuseppe
Cringoli, University of Naples, Italy; reproduced with permission.)

FIG 6 Hepatic ultrasonography in a human patient with cystic echinococcosis, presence of multiple
hydatids in the liver. (Courtesy of Enrico Brunetti, Department of Clinical, Surgical, Diagnostic and
Pediatric Sciences, University of Pavia, Pavia, Italy; reproduced with permission.)

Canine and Feline Parasitology Clinical Microbiology Reviews

October 2021 Volume 34 Issue 4 e00266-20 cmr.asm.org 9

https://cmr.asm.org


this metacestodosis is relatively rare in humans, even where it is prevalent in animals
(45). It occurs mostly in Northern and Central Europe, Asia, and North America, with
evidence of expansion in Eastern and Western Europe (59, 62). AE is one of the most
pathogenic parasitic zoonoses in temperate and arctic regions of the Northern
Hemisphere (63) and develops slowly, with the first symptoms appearing the earliest
approximately 1 year up to decades after infection in immunocompetent patients, or
faster in immunodeficient individuals (64, 65). It is an aggressive and often deadly dis-
ease that displays neoplasmatic characteristics (65). The liver is the primary organ
affected by larval E. multilocularis, but the infection may threaten other organs due to
metastatic dissemination and/or infiltration of neighboring sites (64).

CE is one of the few parasitoses for which organized control or eradication efforts
were successfully implemented in some insular areas, but in continental areas, the
decrease of cases is considered a more realistic goal to set (60, 66, 67), and additional
control strategies, e.g., livestock vaccination, could be also considered, especially
because diagnostic hindrances prevent reliable large-scale diagnosis in dogs (60, 67,
68). Unfortunately, similar control measures for E. multilocularis are unrealistic due to
its sylvatic life cycle.

In any case, as a contaminated environment is the primary source of Echinococcus
species infection, prevention on a case-by-case level is achievable by avoiding the in-
advertent ingestion of eggs by applying basic hygiene measures, e.g., washing fruits
and vegetables, drinking only sanitized water, and washing hands after contact with
soil or other potentially contaminated materials. These simple measures are particu-
larly important in areas where Echinococcus spp. are prevalent, e.g., rural territories
shared by sheep and dogs and forested environments with foxes and rodents living in
sympatry. This is also true if one considers the description of human cases caused by
the neotropical species Echinococcus oligarthrus and Echinococcus vogeli, maintained
by small felids and canids preying on rodent intermediate hosts (69), and by the big-
felid-related Echinococcus felidis having large mammals (e.g., hippopotamuses) as inter-
mediate hosts (70).

Protozoa Contaminating Water, Soil, and Vegetables

Giardia, Cryptosporidium, and Blastocystis. Giardia duodenalis (syn., Giardia intesti-
nalis and Giardia lamblia), Cryptosporidium spp., and Blastocystis spp. are protozoa with
a direct life cycle playing a major role in diarrheal diseases of animals and humans (71,
72). Dogs and cats may be infected by these zoonotic parasites, though their involve-
ment as an indirect source of human infections is not fully unraveled yet. The infection
occurs via ingestion of parasite cysts (Giardia spp. or Blastocystis spp.) or oocysts
(Cryptosporidium spp.), shed in the feces of infected individuals into the environment
(72–74).

Eight genotypic assemblages (A to H) are currently recognized within the species G.
duodenalis (75). Most of them infect more than one species, and some have zoonotic
potential. Dogs usually harbor assemblages C and D, and cats harbor assemblage F. Both
may also be infected by assemblages A and B, which have the widest geographic distri-
bution and are primarily found in humans (75–77). In general, dogs are more frequently
parasitized by zoonotic assemblages (i.e., assemblages A and B) than cats (76, 78).

Among the various Cryptosporidium species and genotypes, dogs and cats are pre-
dominantly infected by Cryptosporidium canis and Cryptosporidium felis, respectively,
while Cryptosporidium hominis infects humans (79). In some cases, Cryptosporidium par-
vum and Cryptosporidium muris, which are the species of animal origin most frequently
infecting people, have occasionally been identified in dogs and cats (79).

The traditional names of Blastocystis species initially used were based on the host
from which the isolate originated, e.g., Blastocystis hominis from humans or Blastocystis
ratti from rodents. They have recently been abandoned because of the high genetic di-
versity of the parasite (80, 81). Host specificity as well as pathogenic potential of the
isolates is associated with variations in the small-subunit (SSU) rRNA gene. To date, 22
valid Blastocystis subtypes (STs) have been identified on this basis (80), but no valid
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species has been characterized yet. In humans, 10 subtypes (ST1 to ST9 and ST12) have
been identified. Of these, only ST9 is exclusively found in humans, while the rest may
be considered zoonotic (81). Most (90%) human isolates belong to ST1 to ST4; of these,
the subtypes ST3 and ST1 are also found in dogs, and ST4, a mainly rodent subtype, is
also found in cats (72, 74, 81).

Different parasites: similar epizootiology and clinical manifestations. More simi-
larities than discrepancies are evident in terms of prevalence and involvement in zoo-
notic transmission patterns for giardiosis and cryptosporidiosis in dogs and cats,
although these are very different parasites (82). Puppies and kittens are more often
infected than adults, probably because young animals are naive and less immunocom-
petent, and both animal species have been reported to shed Giardia cysts more fre-
quently than Cryptosporidium oocysts (83–85). This is due to the narrow host range of
Cryptosporidium, i.e., dogs and cats are infected mainly by C. canis and C. felis, respec-
tively, and less frequently by other species such as C. parvum (74, 86). Conversely, the
host range of G. duodenalis is broader, as dogs, and less often cats, may also share ge-
notypes usually infecting other animals (87). Strains of varied pathogenicity have been
identified for both parasites (88), and they cause infections that may remain subclinical
or manifest with gastrointestinal signs such as acute or chronic diarrhea, abdominal
pain, nausea, vomiting, and weight loss (76, 88). For instance, Giardia cysts may be
found in feces of both healthy and symptomatic (diarrheic) animals at similar percen-
tages (85). Other than age and strain involved, clinical presentation of giardiosis is also
influenced by genetic predisposition, coinfections, gut microbiota, nutritional status,
stress, and immunosuppression (89). Analogously, dogs are often subclinically infected
with Cryptosporidium, but when signs are present, they manifest as an acute small-
bowel diarrhea (83). Diarrhea is more common in cats, especially kittens, than in dogs,
and the oocyst shedding may persist for months, with recurrent clinical signs. Factors
that are associated with the infection are weaning or other environmental stress and
nutritional deficiencies, while coinfection with the immunosuppressive feline leukemia
virus does not seem to predispose them to cryptosporidiosis (90).

The clinical impact of Blastocystis species infection in animals has not been thor-
oughly investigated. The infection remains subclinical in most infected dogs and cats
(81, 91), though there are reports of diarrheal episodes (92). Shelter dogs and cats, due
to their living conditions and scarce hygiene, seem to be more at risk of harboring and
shedding Blastocystis spp. than owned pets (91, 93).

Human diseases and pet involvement. The extent of zoonotic transmission of
Giardia and Cryptosporidium from dogs or cats to humans and vice versa is still unclear
(78), although companion animals and people may share different species/genotypes. In
general, dogs and cats are considered to play a limited role as a source of giardiosis to
humans (94, 95). The human infection is caused by assemblages A and B, which are also
considered two separate species (G. duodenalis and Giardia enterica, respectively), and
are isolated from dogs and cats only occasionally (75, 76, 78). However, controversial
results have been generated by molecular characterization of assemblages infecting
dogs, cats, and humans living in the same communities. In some cases, animals and
humans share the same Giardia isolates (96), while in others, the genotypes are different
(94, 95). Three different subassemblages are described within assemblage A: subassem-
blage AI is most commonly found in animals, including cats, while subassemblages AII
and AIII are found mostly in humans and wild ruminants, respectively (78). Moreover,
assemblages more commonly affecting dogs and cats, i.e., C-D and F, respectively, have
been reported in humans only seldom (97). Further large-scale surveys are still necessary
to ultimately ascertain the extent of the zoonotic transmission of Giardia spp., as the
mere detection of the same assemblages in companion animals and humans does not
prove a cross-transmission (82). Human infection occurs via the ingestion of cysts con-
taminating fruits, vegetables, or water, and those infected can either be asymptomatic
or present with diarrhea, epigastric pain, nausea, and vomiting 1 to 2weeks postinfec-
tion (78). This acute phase usually lasts for 1 to 3weeks but, in some cases, may persist
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longer. Self-limiting infections are also frequently observed, and chronic infections are
also possible (78). In rare cases, postinfection implications include irritable bowel and
chronic fatigue syndromes and extraintestinal complications such as cognitive dysfunc-
tion, ocular impairment, arthritis, and myopathy (78). However, the exact correlation of
these clinical sequelae with giardiosis needs further investigation.

Human cryptosporidiosis is more common in developing countries, due to inad-
equate nutrition, hygiene measures, and water quality. Most human infections are
caused by C. hominis and C. parvum, while C. canis and C. felis and other species of ani-
mal origin are relatively rare and account for ;4% of all cryptosporidiosis cases in
developing countries (74, 79, 98, 99). People become infected by ingesting oocysts
contaminating fruits and vegetables, water, and soil. The difference in virulence of vari-
ous genotypes and some factors such as age, general health and immunocompetence,
and prior exposure to the parasite determine the clinical presentation (90). The main
symptom is diarrhea, varying from watery and continuous to scant and intermittent,
and rarely containing blood. Other observed symptoms include fever, loss of appetite,
nausea, vomiting, and malaise, while in some rare cases, hepatitis, pancreatitis, reactive
arthritis, and respiratory implications have been reported (90).

Companion animals have recently been considered more frequently involved in the
transmission of zoonotic Blastocystis than in the epidemiology of human giardiosis and
cryptosporidiosis (74), despite data supporting that cross-infections by Blastocystis
between dogs, cats, and their owners is uncommon (100). Blastocystis strains ST1 to ST9
and ST12 are zoonotic, while ST3 has been classified as primarily anthroponotic and is the
most common subtype in humans (74). Human infection by Blastocystis spp. occurs by the
ingestion of the cystic form of the parasite from the environment (contaminated soil, surfa-
ces, food, and water), and accordingly, close contact with infected animals (e.g., shelter
personnel and owners of infected pets) is hypothesized to be sometimes a risk factor
(101). The infection in humans has a worldwide distribution and is one of the most fre-
quently detected in epidemiological surveys, i.e., both in symptomatic and healthy individ-
uals (93). Nonetheless, the pathogenic role of Blastocystis spp. in both animals and humans
is still controversial (102, 103), as the parasite is sometimes considered an agent of extrain-
testinal and gastrointestinal disorders (abdominal pain, vomiting, urticaria, diarrhea, and
irritable bowel syndrome), while other authors include it in the healthy gut flora (72, 80,
93). It is suggested that only some subtypes may be pathogenic to humans, though ST3 is
present in both symptomatic and asymptomatic individuals (81). In vitro and in vivo assays
have identified specific virulence factors associated with the disruption of the intestinal
barrier (81). For example, ST7 uses hydrolases that cause damage in host tissues.
Nevertheless, numerous other studies have not identified any distinct differences in the
STs isolated from symptomatic versus those from asymptomatic cases. At the same time,
gut microbiota may also be decisive for the pathogenicity of Blastocystis (81). To date, mo-
lecular identification and correlation with clinical manifestation have not ultimately clari-
fied the relation of Blastocystis with clinical symptoms in humans (81); thus, further investi-
gations are warranted to draw any final conclusions.

Overall, the variety of assemblages, genotypes, and subtypes of these protozoa render
their epidemiological tracking complicated. However, the current data show a relatively lim-
ited and even debated zoonotic transmission of Giardia spp. and Cryptosporidium spp. from
dogs and cats and, conversely, a possibly greater potential of Blastocystis spp. to share geno-
types between dogs, cats, and humans. Regardless, these protozoa are of utmost impor-
tance for immunocompromised patients as opportunistic pathogens implicated in severe
and potentially life-threatening diarrheal syndromes (104). The direct life cycle of these para-
sites makes prevention of human infection relatively simple by the application of the sanitary
measures discussed above for Echinococcus spp.

EVOLUTIONARY ADAPTATION OF NEMATODES: VETERINARY RECONSIDERATION
AND ZOONOTIC IMPORTANCE

This section explores the multifaceted world of parasitic nematodes affecting dogs
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and cats, with a focus on their various transmission patterns and coevolution adapta-
tion mechanisms within their hosts. Variability and complexity of evolutionary strat-
egies of the several nematodes harbored by canines and felines are discussed in this
section of the article, with veterinary and public health perspectives.

Roundworms and Hookworms: Masters of Transmission

Biology and transmission patterns. Nematodes of veterinary and public health sig-
nificance may inhabit the small intestines of dogs and cats. The roundworm Toxocara
canis and the hookworm Ancylostoma caninum infect dogs, and the corresponding par-
asites Toxocara cati and Ancylostoma tubaeforme infect cats. Others, like the less dis-
tributed ascarid Toxascaris leonina and the ancylostomatid Uncinaria stenocephala
infect dogs and, less frequently, cats (105, 106). In some geographies, dogs (but no
cats) may also harbor the raccoon roundworm Baylisascaris procyonis (107), and both
dogs and cats can be parasitized by the tropical hookworms Ancylostoma ceylanicum
and Ancylostoma braziliense (105).

As a result of their multiple and highly adapted ways of transmission, the round-
worms T. canis and T. cati are the most widespread helminths of pets, while hook-
worms are more prevalent in dogs than in cats. Roundworms are acquired via various
routes, e.g., ingestion of infective larvae in eggs or paratenic hosts and transplacental
or lactogenic transmission to the fetus or offspring. The fecal-oral route is more impor-
tant in dogs, as they ingest infectious ascarid eggs from the environment (Fig. 1) more
often than cats (108, 109). Toxocara spp. are also transmitted via paratenic hosts, and
this is particularly important for T. cati, due to the feline predatory instinct. It is occa-
sional that dogs and cats become infected with roundworms by preying and ingesting
infective eggs when self-grooming, respectively, (Fig. 2) (106, 110–112).

Vertical transmission plays a key role in T. canis life cycle. Bitches are a primary
source of infection for puppies, via the reactivation of arrested somatic larvae and the
subsequent transplacental and lactogenic infection of the offspring (106). Conversely,
prenatal infections with T. cati do not occur, while the lactogenic transmission takes
place only when a queen acquires the nematode at late pregnancy, as cats are not as
permissive as dogs for somatic larval arrest and reactivation (113). The reasons for
these biological differences among roundworms likely rely on immunity mechanisms.
Murine models have shown that a predominant T helper type 2 (Th2) response occurs
after or in concomitance with a downmodulation of T helper type 1 (Th1) response
during chronic T. canis infection with somatic larvae (114). Thus, the commonly Th1-
oriented immune responses of cats (115) may impair the establishment of somatic lar-
vae. These features could also explain why cats, in contrast to dogs and a range of
other vertebrates, have never been reported to have larva migrans syndromes by B.
procyonis (116, 117).

The infection of dogs with B. procyonis occurs after the ingestion of larvated eggs
from the environment or by ingesting infective larvae in rodent paratenic hosts (117,
118). Indeed, the role that dogs play in the biology and epizootiology of B. procyonis is
unusual, as they act as both definitive (i.e., develop patent intestinal infections) and
paratenic (i.e., suffer clinical larva migrans) hosts (119, 120). It is also singular that dogs
are the only nonprocyonid animal species infected by B. procyonis, and this is of impor-
tance, as people may inadvertently ingest eggs which have become infectious in the
environment. Cats do not develop intestinal infections or suffer larva migrans syn-
dromes caused by this parasite, and similarly, no other carnivore is permissive for B.
procyonis. The reasons are hard to determine, and this biological feature seems a para-
sitological paradox, considering that a common source of infection is represented by
paratenic hosts that are preyed by cats, coyotes, and foxes and that these carnivores
live in sympatry with raccoons in many areas enzootic for B. procyonis (118). A low level
of adaptation of this parasite to nonprocyonid hosts due to a recent host-switching
event spurred by a rise of raccoon populations and simultaneous conurbation could
be at the basis of the occasional occurrence of this roundworm in dog populations
(118). It is unknown if B. procyonis will adapt also to cats in the future and if, as other
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ascarids (e.g., T. leonina), it will infect wildlife and domestic dogs and cats in areas of
sympatry.

The predation of paratenic hosts could result in the infection of pets by ancylosto-
matid hookworms, but the primary sources of infection are third stage larvae (L3) in
the environment that invade the definitive host by skin penetration or ingestion (106,
121). In most geographic areas, the prevalence of hookworms in dogs is higher than in
cats (122–124). While A. caninum is transmitted vertically via lactation, cats (as in the
case of T. cati) are not permissive to the establishment of somatic larvae of A. tubae-
forme. Moreover, A. tubaeforme and U. stenocephala are not as successful as A. caninum
in percutaneous infections (106, 112), and this reduces the infection chances for cats.
Dogs are at higher risk than cats of acquiring hookworms from the soil (Fig. 1). This is
important considering that the main transmission route of U. stenocephala is fecal-oral,
as L3 survive in the environment for months, even at low temperatures (125).
Conversely, A. caninum and A. tubaeforme L3 are less resistant and survive only a few
weeks in the environment (105). This explains why U. stenocephala is more common in
dogs than in cats and also more frequent than A. caninum in dogs in certain areas (126,
127). The tropical species A. ceylanicum and A. braziliense are very similar species in
terms of biology, epizootiology, geographic distribution, and transmission patterns.
Their life cycles are similar when animals ingest L3, while A. braziliense has a quicker
development when larvae invade the skin (128).

Danger for dog and cat small bowels. Roundworms live free in the lumen of the
small intestine, eating the nutrients they need from its content (Fig. 7). Mild infections
are usually subclinical, while clinical signs are evident during larval migration and intesti-
nal infections of moderate or high parasitic load. Migration of larval worms causes pneu-
monia, cough, nasal discharge, and pulmonary edema, which can potentially be fatal in
puppies after a heavy transplacental infection (112). Adult worms induce enteritis charac-
terized by vomiting, diarrhea, ascites, anorexia, emaciation, poor coat, nasal discharge,
dysbacteriosis, and pot belly in both dogs and cats. Heavily infected animals may present
episodes of vomitus and/or diarrhea with worms expelled spontaneously (Fig. 8). Heavy
infections may lead to the death of puppies and kittens due to intestinal obstruction or
occlusion, duodenum dilatation, peritonitis, rupture of the intestine, penetration into the
peritoneal cavity, hemorrhage, or bile and pancreatic duct blockage (106).

Hookworms are considered among the most pathogenic nematodes parasitizing
dogs and cats, as they may cause severe intestinal damage resulting in a fatal outcome,
depending on different factors, including the species involved (e.g., A. braziliense and

FIG 7 Endoscopic visualization of Toxocara cati in a cat. (Courtesy of Enrico Bottero; reproduced with
permission.)
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U. stenocephala are mildly pathogenic, while A. caninum causes important exsanguina-
tion) (106, 129). Both immature and adult worms bite the gut mucosa and continu-
ously suck blood, causing clinical signs and high death rate, especially in puppies and
kittens that have a limited ability to compensate for blood loss (106, 129). Animals may
suffer enteritis, hemorrhagic diarrhea, iron deficiency anemia, weight loss to cachexia,
reduced growth, circulatory collapse, lethargy, and lack of stamina (106, 112).

Danger for the human body. Toxocara canis is traditionally acknowledged as a
globally distributed major zoonotic parasite, while the role of T. cati in human infec-
tions requires further investigations, as it may have been erroneously underestimated
for a long time (106, 130). Recent surveys indicate that Toxocara species eggs are found
more commonly in sandpits rather than the soil of parks and that T. cati is the most
common roundworm in urban areas (131, 132).

Humans can suffer larva migrans syndromes when they inadvertently ingest
Toxocara infective eggs from the soil or infective larvae in paratenic hosts. After infec-
tion, the larvae wander throughout the body via the bloodstream and settle in tissues
and organs, where they do not reach adulthood but cause local reactions and lesions.
Though some infections are asymptomatic, two major syndromes may occur, i.e., vis-
ceral larva migrans (VLM) and ocular larva migrans (OLM). The former involves mainly
the liver and lungs (and sometimes the brain, causing cerebral larva migrans), while
the latter involves the eyes and optic nerve (130). Severe symptoms are frequent in
children, particularly toddlers, affected by VLM, which is characterized by signs that
vary according to the localization of the larvae, e.g., pneumonitis, myocarditis, necrotic
hepatitis, meningoencephalitis, seizures, and neuropsychiatric signs (133–136). Clinical
signs of OLM are also often serious and range from impaired vision to glaucoma,
detachment of the macula, and total loss of sight (136). Unfortunately, many cases of
OLM may resemble a retinoblastoma, and erroneous diagnoses cause unnecessary eye
enucleations (110). Other minor syndromes exist, e.g., long-term exposures to

FIG 8 Adult Toxocara canis in the vomitus of a massively infected dog. (Courtesy of Eleonora Grillotti,
Ambulatorio Veterinario Reate, Rieti, Italy; reproduced with permission.)
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migrating larvae in some anatomical sites may cause nonspecific respiratory, neurolog-
ical, and behavioral signs (137–139) or more specific skin diseases (136, 140). Cases of
adult T. cati passing from the anus or the mouth of children have been published, but
these events have been attributed to ingesting worms from vomitus or feces of an
infected cat (141, 142). Toxocara leonina is not considered zoonotic, although old
records have posed some suspicions on its ability to cause infections in humans, albeit
never ultimately confirmed (106).

From a clinical point of view, B. procyonis is probably the most harmful zoonotic ascarid.
This is a key parasite of the domestic animal-wildlife interface, especially in regions of
North America where it causes intestinal infection in raccoons and may also parasitize
dogs (107, 143). The relocation of raccoon populations from their native regions to Europe
has introduced this zoonotic agent in new areas, and consequently, B. procyonis is now
present in Central and Northern Europe (144–147). The proximity of raccoons to humans
and pet populations is a key health risk, because eggs of B. procyonis survive and retain
their infectivity for years, being a source of infection for wildlife, paratenic hosts, and dogs
(148). Dogs infected by B. procyonis may be more dangerous than raccoons, because they
defecate indiscriminately while raccoons have “latrines,” i.e., defined areas for defecation
(149). Accordingly, the results of a recent study where Baylisascaris species eggs were
recorded in the feces of domestic dogs in various regions of the United States are of high
public health concern (120). In fact, infected dogs may spread B. procyonis ova into the
environment, where they can become infectious and then inadvertently swallowed by
human beings, as happens for Toxocara. Though the ability of B. procyonis to develop in
the intestines of dogs is undisputed, the real infection rate could be overestimated, as
some dogs have spurious infections, i.e., they shed Baylisascaris eggs due to ingestion of
raccoon feces (120). Dogs are more prone to pica and coprophagy than cats (108, 109),
and this adds another reason why cats do not have any role in the transmission pattern of
this harmful parasite. Notwithstanding, the factual role of dogs in causing human larval
syndromes by B. procyonis is unknown. Cases of OLM by B. procyonis from South America
have been attributed to animals other than raccoons, including dogs (150). As with other
animal roundworms, humans become infected with B. procyonis by inadvertently ingesting
larvated eggs. The larvae cause a deadly neural larva migrans (NLM) syndrome but may
also induce OLM, VLM, a diffuse unilateral neuroretinitis, and covert infections. The number
of described human cases of NLM caused by B. procyonis is relatively low, but its pathoge-
nicity renders the control of infection in populations of domestic animals fundamental,
given that this parasite causes permanent and life-threatening cerebral damage (151).
Importantly, B. procyonis is difficult to recognize in dogs, as this infection is unexpected.
Roundworm eggs are usually not subjected to thorough microscopic analysis, which
would allow the discrimination between Toxocara spp. and B. procyonis. In fact, Toxocara
spp. and Baylisascaris spp. present microscopic similarities (Fig. 9) requiring an experienced
operator to discriminate them (117).

Dogs and cats act as dissimilar sources of hookworm infections for people, because
animal ancylostomatids have various degrees of zoonotic potential and different geo-
graphical distributions. Humans suffer when L3 present in the soil enters the skin and
causes cutaneous lesions ranging from local irritation to a cutaneous larva migrans
(CLM) syndrome. In some cases, animal hookworms induce ocular or neurological signs
and intestinal diseases.

The U.S. CDC states CLM to be a “zoonotic infection with hookworm species that do
not use humans as a definitive host, the most common being Ancylostoma braziliense
and Ancylostoma caninum” and that it “has been associated with Ancylostoma caninum,
Ancylostoma braziliense, and Uncinaria stenocephala, which are all hookworms of dogs
and cats.”

However, the role of animal hookworms in causing human diseases was questioned
already a decade ago (105, 106). It is established that A. braziliense is the agent of CLM
in humans, causing typical dermatitis with cutaneous serpiginous tracks (Fig. 10). In
general, the geographic distribution of CLM overlaps that of A. braziliense (152, 153),
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and the disease is endemic in (sub)tropical regions of the Southern Hemisphere, being
absent in areas where this hookworm does not occur. Nonetheless, recent literature
analyses have described cases of presumed CLM in Europe (105, 154–156) based on
clinical presentations and epidemiological considerations, while unequivocal identifica-
tion of the causative agent was not provided. Thus, the factual roles of A. caninum, A.
tubaeforme, and U. stenocephala as agents of cutaneous lesions and CLM are still
unclear. The ability of A. tubaeforme and U. stenocephala to infect humans is question-
able, because they have a negligible ability to penetrate human skin (105, 106), while
A. caninum is proven to cause local lesions (e.g., papular/pustular eruptions) rather
than serpiginous tracks typical of CLM (157–159). Other conditions occasionally attrib-
uted to A. caninum are myositis, unilateral subacute neuroretinitis, and eosinophilic en-

FIG 9 Microscopic similarity between Toxocara (left) and Baylisascaris (right) eggs.

FIG 10 Serpiginous tracks caused by cutaneous larva migrans in a human patient. (Courtesy of Flavia
Stangherlin; reproduced with permission.)
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teritis (160–163). A recent case of CLM in Ecuador was attributed to A. caninum, based
on the presence of hookworm-infected dogs in the areas where the patients lived,
though, again, no identification of the causative agent in the human skin was per-
formed (164). Although infections by adult A. caninum have been described (165), A.
ceylanicum is the key animal hookworm that can mature in the human bowel and
cause patent infections, though it may also cause an OLM-like syndrome (166). Dogs
and cats are reservoirs of A. ceylanicum for human infection, especially where this nem-
atode is enzootic, i.e., in rural areas of Southern and Pacific Asia, where it is the second
most common hookworm in people (167, 168).

Overall, larvated eggs of ascarids are of major epizootiological and epidemiological im-
portance, especially due to (i) their resistance in the soil even under harsh conditions, (ii)
the huge numbers of elements shed by infected animals, and (iii) their global geographical
spread (106). In wide regions of North America, and in some Europe territories, dogs shed-
ding B. procyonis eggs due to spurious or real infection are a potential source of a deadly
disease for people (107). Regarding ancylostomatids, both dogs and cats may contaminate
the environment, causing human CLM (A. braziliense) and intestinal infections (A. ceylani-
cum) in subtropical and tropical regions (105, 166). In the Northern Hemisphere, dogs
infected with A. caninum are the source of soil contamination and thus of human infection,
resulting in clinical conditions caused by migrating larvae. Nonetheless, the apparent rise
of autochthonous CLM in Europe and a possible current and/or future spreading of A. bra-
ziliense in warmer areas of Europe deserve further investigations, as it has been hypothe-
sized that global warming could foster the spread of tropical hookworms in areas of the
Northern Hemisphere where they are not endemic (154).

Trichuridae and Capillariidae: Still Incomplete Knowledge

Current data and missing information. The whipworm Trichuris vulpis inhabits the
colons and ceca of dogs worldwide, while felid whipworms are extremely rare and
poorly studied. Also, the taxonomical status of felid Trichuris is controversial: two spe-
cies, i.e., Trichuris serrata and Trichuris campanula, have been reported from cats, but
incomplete descriptions and the presence of overlapping features have led to the hy-
pothesis that they belong to a single species named Trichuris felis (110, 169–171).
Capillaria aerophila infects trachea and bronchi of cats and dogs (172) and may infect
humans as well (173), while the closely related Capillaria boehmi (syn. Eucoleus boehmi)
has a narrow host range and no zoonotic potential (174, 175).

While many aspects of the clinical role of Trichuris spp. and Capillaria spp. in animals
have been recently investigated, their current impact on human health is still far from
being clarified.

Clinical impact in dogs and cats. The rarity of whipworms in cats may be attributed
to the absence of paratenic hosts in the Trichuris life cycle that, instead, play a crucial
role in the transmission of other intestinal nematodes to cats (see “Roundworms and
Hookworms: Masters of Transmission” above). To date, cats infected by whipworms
have been reported only in Australia and in tropical and subtropical areas of North and
South America (170, 171, 176–178). This geographical distribution overlaps that of the
human whipworm Trichuris trichiura, which occurs mainly in regions with a warm and
humid climate (179). Whipworms have a direct life cycle, with the embryonated egg
being the infective stage (110, 169). Experiments have shown that the embryonation
of trichurid eggs is temperature dependent, and although no data are available on the
embryogenesis of cat whipworms, it is likely that their eggs share similar biological fea-
tures with T. trichiura, which optimally develops and rapidly becomes infective at high
temperatures (128). In contrast, T. vulpis eggs can survive in the soil even under harsh
conditions and in cold climates and contaminate the ground all over the world (169,
180). Given the positive influence of temperature on trichurid egg maturation, global
warming could permit the spread of the feline species T. felis to new areas (171, 178).
Therefore, a careful morphological evaluation (and eventually, molecular confirmation)
should always be performed in the presence of barrel-shaped or lemon-like eggs
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retrieved by fecal examination of cats. Further studies are also warranted in order to
clarify the clinical impact of feline trichurosis.

Once ingested, embryonated eggs of Trichuris spp. hatch in the large intestine.
Differences in terms of specific bacterium-induced hatching patterns have been dem-
onstrated in vitro for Trichuris muris and Trichuris suis eggs (181). This close interaction
between Trichuris species eggs and the animal microbiota can be explained by the
coevolution process between the parasite and the host and is suggested to result in a
host-specific hatching stimulus (181, 182). Considering that dogs and cats have differ-
ent microbiota (183, 184), it can be argued that the different prevalences of whip-
worms in dogs and cats are related to different levels of coevolution between the para-
sites and the host microbiota.

The lungworm species C. aerophila lacks host specificity and infects a wide range of
wild animals, such as felids, canids, mustelids, and humans (185–188). Conversely, the
closely related C. boehmi lives beneath the epithelium of nasal cavities and sinuses of
dogs and wild canids, but it has never been recorded in cats or humans (174,
189–191). The reasons for these differences in terms of host specificity, though these
are very closely related nematodes, have never been investigated and are unknown.

Whipworm in dogs may lead either to subclinical infections or to acute or chronic
enteritis (Fig. 11) (169). Common clinical signs are reduced growth rate, bouts of
watery or hemorrhagic diarrhea alternating with periods of normal stools, weight loss,
lethargy, dehydration, anemia, hyponatremia, and hyperkalemia (110, 169, 180, 192,
193). Sometimes, anemia and dehydration may lead to a fatal outcome (169).
Conversely, whipworm infection in cats is described as a disease with a low clinical im-
portance (177, 194), and typhlitis has been reported only recently (178).

Respiratory capillariases are often subclinical, though adult worms induce lesions in
airways, leading to respiratory signs in both dogs and cats (172, 195–198). Chronic
cough, tracheal hypersensitivity, bronchovesicular sounds, nasal discharge, sneezing,
wheezing, and dyspnea have been described in animals infected by C. aerophila (195,
199, 200). High parasitic burden, mixed infections with other lungworms, and immuno-
deficiency may lead to life-threatening bronchopneumonia and respiratory failure
(172, 195). Clinical signs of nasal capillariasis can be unapparent, but sneezing, reverse
sneezing, nasal discharge, epistaxis, gagging, and impairment of the scenting ability
are often recorded (197, 198, 201, 202). Neurological disorders due to ectopic localiza-
tion or migration of C. boehmi are occasionally a cause of meningoencephalitis and
cerebral granulomas (191, 203).

Zoonotic infections: what is the real hazard? Human trichurosis is caused by the
host specific species T. trichiura. Although T. trichiura DNA has been isolated from feces
of dogs and cats (204, 205), to date, there is no scientifically sound evidence of its abil-
ity to infect these animals. Eggs or DNA passed in feces do not necessarily correspond

FIG 11 Endoscopic visualization of Trichuris vulpis infection. (Courtesy of Enrico Bottero; reproduced with permission).
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to infection of the host but rather could indicate a passive transit through the host gut
(“pseudoparasitism”). This phenomenon is a common event, e.g., eggs of the feline
roundworm T. cati have been found with high prevalence in dog feces (206, 207). Thus,
the presence T. trichiura eggs in canine and feline stool samples can be the result of
coprophagy or of egg ingestion from the environment via contaminated food or water.
Therefore, cross-transmission of T. trichiura between humans, dogs, and cats is
excluded. Anyway, as dogs are more prone than cats to coprophagy and to ingest soil
material (108, 206), studies investigating their role as mechanical transmitters of T. tri-
chiura (and for other soil-transmitted parasites such as the human roundworm Ascaris
lumbricoides) eggs in sympatric settings would be important from an epidemiological
point of view.

The transmission of T. trichiura in humans occurs via ingestion of embryonated
eggs through food or soil contaminated with human feces (208). The highest preva-
lence of the infection is recorded in developing tropical and subtropical regions, where
standards of hygiene are poor and the warm and humid climate is favorable for the de-
velopment of the eggs (208). Human infection is characterized by gastrointestinal
symptoms such as abdominal pain, painful passage of stools, mucus discharge, diar-
rhea, and chronic anemia in heavy infections (209, 210). Children may develop the so-
called “massive infantile trichuriasis,” a severe disease associated with malnutrition,
iron deficiency anemia, chronic mucoid diarrhea, rectal bleeding, rectal prolapse, and
finger clubbing (211–213). The disease contributes to chronic, long-term nutritional
morbidity, and it is incriminated as a cause of cognitive impairment (208, 214).

Two whipworms of animals have been incriminated to have a zoonotic ability, T.
vulpis and the pig whipworm Trichuris suis. While T. suis may indeed infect people
(215), ultimate evidence is yet to be generated for T. vulpis. Reports of human infec-
tions by T. vulpis exist in the medical literature, but its zoonotic potential is question-
able because of the lack of sufficient morphological and molecular validation. This
nematode has been identified in a few human clinical cases based on the size of eggs
shed by allegedly infected people (216–218). Though eggs of T. vulpis and T. trichiura
have different sizes, it has been proven that T. trichiura occasionally produces large
eggs resembling those of T. vulpis (219). Worms identified as T. vulpis were also found
in feces of infected children (220, 221). Nevertheless, in these cases, morphological
descriptions were lacking, and findings were not molecularly confirmed. Recent sur-
veys have confirmed that T. vulpis DNA can be isolated from human feces (204, 205,
222), but the ability of the parasite to establish in the human bowel was not proved,
and the possibility that the eggs were ingested from the environment was not
excluded (204, 205, 222). To date, ultimate evidence of human patent intestinal infec-
tions by T. vulpis (e.g., endoscopic visualization of adult parasites in the large intestine
followed by microscopic and genetic identification of the worms) has not been pub-
lished. Two cases of VLM caused by T. vulpis were described 40 years ago in Japan
based on immunological methods (223). However, parasite larvae were not found in
the tissues, and again, findings were later considered uncertain (169, 224). In another
case, histological and immunological methods were applied to diagnose a presump-
tive VLM caused by T. vulpis, but an unequivocal identification of the parasite was not
provided because of the morphological similarity between T. vulpis and other Trichuris
spp. in histological sections and because other Trichuris species (e.g., T. trichiura or T.
suis) antigens were not included in the immunodiagnosis (225).

Clinical signs in presumptive cases of human infection by T. vulpis are poorly described,
with no definitive evidence of the ability of this parasite to cause compatible intestinal
symptoms. As an example, chronic diarrhea, abdominal pain, and vomiting have been
reported in a woman from the United States diagnosed with a patent mixed infection by
T. vulpis and T. trichiura only based on egg size (218). Furthermore, clinical signs were unre-
ported when T. vulpis DNA was detected in human feces (204, 205, 222).

On the other hand, C. aerophila is a zoonotic parasite, although thus far, only a lim-
ited number of human cases have been published (186, 226–231). Fifteen different
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haplotypes of C. aerophila have been molecularly characterized from dogs, cats, and
wildlife, but possible differences in their zoonotic roles have never been investigated
(187). Transmission patterns in humans are also unknown, although the inadvertent
ingestion of embryonated eggs is the most likely way of infection for people. Clinical
symptoms include coughing, mucoid or blood-tinged expectorates, fever, dyspnea, fa-
tigue, and eosinophilia (186, 228–230). Bronchial carcinoma-like lesions (Fig. 12) have
also been described in the last published case of human infection by C. aerophila (186).
However, pulmonary capillariasis in humans is still neglected, and the infection could
be underdiagnosed because the symptoms overlap those of a plethora of other respi-
ratory diseases (172).

At the end, these nematodes pose a minor hazard for human health. The actual role
of T. vulpis as a cause of zoonosis must be further clarified and should be evaluated
cautiously, keeping in mind that T. vulpis DNA in human feces has been detected in ru-
ral areas, where eggs of T. trichiura are found in canine stool samples, advocating for
accidental parasite element ingestion from a highly contaminated environment (204,
205). Accordingly, patterns of transmission of C. aerophila in areas where foxes, i.e., the
natural reservoir of these parasites, are sympatric with dogs and cats need further
investigation. Furthermore, the knowledge about the epidemiological role of dogs and
cats in human pulmonary capillariasis and the impact of this infection on human
health is still scant.

Heartworms and Lungworms: To Be or Not To Be (Infected)?

Terminology and classification. The use of the traditional terms “heartworm” and
“lungworm” for cardiopulmonary nematodes of dogs and cats is confounding. The most-
known extraintestinal nematode of companion animals is Dirofilaria immitis, transmitted
by the bite of infected mosquitoes. This nematode is commonly called “canine heart-
worm,” although it inhabits the pulmonary arteries and is found in the right heart cham-
bers only under some circumstances (232). The localization in the pulmonary vessels
determines the nature of canine heartworm disease or dirofilariasis, which is, paradoxi-
cally, a primarily pulmonary disease that involves the heart only in later stages (233). This
parasite is a major threat for dog health due to its pathogenic potential and its spread to
many European and U.S. areas, which occurred by the 2000s (233). Angiostrongylus vaso-
rum, classically known as the “French heartworm,” is transmitted with the ingestion of in-
termediate (terrestrial gastropod) or paratenic hosts. It lives in the pulmonary arteries of

FIG 12 Bronchial biopsy sample from a human patient. Capillarid eggs (square magnification)
surrounded by necrotic tissue and eosinophilic infiltration. (Courtesy of Dušan Lalo�sevi�c, Faculty of
Medicine, University of Novi Sad, Serbia; reproduced with permission.)
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dogs, though commonly referred to as a “lungworm” (234, 235). The nematodes that
parasitize the airways of dogs and/or cats (i.e., true lungworms) are the metastrongyloid
Filaroides/Oslerus spp., Aelurostrongylus abstrusus, Troglostrongylus brevior, and Crenosoma
vulpis, all acquired by the ingestion of intermediate (terrestrial gastropods) or paratenic
(small vertebrates) hosts, and the capillarids C. aerophila and C. boehmi, having a direct life
cycle with terrestrial invertebrates acting as facultative intermediate hosts (172, 236, 237).
These nematodes have a null to minor zoonotic potential, as humans can be accidentally
infected only by D. immitis and C. aerophila (232, 238). However, people can be parasitized
by two closely related metastrongyloids affecting rodents, i.e., Angiostrongylus cantonensis
and Angiostrongylus costaricensis (239, 240).

Nematodes, arteries, and macrophages. Nematodes inhabiting the blood vessels
infect mainly dogs, while cats are typically parasitized by worms living in the airways.
Accordingly, Dirofilaria and Angiostrongylus are of major importance in dogs and of
less concern in cats, and lung infections by A. abstrusus and T. brevior are of utmost in-
terest in feline medicine (241, 242). An opposite situation occurs in dogs, because the
infections by worms of airways, i.e., Capillaria spp. and C. vulpis, have low prevalence
and minor clinical importance compared to those of D. immitis and A. vasorum (243).

Helminths are excellent manipulators of host immune system and powerful toler-
ance inducers (244, 245), and they have evolved so to downregulate the immune
response of different cell populations in tissues and host environments. A key example
is given by D. immitis (246), which causes a typical chronic illness in dogs, while in cats,
it is the agent of an unpredictable disease, ranging from subclinical to acute events
and sudden death (233, 247). The unsuitability of cats as hosts of D. immitis is associ-
ated with feline heartworm-associated respiratory disease (HARD), an acute eosino-
philic response caused by the arrival and early death of immature D. immitis in the pul-
monary vessels (248). Although HARD may pass unnoticed in many cases, cats develop
severe lung lesions and display signs similar to those of asthma or allergic bronchitis
(247, 249). This eosinophilic reaction derives from the activation of pulmonary intravas-
cular macrophages (PIMs) (250), i.e., specialized phagocytes that permanently reside in
the pulmonary capillaries of cats (246). In some cats, despite the initial HARD phase,
adult D. immitis establishes and produces molecules that downregulate PIMs, ensuring
parasite tolerance (247). The death of adult D. immitis interrupts the anti-inflammatory
effect of parasite secretions, thus setting the background for severe lung lesions,
thromboembolism, and sudden death (246, 247, 251). This is a mechanism that does
not occur in dogs, because PIMs are absent from their pulmonary vessels (246). Thus,
the arrival of D. immitis L5 in the pulmonary arteries of dogs is followed by adult devel-
opment, leading to a classical chronic infection (233).

Being unsuitable hosts for D. immitis, patent dirofilariasis is rare in cats (247), in
which, similarly, there are no records of patent angiostrongyliasis, as only immature
Angiostrongylus chabaudi and A. vasorum have been described (242, 252–254). A rela-
tively narrow host range of A. vasorum and its primary affiliation to canids (255) may
explain the inability to complete its life cycle in domestic cats. Likewise, the closely
related A. chabaudi, whose natural host is the European wildcat (Felis silvestris)
(256–259), has a specific adaptation to wildcats, likely due to downregulatory mecha-
nisms which do not occur in domestic cats. It is plausible that wildcats have PIMs, as
they are very closely related to Felis catus. Therefore, the host-parasite coevolution has
likely led to PIM downregulation induced by A. chabaudi in the natural host in parallel
with the downregulation of pulmonary alveolar macrophages (PAMs), as observed for
A. vasorum in dogs (260). In fact, a downregulatory mechanism has been developed by
adult A. vasorum toward canine PAMs as a survival strategy (260). Active PAMs would
normally produce a more intense eosinophilic response toward A. vasorum first stage
larvae (L1) that hatch and penetrate alveoli and would result in more severe lung dam-
age with destruction of the larvae (260).

From an evolutionary standpoint, D. immitis has adapted to cats to a greater extent
than A. chabaudi, due to (i) the wide distribution and high density of domestic and

Morelli et al. Clinical Microbiology Reviews

October 2021 Volume 34 Issue 4 e00266-20 cmr.asm.org 22

https://cmr.asm.org


wild canids acting as definitive hosts of D. immitis and (ii) the transmission via active
vectors which may bite both canids and felids (233). Conversely, A. chabaudi is not
actively transmitted by vectors, and the natural reservoir is elusive and lives mainly in
forests and remote wild habitats, thus resulting in a low parasitic pressure on domestic
cats.

Animals, airways, macrophages, and age. The cat lungworm A. abstrusus inhabits
the terminal bronchioles, alveolar ducts, and alveoli of cats worldwide (241, 261).
However, no similar parasites exist in canids. This lungworm is closely related to A.
vasorum with which it has overlapping life cycles but different sites of parasitism.
While larval A. vasorum stops inside the vessels and reaches adulthood in dogs (262),
A. abstrusus perforates them to reach the lung parenchyma (263). Both A. abstrusus
and A. vasorum belong to the Angiostrongylidae family and have a monophyletic rela-
tionship within the Carnivora order (264, 265). Therefore, after the divergence of cats
and dogs from a common ancestor (264), A. abstrusus could have evolved differently
from A. vasorum (and A. chabaudi) to escape PIM activity and take refuge inside the
lungs (265). The immune response of cats is mostly directed toward A. abstrusus eggs
and larvae rather than adult worms, as also happens in dog angiostrongyliasis, where
inflammatory infiltration is triggered around A. vasorum larvae (265, 266). This suggests
a downregulating action elicited by adult angiostrongylids and further supports the ex-
istence of similar mechanisms induced by A. chabaudi in its definitive host.
Analogously, other mammals possessing constitutive PIMs, i.e., cattle, horses, pigs,
sheep, goats, pigs, reindeer, and rabbits (246, 267), are not commonly parasitized by
nematodes in pulmonary vessels but rather by those inhabiting the airways (128), and
the majority of Angiostrongylus spp. inhabiting pulmonary vessels are adapted to ani-
mals lacking PIMs, i.e., dogs, rodents, and mustelids (268, 269).

Nematodes inhabiting lung parenchyma and airways of canids (i.e., Oslerus osleri,
Filaroides hirthi, and Filaroides milksi) are extremely rare (174). These filaroids have a
direct life cycle, which seems a less successful transmission strategy, as the lack of in-
termediate and/or paratenic hosts reduces considerably their transmission patterns
compared to those of other respiratory parasites (174).

The importance of the crenosomatid C. vulpis in canine medicine is limited com-
pared to that of the crenosomatid T. brevior in cats. While the latter seriously threatens
the lives of cats, especially kittens (261, 270), C. vulpis usually infects dogs aged
.1 year, and its pathogenicity is limited (174, 271, 272). Conversely, feline troglostron-
gylosis is of main concern, as T. brevior is vertically transmitted and causes irreversible
pulmonary hypertension, airways occlusions, and death (261, 270, 273). Although C.
vulpis and T. brevior are closely related, a vertical route of infection has been described
only for the latter (273). This biological difference could be attributed to the dissimilar
reproductive features of their natural reservoirs, i.e., the red fox for C. vulpis and the
European wildcat for T. brevior (172, 274). European wildcats are scarcely prolific, and T.
brevior may have adapted to vertical transmission to amplify its dissemination (275).
This strategy is not necessary for C. vulpis, as foxes are prolific and ubiquitous (276).
The broader host range of C. vulpis (277) further supports the lack of necessity for this
parasite to develop additional transmission routes. It is worth noting that, similarly to
A. chabaudi, T. brevior is a typical parasite of European wildcats. Nevertheless, troglo-
strongylosis is of primary concern in domestic cats while angiostrongyliasis has nil rele-
vance (242, 261, 270). This confirms further the affiliation of nematodes living in the air-
ways of domestic cats versus those living in blood vessels.

Dirofilaria in humans: a matter of geography. Humans are not definitive hosts of
nematodes living in heart, pulmonary vessels, or lung parenchyma and airways.

In areas where D. immitis is enzootic, humans may be bitten by infected mosquitoes;
thus, immature or mature D. immitis is sporadically found in the pulmonary arteries of
humans (232, 278, 279). Nevertheless, variable clinical consequences associated with pul-
monary dirofilariasis and clinical manifestations related to noncardiopulmonary localiza-
tions are described (278). Human infections differ significantly from canine heartworm
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disease, as the main outcome is the development of pulmonary nodules because of
inflammatory responses induced by the dead parasite, incorporated into a granuloma
that is visible as a “coin lesion” at X-ray imaging and computed tomography (232, 278).
Coin lesions can be asymptomatic, but respiratory and nonspecific signs may occur, the
most frequent being chest pain, cough, fever, malaise, and hemoptysis (278).

A possible correlation between D. immitis and the occurrence of allergic conditions in
humans living in highly enzootic areas has been supposed (280), but the methodology
applied (e.g., collection of data by questionnaire, unknown medical history of dog owners,
and IgE detection in humans irrespectively of dog ownership) renders any conclusion indefi-
nite, and sound large-scale surveys are necessary to corroborate this faint hypothesis.

Human infections by D. immitis are more frequent in the Americas and in Asia than
in Europe (279, 281, 282), where people are most often infected by the subcutaneous
Dirofilaria repens. This is interesting from an epidemiological standpoint, because D.
repens infects humans more frequently even where D. immitis is more prevalent (282).
Around a decade ago, the lower occurrence of D. immitis in European people was
attributed to a possible existence of separate genotypes with various levels of patho-
genicity on the different continents (282). Since then, no studies have been conducted
to investigate this hypothesis in more depth, and it cannot be excluded that D. immitis
infections in humans are overlooked in Europe due to (i) diagnostic hindrances inher-
ent to detection and interpretation of lung lesions, (ii) asymptomatic infections, and
(iii) scant awareness. Further studies are advocated to assess if new reports are due to
a factual spreading or to undiagnosed cases in the past.

Sporadic noncardiopulmonary localizations, associated with corresponding lesions
and diseases, have been described for D. immitis in different anatomical areas, mainly
subcutaneous or cavitary (283–285). However, these localizations are more often
recorded for D. repens (Fig. 13), which has clearly a higher zoonotic potential than D.
immitis and is a public health concern in Europe (286).

Human infections with microfilaremia are described for D. repens but not for D.
immitis (287, 288). This difference can be due to the different localization of these filar-
iids. While human pulmonary arteries are a hostile environment for the development
of adult D. immitis, the same is not true for the subcutis, probably because it is less
exposed to the activity of phagocytes. Accordingly, PIMs can determine the unsuitabil-
ity of humans to D. immitis, limiting the establishment of adult nematodes in pulmo-
nary arteries, as described for cats. Although PIMs exist in humans (289), it is still not
clear if they are permanently present (290) or if they have a role in the pathogenesis of
coin lesions and/or in preventing patent infections.

FIG 13 (A) Histologic section from a mammary nodule of a human patient containing an adult Dirofilaria repens (Courtesy of
Elisabetta Scoccia; reproduced with permission.) (B) Dirofilaria repens cross-section from an eye nodule of a human patient. The
longitudinal ridges of the cuticle (arrow) are a morphological characteristic of the species.
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Zoonotic angiostrongyliasis. To date, no human infections caused by canid or felid
Angiostrongylus species have been described. Humans can, however, be parasitized by
zoonotic Angiostrongylus species affecting rodents, i.e., A. cantonensis and A. costaricen-
sis when ingesting infectious L3 on contaminated vegetables or in intermediate (snails
and slugs) or paratenic (amphibians, reptiles, shrimps, and crabs for A. cantonensis)
hosts (239, 240, 291, 292).

Angiostrongylus cantonensis is the primary cause of human eosinophilic meningitis
worldwide and is endemic in South-Pacific areas, South-East Asia, and the Hawaiian
Islands and is described also in Texas and Louisiana (United States), Egypt, Brazil, the
Canary Islands, Japan, and South Africa (292–295). Records of neuroangiostrongyliasis
due to A. cantonensis in Europe derive mainly from travelers that had visited regions of
endemicity, though a recent autochthonous case has been described in France (240,
296, 297). Damages to the human brain caused by A. cantonensis, due to intense
inflammatory reaction triggered by L3 migration and followed by parasite death, are
often irreversible and life threatening (292, 298). Although a patent infection has never
been described in humans, it has been recently hypothesized that A. cantonensis is
able to reach human lungs more frequently than thought, especially in the case of
massive infection (299).

Angiostrongylus costaricensis is spread particularly in South America and the Caribbean
(239) and recorded also in the United States (291), where both autochthonous and
imported human infections have been diagnosed (300–302). Human cases described in
Europe derive from people that traveled to areas of endemicity (303, 304), and to the best
of the authors’ knowledge, autochthonous infections have never been reported. This nem-
atode causes massive eosinophilic infiltrations in the intestinal wall and mesenteric vasculi-
tis (239). Some cases are acute and manifest as an appendicitis-like disease requiring
urgent laparotomy/laparoscopy, with unpredictable prognosis (239).

Despite evidence that dogs may be patently infected by A. costaricensis under ex-
perimental and natural conditions (305, 306), companion animals have no factual
involvement in human angiostrongyliasis. Human neural and abdominal angiostrongy-
liases are neglected foodborne diseases caused by the consumption of traditional raw-
fish dishes, contaminated vegetables, or unsanitized well water in areas of endemicity
(307–309). Their epidemiology mostly relies on behavior and hygiene conditions of
people living in areas where rodents are infected in high prevalence.

BEHAVIORS AND THE IMMUNE SYSTEM DRIVING ECTOPARASITES
AND TRANSMITTED DISEASES

In general, dog and cat ectoparasitoses are considered similar, despite key differen-
ces, originating from biological, behavioral, and immunological drivers, between
canine and feline external parasites. This variability also has an impact on diseases
transmitted via bites from infected vectors. Hence, the occurrence of infestations and
transmitted diseases is different in dogs and cats, which have distinct epidemiological
roles for vector-borne diseases affecting pets and humans. This section discusses the
main ectoparasitoses and vector-borne diseases of dog and cats, with insights on their
relevance to human health.

Adaptive Mites and Consequences for Pets and People

Burrowing mites are not for everyone. The burrowing mite Sarcoptes scabiei com-
monly infests dogs and other mammals, including humans, but very rarely cats (310,
311). Conversely, cats have their “own” burrowing mite, i.e., Notoedres cati (312).
Sarcoptic and notoedric mange are severe infestations of dogs and cats, and they can
be life threatening, especially when the skin lesions are large and multiple. At the
same time, human scabies is a parasitosis of major relevance, while human infestation
by N. cati has null importance.

The evolution of S. scabiei explains why cats are an exception for sarcoptic mange.
In fact, this mite originated from an ancestor parasitizing hominids and then coevolved
with humans, who have then transmitted it to animals as they have tamed them as a
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result of a parasitic spillover (313, 314). Dogs were among the first domesticated ani-
mals (313), while the domestication of cats began between 5,000 to 25,000 years later,
and it is considered still ongoing (315). This time lapse could have influenced the adap-
tation of S. scabiei and the transmission from humans to domesticated and wild ani-
mals (313, 314). The adaptability of S. scabiei and the interbreeding of different strains
have then originated different varieties that are taxonomically classified on the basis of
host origin (314, 316, 317). A variant associated with felids has never been described.

The host range of these mites derives from a predator-prey affiliation. Dogs are
more used to physical contact with humans and animals of other species (e.g., shep-
herd dogs in contact with farm animals) (Fig. 1), and this was probably essential in the
origin of the epizootiology and epidemiology of sarcoptic mange (313). Most felids are
instead solitary animals, with tactile contacts mostly limited to mating and preying
(264, 318). While S. scabiei has a broad host spectrum (313, 314), the host range of
Notoedres mites is restricted to small and medium-size felids, bats, rodents, lago-
morphs, civets, coatis, and small Indian mongooses, with only few exceptions (312).
Cats prey (Fig. 2) on small animals such as rodents, squirrels, and bats. Medium-size fel-
ids, such as lynxes, are commonly infected by both N. cati and S. scabiei, as they prey
on both animals harboring both mites, e.g., rodents or foxes and roe deer, respectively
(319–321). Accordingly, big felids, e.g., lions, are more frequently infested by S. scabiei,
which is widely present in the wild mammals they hunt (322–325).

The mite-predator-prey affiliation has been evidenced also in experimental settings
that have proved the inability of S. scabiei var. canis to infect mice, rats, and Guinea
pigs, while it can infect rabbits and then reinfect other dogs (326, 327). This confirms
the influence of the predator-prey relationship in the evolution of S. scabiei and N. cati,
as rabbits can be infected by both mites and can be preyed on by both cats and dogs
(328).

Clinical aspects provide additional evidence of these dynamics. The typical anatomi-
cal localizations of skin lesions caused by S. scabiei and N. cati reflect physical contacts
that occur during hunting, scavenging, and/or social behaviors. For instance, small fel-
ids come in contact with their preys mainly with head and forelimbs, i.e., the anatomi-
cal districts most often affected by notoedric mange lesions (312, 329). Larger felids,
conversely, often prey on big animals with which they come in contact with the whole
body (330), justifying why sarcoptic mange is often generalized (329).

Canid rubbing and scent rolling with the whole body on strong-smelling material,
e.g., carcasses, further increase the chance of generalized sarcoptic mange (329, 330).
In fact, S. scabiei can survive off-host and on dead hosts for hours to days (328), and
the transmission with direct contact of dogs with carrions is highly probable. This off-
host survival is another key difference that could have contributed to the broader host
spectrum of S. scabiei than that of N. cati, as the latter is unable to survive in the
environment (331). However, the strict host affiliations of these mites are not always
“dogmatic.” It should be kept in mind that they are adaptive ectoparasites and that
S. scabiei varieties and N. cati can sporadically infect cats and dogs, respectively
(310, 332).

Scabies in humans: debunking the mite. Around 300 million people worldwide suf-
fer from scabies annually, regardless of socioeconomic level and geographies, although
overcrowding, poor hygiene, malnutrition, homelessness, and reduced access to health
care are main predisposing factors and the reason why scabies is the most common skin
disease in developing countries (333–335).

The clinical disease in humans is caused by variants of S. scabiei from domestic and
wild animals and by its proper variant S. scabiei var. hominis (326, 336–338). Among
animal-acquired cases of scabies in humans, those derived from contact with infected
dogs and the associated S. scabiei var. canis are predominant (326, 337). Only excep-
tional cases of human infection with N. cati have been documented (312, 339).

The clinical course of human scabies acquired by animal varieties is different from
that of scabies caused by S. scabiei var. hominis, as it is mild and self-limiting and not
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human-to-human transmitted (317, 340, 341). More specifically, dog-derived human
scabies is a transient disease and less severe than the disease acquired by infested peo-
ple (341). In dog-acquired scabies (and in rare cases of cat-derived notoedric infesta-
tion), clinical signs start with itchy papular, vesicular, or erythematous lesions, predomi-
nantly on the trunk, forearms, and thighs and in contact areas (312, 340, 341). Typical
burrows are absent, because S. scabiei var. canis does not reproduce on human skin
(340, 341).

Scabies caused by S. scabiei var. hominis typically has an incubation period of 3 to
6weeks in primary infestations and only 1 to 3 days in occasional reinfestations (334).
Humans become infected with prolonged skin-to-skin contact and, more rarely,
through fomites (317, 335). Pruritus is not present in the early infection, as female
mites release immune-modulating substances when they burrow into the skin (335),
but then a shift in the immune response occurs and clinical signs appear (328, 342).
Scabies in immunocompetent patients is characterized by intense pruritus (that wor-
sens at night and with a rise in temperature) and erythematous papular eruptions (Fig.
14) on the periumbilical area, waist, genitals, breasts, buttocks, armpits, fingers, and
interdigital spaces. These are typical lesions that do not occur with the infection
caused by the canine strain (317, 340). Burrows appear as ;5-mm brownish-grayish
thin lines and are practically pathognomonic, though their visualization is often
impaired by excoriations and/or secondary infections (317). Immunocompromised and
genetically predisposed individuals that become infected with S. scabiei var. hominis
develop crusted scabies (“Norwegian scabies”), i.e., a form caused by the massive pro-
liferation of mites (317, 334, 335). Infested immunocompromised people are highly
contagious and manifest generalized fissured, erythematous, and crusted plaques with
a verrucous aspect and mild or no itching (317). If untreated, crusted scabies can be
life-threatening due to secondary bacterial infections (317, 342). Current research on
human scabies is focusing on the host immune response, and recent data suggest that
immunodiagnosis, vaccines, and immunotherapy can greatly improve long-term con-
trol strategies (328, 342). This is particularly true not only for human-derived mange
but also for the transmission occurring from animals, although of less clinical rele-
vance. Given the high adaptive abilities of these mites, particular attention should be
given to parasites shared between domestic and wild animals. Outbreaks of scabies
may be more frequent in the future due to increased presence of wild reservoirs, such

FIG 14 Erythematous papular lesions in human scabies.
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as foxes, in domestic and peridomestic environments, with subsequent increased
chances of contact with pets and other domestic animals (314, 338). For instance, an
outbreak of scabies of fox origin has been documented on a farm in Switzerland,
where foxes have transmitted mites to the animals of the farm (pigs, goats, dogs,
horses, and oxen) that then passed the infestation to humans (338).

These events suggest that the high adaptability of S. scabiei requires higher stand-
ards of monitoring and control in both wild reservoirs and domestic animals, with the
aim to reduce further adaptations of S. scabiei variants to humans.

Ticks and Fleas: Dog or Cat Lovers and the Risks Humans Bear

Impacts of immune system, inbreeding, and behavior. Ticks and fleas are the most
common ectoparasites of dogs and cats. They cause direct harm to animals but, more
importantly, are agents of vector-borne diseases (VBDs) of veterinary and medical impor-
tance. Dogs are more frequently affected by ticks, whereas cats are affected more by fleas.
As a consequence, dogs are prevalently infected by tick-borne pathogens (TBPs), while
cats mainly act as reservoirs of flea-borne pathogens (FBPs) (Table 1) (115, 343–347).

Various hypotheses have been proposed for the minor susceptibility of cats to VBDs
compared to that of dogs (Table 1), including differences in immune responses and
species behaviors. Indeed, the immune response of cats to certain pathogens is pre-
dominantly cell mediated and confers natural resistance, in contrast to the prevailing
humoral immune response of dogs (115). It is also proposed that genetic decline due
to inbreeding in dogs has caused relatively higher probabilities of antigen presentation
and restricted major histocompatibility complex types (115). Such genetic basis of
higher susceptibility to VBDs (115) is supported by the predisposition of certain dog
breeds to leishmaniosis and Lyme disease (348, 349) and by the evidence of predispo-
sition of some cat breeds to hemoprotozoa (350).

The differences in TBP and FBP prevalences in dogs and cats are also due to their
behavior dissimilarities. Grooming is a key behavior characteristic impacting tick and
flea presence on animals. Self-grooming in cats (i.e., ;8% of their nonsleeping time,
;4% of their entire life) (351) serves as a preventative mechanism against ectopara-
sites (Fig. 1), especially ticks (351, 352). As, in most cases, ticks must be attached for a
while before transmitting pathogens, cats that promptly remove ticks by self-grooming
are rarely infected by TBPs (115, 353). Hepatozoonosis is an exception, as it is one of
the most frequent feline VBDs in certain areas (354), acquired by tick ingestion facili-
tated by self-grooming (355, 356).

Moreover, immunity and animal behaviors have an impact on the epidemiology of
zoonotic diseases transmitted by fleas, and accordingly, cats and dogs have different

TABLE 1 Occurrence of major vector-borne pathogens in cats and dogs worldwide

Pathogen

Occurrencea

Reference(s)Dog Cat
Tick-borne pathogens
Rickettsia conorii 111 1 501, 502
Rickettsia rickettsii 111 1 503, 504
Ehrlichia 111 1 505, 506, 507
Anaplasma 111 1 501, 507, 508
Babesia 111 1 387, 509
Borrelia 111 1 349
Hepatozoon 111 11 354, 510, 511
Cytauxzoon 2 11 512, 513

Flea-borne pathogens
Rickettsia felis 1 1 507, 514
Rickettsia typhi 1 1 447, 507
Bartonella 1 111 357

Other
Leishmania 111 1 468, 507, 515, 516

a2, absent;1, infrequent;11, frequent;111, very frequent.
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roles (i.e., active infectors versus passive carriers) in the epizootiology/epidemiology of
flea-borne diseases (FBDs), especially bartonelloses and rickettsioses (357, 358).
Although animals acquire fleas mainly from an infested environment, social behaviors
of cats (e.g., affiliative rubbing and bunting) favor a direct host-to-host transmission of
fleas, especially in colonies (359, 360). Direct flea transmission between dogs is less fre-
quent, because tactile communication among dogs is short lasting and only comple-
mentary to postural or olfactory signals (361, 362). Similarly, territorial fights between
cats commonly favor the transmission of important FBPs, i.e., Bartonella spp., Rickettsia
felis, and Rickettsia typhi. In fact, these bacteria are transmitted with the inoculation of
contaminated flea feces in skin wounds (363, 364).

Tick-borne diseases: common in dogs, less common in cats. TBPs are common in
dogs worldwide, and especially, the Anaplasmataceae Ehrlichia and Anaplasma have
a .50% prevalence in some areas of Europe and the Americas (365–367). Ehrlichia canis
and Ehrlichia chaffeensis infect mononuclear cells, causing monocytic ehrlichiosis (366),
while Ehrlichia ewingii has tropism to granulocytes and causes granulocytic ehrlichiosis
(368). Anaplasma phagocytophilum and Anaplasma platys infect granulocytes and plate-
lets, causing granulocytic and thrombocytotropic anaplasmosis, respectively (366, 367).

Clinical features of ehrlichiosis and anaplasmosis are well known in dogs (366).
Monocytic and granulocytic ehrlichiosis in dogs may either be subclinical or entail a
course with fever, anorexia, lethargy, lymphadenopathy, hemorrhagic diathesis,
epistaxis, and thrombocytopenia (366). Canine granulocytic and thrombocytotropic
anaplasmosis can also be subclinical or cause clinical signs similar to those present in
canine ehrlichiosis, although often self-limiting (366, 367).

Occasional clinical feline anaplasmosis and ehrlichiosis have been described with
nonspecific signs similar to those recorded in dogs (358, 369, 370). Nevertheless, the
pathogenic role of Ehrlichia and Anaplasma is less clearly defined in cats than in dogs
(358). The infrequent diagnosis of these diseases in cats may be related to a number of
factors, e.g., an unknown pathogenicity of TBPs in these animals, a successful immune
response, or a factual lower prevalence of these pathogens due to the faster removal
of ticks by cats.

Most dogs seropositive for Borrelia spp. do not display evident signs, although
lameness, arthritis, fever, glomerulonephritis proteinuria, hyperazotemia, peripheral
edema, and body cavity effusions have been described (349, 371). Conversely, to date,
there is no evidence of clinical signs associated with Borrelia infection in cats, albeit
reports of seroconversion (349).

Rickettsia rickettsii causes Rocky Mountain spotted fever (RMSF), a potentially fatal
disease of dogs living in the Americas (372, 373). Infected dogs often suffer lethargy,
anorexia, fever, lymphadenomegaly, and ocular and neurological signs (373, 374). In
Europe, Rickettsia conorii causes Mediterranean spotted fever (MSF) (375). Although
clinical disease is very rare, dogs infected with R. conoriimay suffer from a febrile illness
with myalgia, lameness, thrombocytopenia, and hypoalbuminemia (375). Tick-borne
rickettsioses in cats are extremely poorly studied, and at present, clinical RMSF or MSF
has never been documented, although cats can be seropositive (376, 377).

The pathogeneses of ehrlichiosis, anaplasmosis, and borreliosis mostly rely on the
formation of immune complexes (349, 378, 379); thus, the predominantly cell-medi-
ated response in cats (115) may render clinical infections less frequent than in dogs.
This peculiarity has also influenced, with all likelihood, the lower occurrence of clinical
infection by Rickettsia spp. in cats, as it has been demonstrated that the pathogenesis
and severity of these microorganisms depend on the efficiency of their intracellular
destruction after the infection.

Babesiosis is also a TBD with higher relevance in dogs than in cats. Different Babesia
species cause clinical babesiosis in dogs, depending on the geographical area, e.g.,
Babesia rossi in Africa and Asia, Babesia canis in Europe, Babesia vulpes in the United
States and Europe, Babesia conradae in the United States, and Babesia vogeli and
Babesia gibsoni throughout the continents (380–385). Large Babesia species B. rossi, B.
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canis, and B. vogeli are thought to be more pathogenic than the small-sized species (B.
gibsoni, B. conradae, and B. vulpes), causing subclinical infections or fever, splenomeg-
aly, thrombocytopenia, hemolytic anemia, icterus, hematuria, bilirubinuria, and hemo-
globinuria (383). Babesia rossi is the most pathogenic large species in dogs, followed
by B. canis that causes an acute moderate-to-severe illness and by B. vogeli, whose
infections can be acute or chronic and are usually mild to moderate (383). Hemolytic
anemia is the main clinical sign regardless of the species involved (383). Babesia rossi
and B. canis can cause severe and hyperacute disease leading to shock and multiorgan
dysfunction (386). Of the small-sized Babesia, B. gibsoni may occasionally cause a rele-
vant disease in dogs (383).

The few feline-related species, Babesia felis, Babesia leo, and Babesia cati, have a lim-
ited distribution, i.e., in Africa (B. felis and B. leo) and Asia (B. cati), and only a partially
known clinical impact (387). The scant clinical reports indicate that infected cats may
develop pyrexia, lethargy, anemia, and icterus (387, 388). Very rarely, other Babesia spe-
cies, e.g., B. canis, B. gibsoni, B. vogeli, B. vulpes, Babesia microti, and Babesia lohae have
been detected in domestic cats, but they are currently not considered of importance in
feline veterinary medicine (387). Possible reasons why Babesia has a limited distribu-
tion in cats could be figured out with a comparison of the biology of developmental
stages in the vertebrate host with those of Cytauxzoon spp. This hemoprotozoan is the
most important feline TBP, although many aspects (identity and epizootiology of spe-
cies, vectoral role of ticks, pathogenesis, and therapy) are yet to be clarified (370, 389,
390). Despite the apparently limited distribution, feline cytauxzoonosis due to
Cytauxzoon felis is a life-threatening disease in cats in North America, characterized by
fever, lethargy, dyspnea, vomiting, icterus, and death in most infected cats within a
week (390), while different, yet undefined, species circulate in Europe, where they
cause milder diseases (391–393).

There are no known Cytauxzoon species infecting dogs. A possible explanation
could rely on the different life cycle of these Piroplasmida inside the vertebrate host
and subsequent different interactions with the immune systems of dogs and cats.
Namely, while Babesia spp. are exclusively intraerythrocytic in vertebrate hosts, the life
cycle of C. felis includes a tissue stage in the acute phase, with schizogony occurring in
macrophages, followed by the infection of red blood cells by merozoites (394, 395). It
is known that T lymphocytes, natural killer (NK) cells, and macrophages play crucial
roles in the resistance to Babesia spp., whose parasitic stages are highly exposed to
cell-mediated immune factors (396). Also, the subsequent complement activation and
opsonization trigger the destruction of the parasite (396). Therefore, the majority of
Babesia spp. are unable to establish in cats due to their marked cell-mediated immune
response in addition to the subsequent efficacious production of antibodies (396).
Differently, C. felis hides inside macrophages, and its ability to elude the cellular mech-
anisms of antigen presentation favors infection and disease progression (397). Cats de-
velop a protective immunity against C. felis only if they survive the tissue phase, which
can lead to death within 3weeks from the infection (395).

The absence of Cytauxzoon in dogs could also depend on its tropism for macro-
phages and, specifically, for PIMs that are absent in dogs (246, 395, 398). Indeed, one
of the main characteristics of feline cytauxzoonosis is the presence of giant PIMs con-
taining schizonts in the endothelium of the lungs (399). As mentioned above, PIMs are
the first immunological barrier in cats; thus, it can be argued that their presence could
be pivotal for the development of C. felis. This is corroborated by successful experimen-
tal infections of sheep with C. felis, which constitutively have PIMs (290, 400).

Hepatozoonosis has high prevalence rates in both dogs and cats (354, 401). The
agents of dog hepatozoonosis are Hepatozoon canis with a global distribution and
Hepatozoon americanum in the Americas (402). Hepatozoon canis infection may be sub-
clinical or life threatening depending on the parasite load, associated with nonspecific
clinical signs, including fever, lymphadenopathy, and pale mucous membranes (402).
Instead, H. americanum causes more severe signs such as muscular atrophy and
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lameness due to myositis and, frequently, a fatal outcome in the absence of treatment
(402). In cats, hepatozoonosis is due to the cosmopolitan Hepatozoon felis, causing sub-
clinical or mild infections with nonspecific signs, although severe cases have been
described, and to Hepatozoon silvestris, found only in Europe, with little known clinical
impact, but a fatal case due to severe myocarditis was described in a cat in Switzerland
(354, 403, 404).

In general, TBDs are not as common in cats as in dogs, but recent evidence suggest
that feline infections may spread and gain importance in the near future. For instance,
high rates of tick infestations in the United States are recorded in indoor cats, and in
the United Kingdom, cats are more frequently presented to veterinarians with ticks
than dogs, especially with Ixodes ricinus that may infest cats earlier in the year than
that for dogs (405–407). Many factors are incriminated for the increasing prevalence of
ticks and TBDs in cats, such as the rising global prevalence of ticks due to climate
change, the limited use of ectoparasiticides and repellents on this species (408–410),
and the development of acaricide resistance in common ticks (411, 412).

Flea-borne diseases: a feline issue. The most important FBPs in pets are bacteria of
the genus Bartonella, i.e., Gram-negative organisms that cause infections with signifi-
cant zoonotic potential. Various species belonging to this genus have different roles in
causing diseases in companion animals and humans, but in general, FBDs are more rel-
evant from a public health rather than a veterinary point of view, as previously dis-
cussed. The most important zoonotic Bartonella species isolated from domestic dogs
and cats (Table 2) are Bartonella henselae, Bartonella clarridgeiae, and Bartonella koeh-
lerae, followed by Bartonella bovis (formerly Bartonella weissi), Bartonella quintana, and
Bartonella vinsonii subsp. berkhoffii (413, 414). Cats are unsuitable reservoirs for B. quin-
tana, B. vinsonii subsp. berkhoffii, and B. bovis, and their role in the transmission pat-
terns of the zoonotic species B. rochalimae is uncertain (2, 415). Cats are considered
the reservoir for most of the zoonotic Bartonella species, except for B. vinsonii subsp.
berkhoffii, for which dogs display prolonged bacteremia, acting as reservoirs for human
infection (357).

Although both dogs and cats can suffer from clinical bartonellosis, there is evidence
that cats are more often subclinical carriers, while dogs develop severe signs and dis-
eases, including endocarditis, myocarditis, granulomatous hepatitis, lymphadenitis,
meningoencephalitis, rhinitis, bacillary angiomatosis, peliosis hepatis, immune-medi-
ated hemolytic anemia, polyarthritis, and uveitis (357, 416, 417). Interestingly, the ca-
nine B. vinsonii subsp. berkhoffii is an exception, causing severe clinical alterations such
as osteomyelitis and endomyocarditis in cats (357, 417).

Among other FBPs, Rickettsia felis and/or Rickettsia typhi has never been definitively
proved to cause disease in dogs or cats, although both species can seroconvert (358).

Overall, the apparent “natural resistance” of cats to clinical illness due to arthropod-
borne infections and their higher predisposition to flea infestations could have influ-
enced the evolution of FBPs. This has probably led to the selection of cats as reservoir
species for a higher number of microorganisms transmitted by fleas than that for dogs.

Fleas are also the intermediate host of the dog- and cat-affiliated parasite
Dipylidium caninum, a cestode with limited pathogenic potential in these animals,
although diarrhea, emesis, retarded growth rate, and poor general condition have
been reported (418).

Clinical TBDs and FBDs in humans. From a public health perspective, spotted fever
group (SFG) rickettsiae and Borrelia spp. are the most relevant TBPs. The widely distrib-
uted brown dog tick Rhipicephalus sanguineus is the vector of R. conorii, the agent of
MSF, which presents as a flu-like febrile disease, potentially life threatening when
patients develop vasculitis and multiorgan failure (419, 420). RMSF caused by R. rickett-
sii, transmitted by different tick species, is among the most lethal infectious diseases in
the Americas, characterized by nonspecific clinical signs, e.g., fever, headache, muscu-
lar pain, nausea, vomiting, and loss of appetite, which render a clinical diagnosis chal-
lenging and often lead to fatal multiorgan failure (421–423). Patients who recover from
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severe RMSF may develop permanent disabilities, such as blindness, cognitive deficits,
ataxia, and hemiparesis (421). Though questioned for a long time, the role of dogs as
source of R. conorii for ticks, and indirectly for humans, is now acknowledged (424).
Dogs are now considered epidemiological sentinels of MSF, though cats may also sero-
convert (377).

Lyme disease, caused primarily by the spirochete B. burgdorferi sensu stricto in
North America and by B. burgdorferi sensu stricto, Borrelia afzelii, or Borrelia garinii in
Europe, is the most common tick-borne zoonosis in the Northern Hemisphere (425).
This is an emerging public health threat due to its increasing global occurrence and
severe clinical manifestation that involves the skin (i.e., erythema migrans, borrelial
lymphocytoma, acrodermatitis chronica atrophicans), nervous system (i.e., neuroborre-
liosis with lymphocytic meningitis, cranial neuritis, or radiculoneuritis), joints (arthritis),
and rarely the heart (carditis) (425–427).

Despite the major relevance for dogs, ehrlichiosis and anaplasmosis are of less im-
portance for people. Human monocytic ehrlichiosis may present as a flu-like disease,
though the factual pathogenic role of E. canis must be further elucidated (428, 429).
Anaplasmoses usually vary from asymptomatic to mildly symptomatic, though a
potentially fatal illness may occur in the case of organ failure and opportunistic infec-
tions (429, 430).

The role of canine and feline Babesia species in causing disease to immunocompe-
tent and immunocompromised people is still unknown. Most cases of human babesio-
sis are due to B. microti (affecting rodents) in North America or Babesia divergens
(affecting cattle) in Europe (431). Other species such as Babesia duncani (whose vector
and reservoir hosts are unknown) and Babesia venatorum (affecting cervids) are rarely
detected in people (431). Human babesiosis varies from asymptomatic to severe and
lethal in immunocompromised individuals (431, 432).

To date, there are no reports of human hepatozoonosis, apart from a single old re-
cord of Hepatozoon gamonts in the white blood cells of a patient suffering from ane-
mia and icterus (433). Thus, at present, hepatozoonosis is not a concern for public
health.

Among FBPs, the most important zoonotic Bartonella is B. henselae, the causative
agent of cat scratch disease (CSD), or cat-scratch fever. Fleas acquire the microorgan-
isms through bloodmeal during bacteremia and shed them in their feces. The bacteria
can be then transmitted to other animals and humans by inoculation of infectious flea
feces in an open wound (357). While infected cats may directly transmit B. henselae to
humans, dogs are epidemiological sentinels that usually do not transmit the disease to
people (357). Human CSD is a febrile flu-like disease causing regional lymphadenopa-
thy that can last for several months and cause important inflammations, e.g., encepha-
litis, retinitis, and endocarditis, with life-threatening implications, such as systemic
angioproliferative lesions, in immunocompromised patients (434, 435). Cats are often
coinfected by B. henselae and B. clarridgeiae (436, 437). The role of B. clarridgeiae in
human health has been questioned for a long time, though some data suggest that it
might be pathogenic and associated with fever, headache, malaise, and lymphadeno-
megaly (438–440). Bartonella koehlerae has been isolated from a kitten whose owner
developed a CSD-like condition (441), and it has been also considered responsible for
various symptoms in humans, ranging from nonspecific illnesses to neuromuscular dis-
orders (416, 442). However, its zoonotic role requires more investigations, as some clin-
ical scenarios have been recorded in people coinfected by B. vinsonii subsp. berkhoffii
genotype II (416). The latter is the most frequent genotype in canids and humans and
is highly pathogenic, causing endocarditis, arthritis, and neurological disorders even in
immunocompetent people. To date, B. vinsonii subsp. berkhoffii DNA has been
detected in both fleas and ticks, and its primary vector species remain to be ultimately
defined (443, 444).

Human infection by R. felis and R. typhi occurs via flea feces and bites (364, 445),
and high prevalence in cats has been associated with local outbreaks in humans (446,
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447). Infected dogs favor the circulation of these pathogens, increasing the risk for
people to come in contact with infected fleas (447, 448). The cat flea C. felis transmits
R. felis, the worldwide distributed agent of “cat flea typhus” or “flea-borne spotted
fever,” although the vectorial role of other arthropods cannot be excluded (364, 449).
For instance, R. felis DNA was recently found in different wild-caught species of mos-
quitoes in the United States (450), and it has been experimentally transmitted by
Anopheles gambiae to rodents (451). The peridomestic cycle of R. typhi, i.e., the causa-
tive agent of murine typhus (MT), involves cats, dogs, other animals, and their fleas
(447). Cats can be asymptomatic carriers of R. typhi, and an association between
infected cats and cases of murine typhus in people has been reported several times
(446, 447, 452).

While no clinical cases have been documented in cats or dogs infected by R. felis or
R. typhi, the human disease may be relevant and severe. The diseases are clinically simi-
lar, characterized by nonspecific signs, such as fever, headache, chills, myalgia, malaise,
and maculopapular rash (364, 453). Although R. felis can induce neurological, gastroin-
testinal, and respiratory signs, fatal cases have never been reported, while more severe
health implications and death have been reported for R. typhi (364, 454, 455).

In the last years, two new flea-borne rickettsiae, defined as Rickettsia felis-like organ-
isms (RFLOs), i.e., Rickettsia asembonensis and “Candidatus Rickettsia senegalensis”
have been described, but information on their biology, primary hosts, vectors, and
pathogenic and zoonotic potential is still meagre (423, 456). Rickettsia asembonensis,
detected in a healthy dog in South Africa, has been considered zoonotic after reports
of patients from Peru suffering from acute febrile illness (457) and a patient from
Malaysia displaying fever, myalgia, arthralgia, conjunctival effusion, and petechiae
(456). Thus, the attention toward these emerging RFLOs should be kept high.

The cosmopolitan zoonotic flea-borne tapeworm D. caninum is transmitted to
humans by inadvertent ingestion of an infected flea. Children are at higher risk of
infection with this cestode, due to their playing habits and close contact with pets
(418, 458). Despite the high frequency of D. caninum in dogs and cats, human dipyli-
diasis is rarely reported. On the other hand, its real prevalence is most probably under-
estimated due to the lack of evident symptoms and a possible misdiagnosis with the
pinworm Enterobius vermicularis, due to inappropriate and scarce anamnestic/diagnos-
tic investigations (459). Human dipylidiasis can cause insomnia, epigastric pain, ab-
dominal distension, constipation, urticaria, and intestinal obstruction (459). It was only
recently shown that different genotypes occur in dogs and cats (460, 461), and further
studies are required to investigate any biological, epidemiological, pathogenic, and
zoonotic differences between these genotypes.

The control of ticks and fleas in companion animals with the appropriate use of
ectoparasiticides and repellents is of utmost importance to protect the health and wel-
fare of dogs and cats and for a reliable control of major diseases which can be trans-
mitted to humans. TBDs and FBDs are a challenging issue in human medicine also,
because the clinical scenario is extremely nonspecific, with signs and laboratory altera-
tions which overlap each other (Table 3) and those of other illnesses, thus rendering a
timely diagnosis difficult and demanding.

Leishmania infantum: All for One, One for All

General knowledge. Dogs are the primary reservoir of Leishmania infantum (syn.
Leishmania chagasi), i.e., the agent of a widely distributed and life-threatening zoonotic
disease, transmitted by hematophagous female phlebotomine sandflies, i.e., Phlebotomus
spp. in the Old World and Lutzomyia spp. in the Americas. Nonvectorial transmissions (e.g.,
transplacental and from bite wounds) have been described in some cases for dogs, but
these mechanisms play a marginal role in the epizootiology of the infection (462, 463).
Cats, on the other hand, display a natural immunological resistance to this parasite and, in
enzootic areas, are less prevalently infected than dogs (464–468). Other species of
Leishmania are only rarely isolated from both animal species (469–471). Visceral and, less
frequently, cutaneous, mucocutaneous, and mucosal leishmanioses are the clinical forms
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of L. infantum infection in humans, which is endemic in the areas of the world where ca-
nine leishmaniosis (CanL) is enzootic, i.e., in 50 countries in Europe, Africa, Asia, and the
Americas (472–474).

Dogs and cats: same parasite, different susceptibilities. CanL is a well-studied, typi-
cally chronic disease displaying a wide range of clinical signs that involve practically all
organs and systems due to its immunological nature (475). Infected dogs may present
lymph node enlargement, splenomegaly, cutaneous and mucocutaneous lesions (e.g., ulcers,
hyperkeratosis, alopecia, onychogryphosis), ocular lesions (e.g., conjunctivitis, blepharitis,
scleritis, uveitis, panophthalmia, glaucoma), poor body condition, localized or generalized
amyotrophy, polyarthritis, and myositis (473). On the other hand, feline leishmaniosis (FeL) is
less extensively studied, and there is evidence that impaired immunocompetence is a predis-
posing factor of the disease (463). As coexisting pathological conditions or/and infections
are common in cats that develop FeL, misidentification of clinical signs may occur and
render an unequivocal appraisal of the disease difficult. Nevertheless, parasite-associated

TABLE 3 Clinical signs and laboratory alterations caused in humans by zoonotic vector-borne pathogens infecting dogs and/or cats

Clinical sign or findingp

Presence or absence of vector-borne pathogena

Rcb Rrc Rfd Rte Bbf Aphg Aplh,i Echj Eej Ecak,i Bcl Bel Bhl Bkl Bql Brl Bvl

Clinical signs
Fever 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
Headache 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1
Lymphadenomegaly 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 2 2
Gastrointestinal 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1
Myalgia and/or arthralgia 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1
Cardiovascular 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1
Neurological 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1
Respiratory 2 1 1 1 1 1 2 1 1 2 2 2 1 1 2 2 2
Cutaneous 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 2 2
Ocular 1 1 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2

Laboratory findings
Anemia 2 2 2 1 1 1 1 1 1 1 2 2 1 2 2 1 1
Leukocytosis 1 1 1 1 1 1 2 1 1 2 2 2 2 2 1 2 2
Leukopenia 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2
Thrombocytosis 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Thrombocytopenia 1 1 1 1 1 1 2 1 1 1 2 2 1 2 1 2 1
Gammopathy 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2
.ASTm 1 1 1 1 2 1 2 1 1 2 2 2 2 2 2 2 2
.ALTn 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2
.ALPo 2 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 2
.Bilirubin 2 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2
Erythrocyturia 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Proteinuria 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Hypoalbuminemia 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2

aClinical sign or laboratory alteration reported (1) or not reported (2) in the course of human infection. Rc, Rickettsia conorii; Rr, Rickettsia rickettsii; Rf, Rickettsia felis; Rt,
Rickettsia typhi; Bb, Borrelia burgdorferi sensu lato; Aph, Anaplasma phagocytophilum; Apl, Anaplasma platys; Ech, Ehrlichia chaffeensis; Ee, Ehrlichia ewingii; Eca, Ehrlichia canis;
Bc, Bartonella clarridgeiae; Be, Bartonella elizabethae; Bh, Bartonella henselae; Bk, Bartonella koehlerae; Bq, Bartonella quintana; Br, Bartonella rochalimae; Bv, Bartonella vinsonii
subsp. berkhoffii.

b420, 532, 533.
c421, 422, 534–538.
d364, 539, 540.
e364, 455, 541–545.
f538, 546.
g422, 429, 534, 547.
h548.
iInfection rarely reported in humans.
j429, 534, 538, 549.
k550.
l357, 413, 415–417, 438–440, 443, 444, 517–524, 526, 528, 529, 531, 551, 552.
mAST, aspartate transaminase.
nALT, alanine aminotransferase.
oALP, alkaline phosphatase.
p., increased amount.
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lesions have been described in many organs and tissues of cats, e.g., skin, eyes, mucosae,
liver, kidneys, lymph nodes, spleen, and bone marrow (463).

The clinical course of leishmaniosis in dogs depends on the dichotomic immune
response to the infection, i.e., in sick dogs, the humoral response (Th2 type, with
release of cytokines and interleukins, promoting downregulation of cellular immune
response, high level of antibodies, and infection establishment) predominates the cell-
mediated response (Th1 type, characterized by a series of cell and cytokine activations,
resulting in phagocyte-based parasite elimination) and vice versa (466, 476). The natu-
ral immunity of cats to leishmaniosis relies on their inherently predominant Th1
immune response, with protective production of gamma interferon (IFN-g) (115, 466),
which may explain why cats rarely develop overt disease. Furthermore, antibodies
against L. infantum in cats may have a protective role, in contrast to the adverse effects
of the humoral response in dogs (477). This difference is also indicated by the frequent
PCR negativity for protozoan DNA of cats with high antibody titers (470). The unspe-
cific clinical signs of FeL may leave the disease off the differential diagnosis list, as it is
considered rare, unlikely, and of minor concern compared to CanL. However, recent
studies showed that cats are at high risk of exposure to sandfly bites and that records
of clinical FeL are increasing (463, 464, 478).

In many enzootic regions, leishmaniosis occurs in higher prevalence in rural than in
urban environments due to the biology of their vectors (479). Phlebotomine sandflies
do not have a strict host preference (480, 481), but cats are not among their preferred
hosts (482, 483). The progressive urbanization of many rural areas may, however, lead
to the establishment of an urban life cycle involving cats due to the limited availability
of other hosts (484, 485). In these cases, cats, as a proven source of infection to sand-
flies, may play a significant role in the epizootiology and epidemiology of leishmaniosis
(484). Cats often remain unprotected against ectoparasites because of the general
underestimation of VBD risk in these animals and because of the limited use of repel-
lents on cats, due to the toxicity of most veterinary products containing pyrethroids
(408, 463). This could lead to cats becoming one of the few available hosts for sandflies
(486), as, at the same time, repellents are widely used in dogs in enzootic areas.

Visceral leishmaniosis in humans: neglected and life threatening. Leishmania
infantum is less adapted to humans than other Leishmania species, e.g., Leishmania
donovani and Leishmania tropica, of which humans are the reservoir host (487). Dogs
are considered the main source for human infection by L. infantum, via infected phle-
botomine vectors, albeit other animal species are important reservoirs of the parasite
(488). For example, in a sudden outbreak of visceral leishmaniosis (VL) in Madrid in
2009 to 2012, hares living in the parks of the city were found infected in high preva-
lence and incriminated for the rise in human cases, because at the same time, the prev-
alence of infection in the dog population was stable (489, 490).

Nonvectorial transmission in humans includes blood transfusion, organ transplanta-
tion, needle sharing in drug users, and congenital infection (491). The infection often
remains subclinical, especially in immunocompetent adults (492, 493). Children below 2
years of age and immunocompromised individuals (e.g., HIV and immunosuppressant-
treated patients) are more prone to develop the disease (473). However, there are sev-
eral cases reported in otherwise healthy adult humans (493). The most common form of
disease caused by L. infantum in humans is visceral leishmaniosis (VL), characterized by
fever, hepatosplenomegaly, anemia, leukopenia, fatigue, weight loss, and, often, a fatal
outcome in untreated cases (492, 493). Less frequent clinical types of the infection are a
cutaneous form (cutaneous leishmaniosis [CL]), displaying lesions on the exposed parts
of the body, including erythematous nodules (Fig. 15), histiocyte and lymphocyte infiltra-
tion, and shallow ulcers and papules, leaving lifelong scars (494, 495), a form localized
especially at the nasal mucocutaneous limits (474), and a mucosal form with painless
ulcers, granulomas, and tumor-like masses in the nose, mouth, and larynx (472).

Although L. infantum is the most important and widespread zoonotic Leishmania
species, causing VL and CL in Asia, Europe (mainly Mediterranean Basin), South
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America, and Africa, dogs can act as reservoir for other species, e.g., Leishmania brazil-
iensis, Leishmania panamensis, and Leishmania peruviana, causing CL in humans in
Southern and Central America (493).

Other than zoonotic leishmanioses involving dogs, cats, and other animals (e.g.,
rodents as reservoirs of CL, including species Leishmania major), humans can suffer
from disease caused by two species of Leishmania with anthroponotic cycles, namely,
Leishmania donovani and Leishmania tropica, both causing VL and CL (493). Humans
are reservoir hosts for L. donovani and L. tropica; both species can cause clinical dis-
eases in dogs, which may act as reservoir of L. donovani in certain areas (471, 496–498).
Therefore, dogs may amplify the circulation of L. donovani and enhance transmission
chances to humans. This is of great relevance given that VL due to this species is
potentially fatal if not treated (493).

Overall, cases of both animal and human leishmanioses are increasing worldwide
due to a series of anthropogenic causes. As examples, deforestation and urbanization
have caused a rise of the incidence of leishmaniosis in peridomestic and urban envi-
ronments, and wars or socioeconomic instability spur mass movements of people, fos-
tering emergence and reemergence of leishmaniosis in given areas (493). These factors
have led to an increase of imported cases of human leishmaniosis and/or to the risk of
introduction of “new” species in previously free areas, as in the case of L. tropica in Italy
(499). From this point of view, the prevention of the establishment of highly patho-
genic species, such as L. donovani, in areas where they are not endemic is pivotal.

Awareness of epizootiological and epidemiological aspects of leishmaniosis is grow-
ing, and the guard should be kept high. Zoonotic VL is a severe and potentially lethal
disease in humans, and prevention measures, e.g., use of repellents and application of
prevention measures in dogs (e.g., repellents and vaccination), are of great importance,
as VL remains one of the top parasitic diseases with outbreak and mortality potential.
Accordingly, specialized health institutes, such as the WHO, have provided official recom-
mendations for the management of human infections, for the control of sandflies and
reservoirs, and for correct environmental management in a One Health perspective
(https://www.euro.who.int/en/publications/abstracts/manual-on-case-management-and
-surveillance-of-the-leishmaniases-in-the-who-european-region-2017).

CONCLUSIONS

A network of immune functions, species-specific behaviors, and intrinsic and extrinsic
biological features influences the host range of canine and feline parasites and accounts
for different, host-dependent disease development and hazard for public health.

A predominantly Th1-oriented response of cats renders them less permissive to
nematode hypobiotic stages, with implications for fetal and neonatal infections by in-
testinal parasites. Also, it has a great impact on the clinical and epidemiological

FIG 15 Cutaneous nodules and ulcers caused by Leishmania infantum in a human patient (courtesy
of Luigi Gradoni, Unit of Vector-Borne Diseases, Department of Infectious Diseases, Istituto Superiore
di Sanità, Rome, Italy; reproduced with permission.)
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significance of VBDs, including the differential impacts of TBDs and leishmaniosis in
dogs and cats.

Animal behaviors may prevent or increase the risk of infection by different parasites.
Feline grooming reduces the occurrence of tick infestations and most TBDs in cats but
enhances possibilities of other infections such as hepatozoonosis and dipylidiasis.
Geophagia, pica, and coprophagia put many dogs at risk to be infected by parasites
which are transmitted via the fecal-oral route, i.e., intestinal protozoa and nematodes,
many with a zoonotic significance.

Cats and dogs show important differences in the physiology of their cardio-respira-
tory system. The presence/absence of PIMs is herein suggested as potentially responsi-
ble for both (i) the different heartworm/lungworm species infecting dogs and cats, and
(ii) the diverse outcomes of D. immitis and Angiostrongylus infections. As HARD in cats
is often misdiagnosed as asthma or allergic bronchitis, it would be worthwhile investi-
gating if this is also the case in Angiostrongylus species infection in these animals.

The evolutionary pressure on parasites to adapt to the most available predator-prey
relationship optimizes their biological features (45). Sarcoptic and notoedric mange,
echinococcosis, toxoplasmosis, and neosporosis are key examples of the great impact
of such dynamics on the epizootiology and epidemiology of parasitic diseases.
Predation is the main route for feline infection with roundworms, hookworms, and
lungworms, while dogs are at more risk of acquiring such parasites due to their tend-
ency to ingest material from the soil (Fig. 1 and 2).

It seems that while some canine extraintestinal nematodes are able to infect and/or
cause disease in cats (e.g., D. immitis and C. aerophila) (174, 254, 500), nematodes of
cats have not been found thus far infecting dogs, not even under experimental condi-
tions. In the future, this parasitological knowledge may be altered, as cats often live in
urban settings where they are progressively subjected to a “dog-like” lifestyle with a
decreased predatory hunting aptitude. Over time, there could be the possibility for a
change in terms of coevolution of feline parasites toward canine hosts, and the next
generations of parasitologists could face redrawn canine and feline parasitology.

The factual role of many parasites and VBDs in causing different diseases in dogs and
cats, and the various roles they have in causing human pathologies, is too often under-
appreciated, mismanaged, or underdiagnosed by both veterinarians and physicians.
Veterinary professionals are of key importance in implementing the control of parasites
of veterinary and zoonotic concern to safeguard the health and welfare of pets and peo-
ple and in educating the public and owners of companion animals. At the same time, a
close cooperation with the medical community is pivotal for effective surveillance of
zoonotic parasites and VBDs of dogs and cats. Veterinarians and physicians must keep
their guard up against zoonotic dog and cat parasitoses and constantly provide advice
and improve the knowledge of owners, with a special focus on those humans who are at
higher risk of disease. In fact, the major goal of the “One Health” concept is based on the
tight tie between the human health operators, vet practitioners, and the public.
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